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5 Cancer Biomarker Research Group, HUN-REN Research Centre for Natural Sciences, Magyar Tudosok

Korutja 2, H-1117 Budapest, Hungary
6 Department of Biophysics, Medical School, University of Pecs, H-7624 Pecs, Hungary
7 Departamento Bioquímica, Universidad Complutense de Madrid, 28040 Madrid, Spain
8 Health Research Institute, Ospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
9 Centro de Investigación Biomédica en Red en Oncología (CIBERONC), 28029 Madrid, Spain
* Correspondence: alberto.ocana@salud.madrid.org
† These authors contributed equally to this work.

Abstract: The identification of surfaceome proteins is a main goal in cancer research to design
antibody-based therapeutic strategies. T cell engagers based on KLK2, a kallikrein specifically
expressed in prostate cancer (PRAD), are currently in early clinical development. Using genomic
information from different sources, we evaluated the immune microenvironment and genomic
profile of prostate tumors with high expression of KLK2. KLK2 was specifically expressed in PRAD
but it was not significant associated with Gleason score. Additionally, KLK2 expression did not
associate with the presence of any immune cell population and T cell activating markers. A mild
correlation between the high expression of KLK2 and the deletion of TMPRSS2 was identified. KLK2
expression associated with high levels of surface proteins linked with a detrimental response to
immune checkpoint inhibitors (ICIs) including CHRNA2, FAM174B, OR51E2, TSPAN1, PTPRN2, and
the non-surface protein TRPM4. However, no association of these genes with an outcome in PRAD
was observed. Finally, the expression of these genes in PRAD did not associate with an outcome in
PRAD and any immune populations. We describe the immunologic microenvironment on PRAD
tumors with a high expression of KLK2, including a gene signature linked with an inert immune
microenvironment, that predicts the response to ICIs in other tumor types. Strategies targeting KLK2
with T cell engagers or antibody–drug conjugates will define whether T cell mobilization or antigen
release and stimulation of immune cell death are sufficient effects to induce clinical activity.

Keywords: KLK2; prostate cancer; surfaceome; immunologic profile; T cell engagers

1. Introduction

Among the different therapeutic strategies in cancer that have reached the clinical set-
ting, the development of antibodies against surface proteins of cancer cells has become one
of the most successful approaches [1]. Several examples of antibodies targeting oncogenic
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membrane proteins have demonstrated clinical activity, opening the door to exploit the
development of antibodies in different formats [2].

Antibody–drug conjugates (ADCs) are a type of complex compound in which an
antibody is bound with a cytotoxic payload through a chemical linker guiding a potent
agent into the tumoral cell [3,4]. This family of agents has demonstrated activity in patients
in different clinical scenarios, being, at this moment, one of the most promising therapeutic
strategies [4]. Much more recently, bispecific antibodies bind two different antigens: one
that can be in the tumoral cell and the other that can be an immune effector receptor like
CD3 [5]. This family of bispecific antibodies are termed T cell engagers due to their capacity
to activate T cells and guide them against tumoral cells [5].

For all of these potential therapeutic options, the identification of tumor-associated
antigens (TAAs) that are specifically expressed in the tumoral cell is a mandatory require-
ment. Therefore, a great effort should be made to identify specific TAAs in certain tumor
types [6,7]. KLK2 is a member of the kallikreins family, which are a subgroup of ser-
ine proteases primarily expressed in prostatic tissue and are responsible for cleaving a
pro-prostate-specific antigen into its enzymatically active form [8].

T cell engagers based on KLK2 are currently in early clinical development in prostate
cancer [9]. In the case of prostate tumors with high KLK2 expression, it is unknown how the
microenvironment can influence the immune response. In a similar manner, the genomic
profile of this tumor type has not been explored in detail, in order to identify additional
vulnerabilities for co-targeting or for a better patient selection [10].

In the current work, by using genomic information we evaluated the immune microen-
vironment and genomic profile of prostate tumors with a high expression of KLK2.

2. Results
2.1. Expression of KLK2 in Cancer

We first studied the expression of KLK2 across a wide number of solid tumors and
hematologic malignancies using publicly available human genomic datasets, as described in
the materials and methods section. KLK2 was specifically expressed in prostate adenocarci-
noma (PRAD) compared with other solid and hematologic malignancies (Figure 1A). In fact,
KLK2 was highly expressed in PRAD compared with non-transformed tissue (5956.5 and
4175.26 transcripts per million (TPM), respectively), which comprised a >1.4-fold change,
as displayed in Figure 1B. Once the selective expression of KLK2 in PRAD was confirmed,
we aimed to evaluate their role in cell survival. Using public genomic information, we
observed a mild correlation between KLK2 expression levels and the viability of VCAP
(RRID:CVCL_2235) and LNCAP-CLONE-FGC (RRID:CVCL_1379), two prostate cancer
cell lines (Figure 1C). To further explore the role of KLK2 in PRAD, we analyzed KLK2
gene expression using the TCGA (The Cancer Genome Atlas) repository through a resource
termed UALCAN. We explored the presence of KLK2 in relation to patient ethnic origin,
given the different genomic background described between racial groups [11,12]. As can
be seen in Supplementary Figure S1A, no significant differences were observed between
the Caucasian and African American populations, although the number of patients in this
last group was very small. We did not observe a significant association between KLK2
expression and Gleason score (Figure S1B). Additionally, KLK2 was more expressed in
those tumors that had the TMPRRS2-ERG fusion gene (Figure S1C) as well as in tumors
without metastases in lymph nodes (Figure S1D). Of note, the expression of KLK2 in
prostate tumors does not associate with a detrimental prognosis (HR = 0.96, p = 0.95).
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Figure 1. KLK2 expression profile across all tumor samples and paired normal tissues. (A) KLK2 
expression levels in different cancers validated using GEPIA2 database. KLK2 was highly expressed 
(TPM > 600) in PRAD. (B) Heat map depicting fold change between tumor and non-transformed 
tissue for KLK2. The X marks the tumor types where there is no KLK2 expression. (C) Correlation 
between the KLK2 expression level and the CRISPR dependency score, using the methods described 
in material and methods. 

2.2. Expression of Immune Populations in PRAD with a High Expression of KLK2 
We next studied the association of KLK2 expression with the immune infiltrates in 

PRAD. KLK2 expression did not associate with the presence of any innate immune cell 
populations including neutrophils (Rho = −0.14, p = 0.004), dendritic cells (Rho = −0.153, p 
= 0.001), and macrophages (Rho = 0.075, p = 0.128) (Figure 2A). Likewise, KLK2 did not 
correlate with adaptive immune cell populations like CD4+ T cells (Rho = −0.244, p = 4.56 
× 10−07) and B cells (Rho = 0.048, p = 0.332). Nevertheless, a weak correlation was seen be-
tween KLK2 and CD8+ T cells (Rho = 0.34, p = 1.03 × 10−12). In line with this finding, we 
studied the association of KLK2 with biomarkers of T cell activation including CD8A, 
CD8B, GZMA, GZMB, or PRF1 (Figure 2B). No clear association was observed for any of 
them (Figure 2C). An additional battery of more than 40 additional genes linked with T 
cell cytotoxic or dysfunctional activity was explored, and no association was identified 
(Figure 2C). 

Figure 1. KLK2 expression profile across all tumor samples and paired normal tissues. (A) KLK2
expression levels in different cancers validated using GEPIA2 database. KLK2 was highly expressed
(TPM > 600) in PRAD. (B) Heat map depicting fold change between tumor and non-transformed
tissue for KLK2. The X marks the tumor types where there is no KLK2 expression. (C) Correlation
between the KLK2 expression level and the CRISPR dependency score, using the methods described
in material and methods.

2.2. Expression of Immune Populations in PRAD with a High Expression of KLK2

We next studied the association of KLK2 expression with the immune infiltrates in
PRAD. KLK2 expression did not associate with the presence of any innate immune cell
populations including neutrophils (Rho = −0.14, p = 0.004), dendritic cells (Rho = −0.153,
p = 0.001), and macrophages (Rho = 0.075, p = 0.128) (Figure 2A). Likewise, KLK2 did
not correlate with adaptive immune cell populations like CD4+ T cells (Rho = −0.244,
p = 4.56 × 10−07) and B cells (Rho = 0.048, p = 0.332). Nevertheless, a weak correlation
was seen between KLK2 and CD8+ T cells (Rho = 0.34, p = 1.03 × 10−12). In line with this
finding, we studied the association of KLK2 with biomarkers of T cell activation including
CD8A, CD8B, GZMA, GZMB, or PRF1 (Figure 2B). No clear association was observed for
any of them (Figure 2C). An additional battery of more than 40 additional genes linked with
T cell cytotoxic or dysfunctional activity was explored, and no association was identified
(Figure 2C).
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Figure 2. Association of KLK2 expression levels with the immune infiltrates and T cell markers in 
PRAD. (A) Correlation of KLK2 expression levels and the presence of immune infiltrates (CD8+ T 
cells, CD4+ T cells, B cells, neutrophils, dendritic cells (DCs), and macrophages) using the Tumor 
Immune Estimation Resource (TIMER2.0). (B) Association of KLK2 with biomarkers of T cell acti-
vation. (C) Heat map depicting the Spearman’s correlation coefficient between KLK2 and T cell dys-
function and cytotoxicity markers. 
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We studied genomic alterations: mutations, amplifications, and deletions that oc-

curred in PRAD with KLK2 expression (Figure 3A). A mild correlation between a high 
expression of KLK2 and the deletion of TMPRSS2 (Rho = 0.47, p = 1.34 × 10−28) was ob-
served, with no other association identified, as can be seen in Figure 3A,B. 

Figure 2. Association of KLK2 expression levels with the immune infiltrates and T cell markers in
PRAD. (A) Correlation of KLK2 expression levels and the presence of immune infiltrates (CD8+ T cells,
CD4+ T cells, B cells, neutrophils, dendritic cells (DCs), and macrophages) using the Tumor Immune
Estimation Resource (TIMER2.0). (B) Association of KLK2 with biomarkers of T cell activation.
(C) Heat map depicting the Spearman’s correlation coefficient between KLK2 and T cell dysfunction
and cytotoxicity markers.

2.3. Genomic Alterations in PRAD and Expression of KLK2

We studied genomic alterations: mutations, amplifications, and deletions that occurred
in PRAD with KLK2 expression (Figure 3A). A mild correlation between a high expression
of KLK2 and the deletion of TMPRSS2 (Rho = 0.47, p = 1.34 × 10−28) was observed, with
no other association identified, as can be seen in Figure 3A,B.

2.4. Transcriptomic Profile in KLK2 PRAD

We explored the transcriptomic profile in PRAD with a high expression of KLK2. We
selected those genes with a fold change ≥ 1.4, and then classified the list into those that
code for surface proteins and non-surface proteins.

As can been seen in Figure 4A, KLK2 highly correlated (Rho ≥ 0.5) with surface
proteins like FAM174B, TSPAN1, and ANO7, and moderately correlated (Rho ≥ 0.4) with
PTPRN2, GABRG3, CHRM1, LPAR3, CHRNA2, OR51E2, SLC23A1, and SLC13A3. When
we studied the correlation between KLK2 and non-surface proteins (Figure 4D), we ob-
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served a positive correlation (Rho ≥ 0.5) with CREB3L4, GREB1, RDH11, and TMEM220,
followed by GLB1L3, KCNH6, and TRPM4 (Rho ≥ 0.4).
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Figure 3. The genomic alterations more frequent in PRAD. (A) Heat map of the more frequent
(frequency > 1%) mutations, amplifications, and deletions in PRAD using cBioPortal. (B) Heat map
depicting the Spearman’s correlation coefficient between KLK2 and the genomic alterations more
frequent in PRAD using TIMER 2.0.
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Figure 4. Expression profile of upregulated surface and non-surface proteins across PRAD samples
and paired normal tissues when KLK2 is upregulated. Heat map depicting the Spearman’s correlation
coefficient between KLK2 and (A) surface and (D) non-surface proteins in PRAD using TIMER 2.0.
(B) Surface and (E) non-surface proteins expression profile across PRAD samples and paired normal
tissues. Heat map depicting fold change between tumor and non-transformed tissue for (C) surface
and (F) non-surface proteins.
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We then analyzed the expression of surface and non-surface proteins in PRAD and non-
transformed tissue. Among the surface proteins that correlated with KLK2, we observed
that TSPAN1, OR51E2, FAM174B, ANO7, PTPRN2, CHRNA2, and CHRM1 were highly ex-
pressed with ≥32 transcripts per million in PRAD (Figure 4B). Highly expressed non-surface
proteins included CREB3L4, TRPM4, and GREB1 (Figure 4E). Among them, we also ob-
served that the surface proteins TSPAN1, OR51E2, FAM174B, PTPRN2, CHRNA2, CHRM1
(Figure 4C), and the non-surface proteins RDH11, CREB3L4, and TRPM4 (Figure 4F) showed
a fold change ≥ 1.5 between PRAD and non-transformed tissue.

2.5. KLK2 Co-Upregulated Genes and the Clinical Outcome and Response to ICIs

We searched whether the co-upregulated genes predicted the clinical outcome in
patients with PRAD. First of all, we evaluated if this gene set predicted biochemical relapse
in PRAD. Therefore, we analyzed the expression levels of the surface and non-surface
proteins in patients which had high levels of KLK2 and had developed a biochemical
recurrence. As shown in Figure S2, the gene set was not able to predict biochemical relapse.

Then, we studied if the expression of these genes could predict the outcome in male
patients treated with immune checkpoint inhibitors (ICIs). Among the surface proteins,
we observed that a high expression of CHRNA2, FAM174B, OR51E2, TSPAN1, and PT-
PRN2 predicted a detrimental survival in the whole population of patients treated with
both agents anti-PD(L1) and anti-CTLA4 (CHRNA2: HR = 1.34 Cl = 1.02–1.76, p = 0.033;
FDR = over 50%; FAM174B: HR = 1.36 Cl = 1.05–1.76, p = 0.021; FDR = over 50%; OR51E2:
HR = 1.39 Cl = 1.11–1.74, p = 0.0045; FDR = over 50%; TSPAN1: HR = 1.78 Cl = 1.41–2.24,
p = 7.3 × 10−7; FDR = 1%; and PTPRN2: HR = 1.43 Cl = 1.1–1.84, p = 0.0066; FDR = over
50%). A similarly unfavorable prognosis was predicted via the high expression of the
non-surface protein TRPM4 (TRPM4: HR = 1.88 Cl = 1.47–2.42, p = 4.5 × 10−7; FDR = 1%)
(Figure 5).

Taking into consideration that each gene individually predicted a detrimental sur-
vival, we aimed to study the association of those with a clinical outcome. As shown in
Figure 6A, we found that the combination of CHRNA2, FAM174B, OR51E2, TSPAN1,
PTPRN2, and TRPM4 also predicted a detrimental survival in male patients treated with
ICIs (HR = 1.93 Cl = 1.41–2.48, p = 1.3 × 10−7; FDR = 1%). Given the fact that these proteins
were associated with a detrimental survival in response to ICIs, we explored the association
of them with immune infiltrates in PRAD. No correlation was found with these genes and
immune cells (Figure 6B), suggesting their role favors an inert immune microenvironment.

Finally, although this set of genes was evaluated in a global population of male patients
treated with ICIs, we aimed to study their presence in prostate cancer based on the nodal
status (N0 vs. N1) and presence of the TMPRRS2-ERG fusion gene. These data are presented
in Supplementary Figures S3 and S4. Regarding the nodal metastasis status (Figure S3), the
expression of these genes was more present in those tumors with no regional lymph node
metastasis than in those with nodal metastases (1–3 regional lymph nodes). And lastly,
FAM174B, OR51E2, TSPAN1, PTPRN2, and TPRM4 were more expressed in those tumors
that had the TMPRRS2-ERG fusion gene, just like KLK2 (Figure S4).
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Figure 5. Association between surface and non-surface proteins expression levels and overall survival
(OS) in male patients treated with ICIs. Kaplan–Meier survival curves comparing low and high
expression of CHRNA2, FAM174B, OR51E2, TSPAN1, PTPRN2, and TRPM4. HR: hazard ratio; FDR:
false-discovery rate; p: rank p-value.
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Figure 6. Association of surface and non-surface proteins expression levels with overall survival
and immune infiltrates. (A) Kaplan–Meier survival curve of the association between transcriptome
expression of CHRNA2, FAM174B, OR51E2, TSPAN1, PTPRN2, and TRPM4, and overall survival
(OS) in male patients treated with ICIs. (B) Heat map depicting the Spearman’s correlation coefficient
between surface and non-surface proteins expression and the presence of CD8+ T cells, CD4+ T cells,
B cells, neutrophils, dendritic cells (DCs), and macrophages in PRAD using TIMER 2.0.

3. Discussion

In the present article, we evaluate the transcriptomic and immunologic profile of
prostate cancer patients with a high expression of KLK2. The main goal of this project was
to identify transcriptomic, genomic, and immunologic cell correlates present in prostate
cancer with a high expression of KLK2. One of our first findings was the observation of the
exclusive expression of KLK2 in PRAD compared with other tumors and its high presence
in relation with normal tissue. Of note, only for two cellular models the inhibition of KLK2
impacted on cell proliferation, suggesting its limited role in cell survival. In line with this,
we did not observe any association between KLK2 expression and Gleason score or tumor
grade, or the presence of lymph nodes (N1). Indeed, KLK2 expression did not predict the
outcome. Similarly, no differences were observed for ethnic origin.

These data clearly show the relevance of KLK2 and its exclusive presence in PRAD,
positioning this protein as an excellent therapeutic target for the development of antibody-
based therapies. In line with this, T cell engagers against this protein are currently ongoing,
in a similar manner as antibody or radiolabeled–drug conjugates (ADCs) [9,12–14]. In
addition, this shows that KLK2 cannot be considered as an oncogene by itself.

To identify additional associated biomarkers of potential druggable vulnerabilities,
we mapped the genomic profile associated with a high presence of KLK2. We observed
only a mild correlation between a high expression of KLK2 and TMPRSS2 deletions (Rho =
0.47, p = 1.34 × 10−28), with no other association observed. Of note, TMPRSS2 deletions
were exclusively present in PRAD [15,16]. TMPRSS2 is highly expressed in prostate cancer
and contains androgen response elements in the promoter [17]. It must be considered that
the commonly deleted portion between ERG and TMPRSS2 could contain important tumor
suppressor genes [18].

When evaluating the immune profile of PRAD with a high expression of KLK2, we
observed that the presence of this protein was linked with an inert immune microenviron-
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ment. There was a clear absence of immunologic cells including CD8+, CD4+ T cells, B
cells, neutrophils, dendritic cells, or macrophages. In a similar manner, there was a lack
of markers of T cell activation including CD8A, CD8B, GZMA, GZMB, or PRF1, among
others. These data suggest that KLK2, among other proteins highly present in prostate
cancer, would have a negative effect on the immune system [19,20].

We next explored the transcriptomic profile that codes for the surface and non-surface
proteins highly present in tumors with a high presence of KLK2. Of note, these highly
differentiated proteins did not correlate with a more aggressive phenotype, nor predict
a biochemical relapse or detrimental outcome. However, taking into consideration the
immunosuppressive role of these proteins, we explore the relationship between the presence
of these proteins and their response to ICIs. Given the fact that no data are available in
relation to the ICI’s effect in PRAD, we evaluated their role in a wide population of ICI-
treated tumors, as described in the materials and methods section. We observed that
a high expression of CHRNA2, FAM174B, OR51E2, TSPAN1, and PTPRN2 predicted a
detrimental survival in the whole population of patients treated with both agents anti-
PD(L1) and anti-CTLA4. Similar findings were observed for the non-surface protein TRPM4.
Next, we observed in PRAD tumors that the expression of these proteins correlated with
an inert immune microenvironment, with a lack of immune cells and markers of T cell
activation. Some proteins associated with KLK2 expression induce an immunosuppressive
environment leading to a lack of activity of ICIs and reinforce the concept that PRAD
harbors an immune inert environment. In this context, recent data suggest the role of
androgen receptor elements in the lack of activity of ICIs in melanoma [21].

Finally, we identified a clear upregulation of FAM174B, OR51E2, TSPAN1, PTPRN2,
and TPRM4 in those tumors with the TMPRRS2-ERG fusion gene, including KLK2. This
observation is relevant given the characteristics of this particular PRAD subtype [22]. Lastly,
we observed that the PRAD with the highest presence of these genes were those without
nodal involvement.

We acknowledge that our study has limitations. This is an in silico study where data
were extracted from publicly available repositories. We consider that a direct evaluation
using human samples will reinforce the reported findings. In addition, regarding outcome,
we acknowledge that other variables could influence the patients’ outcome, including those
related to the patients’ treatment and patients’ medical conditions.

Considering that KLK2 does not have an oncogenic role, its main function could
be associated with the regulation of the immune system, through a potential immuno-
suppressive role. In this context, targeting of KLK2 with T cell engagers could enhance
the presence of T cells [23]. In a similar manner, ADCs against KLK2 could inhibit the
immunosuppressive function of the protein, in addition to the induction of immunologic
cell death mediated by the activity of the payload [24].

4. Materials and Methods
4.1. Gene Expression and Genomic Alteration Analysis

RNA sequencing expression data to evaluate the transcriptomic levels of KLK2, TM-
PRSS2, and surface and non-surface proteins in tumor and normal tissue were obtained
from TCGA and GTEx (Genotype-Tissue Expression) databases [25], using the bio infor-
matics tool ‘Gene Expression Profiling Interactive Analysis’ (http://gepia2.cancer-pku.
cn/#index; last accessed on 4 September 2023) [26]. Data contained at cBioportal [27,28]
(http://www.cbioportal.org; last accessed on 12 July 2023) [29] were used to evaluate
the pattern of gene copy number alterations (CNAs) in prostate cancer. Using UALCAN
(http://ualcan.path.uab.edu/; last accessed on 18 January 2024) [30], we evaluated the
mRNA level of those genes in PRAD from various angles such as patient ethnic origin,
nodal metastasis status, the presence of the TMPRRS2-ERG fusion gene, and the tumor
Gleason score [31].

http://gepia2.cancer-pku.cn/#index
http://gepia2.cancer-pku.cn/#index
http://www.cbioportal.org
http://ualcan.path.uab.edu/
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4.2. CRISPR Dependency Score

The Cancer Dependency Map (DepMap) web server (https://depmap.org/portal/;
last accessed 20 September 2023) [32] was used to obtain the effect of knocking out KLK2
in various prostate cancer cell lines through CRISPRCas9 technology [33,34]. Depending
on the magnitude of the effect a CERES score is given. Therefore, a negative CERES score
means that knocking out the gene inhibits the proliferation and survival of the cell lines.
The more essential the gene, the lower the CERES score obtained.

4.3. Association between Tumor Immune Infiltrates and Gene Expression

TIMER 2.0 web server [35] (https://timer.cistrome.org/; last accessed on 15 July
2023) [36] was employed to investigate the co-expression of KLK2 and the genomic alter-
ations in PRAD. Additionally, we assessed the association of KLK2 with biomarkers of
T cell activation, additional genes linked with T cell cytotoxic or dysfunctional activity,
and tumor-infiltrating immune cells, such as CD8+ and CD4+ T cells and neutrophils,
among others. TIMER2.0 uses 6 state-of-the-art algorithms to acquire a better estimation
of immune infiltration and includes 10,897 samples over 32 cancer types [37,38]. Rho and
p-values were obtained from Spearman’s correlation test.

4.4. Genes Expression in PRAD with Overexpression of KLK2

Data manipulation and statistical analyses were performed using R. The prostate can-
cer samples from the TCGA repository were categorized into high and low KLK2 expression
cohorts based on the median KLK2 expression level. The data were pre-processed, where
genes with a mean expression below 100 across all samples were excluded to minimize
noise. Then, the Mann–Whitney test was employed to compare gene expression levels
between the high and low KLK2 expression cohorts for all remaining genes. The outcomes
of the analysis are summarized in Table S1, which provides a comprehensive overview of
the genes that exhibit the significant differential expression associated with high and low
KLK2 expression cohorts in prostate cancer.

4.5. Surfaceome

The in silico human surfaceome database [39] (https://wlab.ethz.ch/surfaceome/;
last accessed on 10 September 2023) [40] was used to determine the cell location of the
proteins overexpressed in PRAD with a high expression of KLK2.

4.6. Outcome, Prognosis Analysis, and Biochemical Recurrence

The RNA sequencing expression data of 500 patients with prostate primary tumors
obtained from the TCGA-PRAD database (https://portal.gdc.cancer.gov/projects/TCGA-
PRAD; last accessed on 5 September 2023) [41] was used to analyze the association of gene
expression and biochemical recurrence in patients with a high expression of KLK2.

The Kaplan–Meier Plotter Online Tool [42] (https://kmplot.com/analysis/; last ac-
cessed on 10 October 2023) [43] was utilized to determine the prognostic value in solid
tumors, in relation to the expression of a particular gene. We studied the relationship
between different gene expression levels and the clinical outcome in patients treated with
ICIs). OS was utilized as an endpoint for the outcome analysis. OS time was defined as the
time from diagnosis to patient death or last follow-up. The KM plots are represented with
p, HR, and FDR. Genes with an HR < 1 and p < 0.05 predict a favorable clinical outcome.

The UALCAN resource (http://ualcan.path.uab.edu/; last accessed on 21 November
2023) [30] was used to profile KLK2 expression in relation to the tumor Gleason score [31].

4.7. Protein–Protein Interaction

The STRING database [44] (https://string-db.org/; last accessed on 11 October
2023) [45] was used to analyze the protein–protein interaction map of KLK2.

https://depmap.org/portal/
https://timer.cistrome.org/
https://wlab.ethz.ch/surfaceome/
https://portal.gdc.cancer.gov/projects/TCGA-PRAD
https://portal.gdc.cancer.gov/projects/TCGA-PRAD
https://kmplot.com/analysis/
http://ualcan.path.uab.edu/
https://string-db.org/
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5. Conclusions

In summary, we describe the transcriptomic, genomic, and immunologic profiles of
PRAD tumors with a high expression of KLK2. We have observed that KLK2 PRAD tumors
are immune and inert, and are associated with TMPRSS2 deletions and with other surface
proteins that predict a detrimental response to ICIs. Strategies aiming to target this protein,
using it to attract T cells or to be the base to guide ADCs, could enhance the immune
environment through different mechanisms including T cell migration or immunologic
cell death, among others. However, it is unclear if this effect alone would be enough to
produce a clinical benefit.
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com/article/10.3390/ijms25042222/s1.
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