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Abstract: Genetic abnormalities play a crucial role in the development of neurodegenerative disorders
(NDDs). Genetic exploration has indeed contributed to unraveling the molecular complexities
responsible for the etiology and progression of various NDDs. The intricate nature of rare and
common variants in NDDs contributes to a limited understanding of the genetic risk factors associated
with them. Advancements in next-generation sequencing have made whole-genome sequencing
and whole-exome sequencing possible, allowing the identification of rare variants with substantial
effects, and improving the understanding of both Mendelian and complex neurological conditions.
The resurgence of gene therapy holds the promise of targeting the etiology of diseases and ensuring a
sustained correction. This approach is particularly enticing for neurodegenerative diseases, where
traditional pharmacological methods have fallen short. In the context of our exploration of the genetic
epidemiology of the three most prevalent NDDs—amyotrophic lateral sclerosis, Alzheimer’s disease,
and Parkinson’s disease, our primary goal is to underscore the progress made in the development
of next-generation sequencing. This progress aims to enhance our understanding of the disease
mechanisms and explore gene-based therapies for NDDs. Throughout this review, we focus on
genetic variations, methodologies for their identification, the associated pathophysiology, and the
promising potential of gene therapy. Ultimately, our objective is to provide a comprehensive and
forward-looking perspective on the emerging research arena of NDDs.

Keywords: next generation sequencing; gene therapy; Alzheimer’s disease; Parkinson’s disease;
amyotrophic lateral sclerosis

1. Introduction

With an increase in the aging population, neurodegenerative disorders (NDDs) are
among the major health issues in the modern world. It is estimated that they will become
the second leading cause of death globally by 2050, surpassing cancer [1]. Neurodegener-
ative disorders that are chronic and progressive exhibit a distinct pattern of neuron loss
in motor, sensory, or cognitive systems [2]. The common symptoms of NDDs include
impairment of the motor system, sensory network, cognitive function, memory, and ab-
stract thinking that could appear during the disease progression [3]. Alzheimer’s disease
(AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS) take the forefront
among neurodegenerative disorders, resulting in the unfortunate demise of thousands of
Americans. Moreover, the patient count is anticipated to rise steadily in the upcoming
decades [2,4].

NDDs primarily emerge during late adulthood and are frequently associated with
the accumulation of protein aggregates. For instance, AD is predominantly characterized
by the aggregation of amyloid β and tau proteins, while PD and ALS are characterized
by the accumulation of α-synuclein [5] and TDP43 [6], respectively (Figure 1). While the
initial diagnosis of an NDD is typically based on clinical presentation, definitive confirming
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requires post-mortem pathological analysis to identify the specific protein aggregates.
Moreover, the presentation of NDDs varies widely, and it is increasingly recognized that
the diagnosis exists on a spectrum, with a greater prevalence of mixed pathology and
overlapping clinical features than previously acknowledged [5,7]. Understanding the
underlying causes and pathological processes of neurological diseases stands as one of
the most critical challenges in the fields of medical and biological sciences due to their
relatively high prevalence, largely unknown mechanisms, and significant impact on affected
individuals, families, and society.
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and their discovery has advanced knowledge of the molecular mechanisms underlying 
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environmental factors in addition to the slow, sustained neuronal dysfunction caused by 
aging. 
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Figure 1. Abnormal protein deposition in affected brain regions during AD, PD, and ALS. In
AD, cerebral cortex and hippocampus is predominantly affected and identified by amyloid plaque
deposition, and a-synuclein deposition in basal ganglia is a hallmark of PD. In ALS, the brain stem
and spinal cord are affected with the accumulation of TDP-43 aggregates.

NDDs are influenced by a wide range of genetic factors, from straightforward direct
predisposition in diseases like Huntington’s disease and spinocerebellar atrophy to more
complex roles in diseases like AD and PD [8,9]. A number of causative genes for familial
forms of NDDs have been identified; these genes are inherited as Mendelian traits [10],
and their discovery has advanced knowledge of the molecular mechanisms underlying
the distinctive neuronal degeneration that distinguishes each disorder. Only a small per-
centage of ALS, AD, and PD cases (5–10%) are familial, while the vast majority (>90%) are
sporadic [11], most likely due to complex interactions between genetic and environmental
factors in addition to the slow, sustained neuronal dysfunction caused by aging.

This review is primarily dedicated to dissecting the complex web of genetic changes
in neurological disorders such as ALS, AD, and PD. Our investigation extends to the
methodologies employed for pinpointing these alterations. Through this review, we aspire
to paint a broad and forward-looking canvas, capturing the dynamic landscape of research
in neurodegenerative diseases.

2. Genetic Techniques in Addressing Neurodegenerative Disorders

In the realm of molecular genetics and genetic epidemiology, disease-related genes are
typically classified into two principal groups: causative genes and susceptibility genes [12].
Through the identification of the causal or susceptibility genes for each neurological dis-
order, along with the utilization of transgenic techniques, our grasp of the fundamental
molecular mechanism has improved, creating a pathway for the exploration of potential
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therapeutic targets. In this section, we will discuss different cutting-edge high throughput
technologies to identify the genetic variation in neurodegenerative disorders (Table 1).

Table 1. Comparative analysis of genetic techniques, their advantages, and limitations.

S.No. Techniques Methods Benefits Disadvantages

1 Sanger Sequencing

Traditional method
involving the sequencing
of DNA fragments using
chain-termination dideoxy
nucleotides.

■ High accuracy in base
calling

■ Well-established and
widely used sequencing
method

■ Limited throughput,
suitable for sequencing
suitable for sequencing
small regions or
individual genes

■ Relatively higher cost per
base compared to NGS

2
GWAS

(Genome-wide
association studies)

Analyze the genetic
variation across the entire
genome to identify the link
between specific genetic
variants and a particular
trait or disease.

■ High-throughput
screening of genetic
variation

■ Can detect common
variants associated with
disease risk

■ Limited ability to detect
rare variants with small
effect sizes.

■ Lack of functional
information about
identified variants

3
WGS

(Whole Genome
Sequencing)

Involves sequencing the
entire genome to identify
both coding and
non-coding variants
associated with disease.

■ Comprehensive coverage
of entire genome
including regulatory
region

■ Identifies both rare and
common variants

■ Higher cost and
computational resources
required.

■ Challenges in
interpreting non-coding
variants and their
functional consequences

4
WES

(Whole Exome
Sequencing)

Focus on sequencing the
protein coding region of
genome to identify
disease-associated variants.

■ Identifies rare coding
variants with potentially
large effect sizes

■ Provides information on
functional consequences
of variants

■ Limited coverage of
non-coding regions,
where regulatory
variants may reside.

■ High cost

5
NGS

(Next-Generation
Sequencing)

Utilizes high throughput
sequencing technologies to
sequence DNA or RNA
molecule in parallel.

■ Enables rapid
sequencing of large
amount of DNA or RNA

■ Offers higher sensitivity
and resolution compared
to traditional sequencing
methods

■ Requires sophisticated
bioinformatics tools and
computational resources.

■ Higher cost compared to
traditional sequencing
methods

6
LRS

(Long Read
Sequencing)

Employs sequencing
platforms that generate
reads spanning hundreds
to thousands of base pairs,
providing more contiguous
sequence information.

■ Enables sequencing of
longer DNA fragments,
allowing for better
detection of structural
variants

■ Facilitates assembly of
complex genomic region
and repetitive sequences

■ Generally lower
throughput compared to
short read sequencing
platforms

■ Higher errors rates in
reads compared to short
read sequencing

Many neurological disorders are known to have substantial genetic factors contribut-
ing to their development [13]. Recent progress in the fields of genome technologies, encom-
passing genome-wide association studies (GWASs) and next-generation sequencing (NGS)
technology, has substantially enhanced our insights into the genetic factors contributing
to these diseases [14]. In the case of rare Mendelian disorders, NGS exhibits the capacity
to unveil novel genes harboring mutations that intricately underpin the phenotypic ex-
pressions [14]. GWAS, based on the common disease–common variant hypothesis, aims to
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elucidate how common genetic variability is associated with the development of prevalent
diseases [15]. Most common neurological diseases like AD, PD, and ALS can be studied
using both approaches. GWAS works well for sporadic cases (without a family history),
while NGS-based studies are best for cases with a strong family connection, indicating a
likely genetic inheritance [16].

Genome-wide association studies (GWASs) have successfully revealed numerous
susceptibility genes for common diseases such as diabetes as well as NDD, the odds ratios
associated with these risk alleles are generally low and account for only a small proportion
of estimated heritability [17]. The theoretical framework for a GWAS is the ‘common
disease—common variant hypothesis’, in which common diseases are attributable in part
to allelic variants present in more than 1–5% of the population [18]. It is assumed that risk
alleles with a large effect size may be rare in frequency and hard to detect with GWASs
employing common single nucleotide polymorphisms (SNPs). The current experience
with GWASs strongly suggests that rarer variants that are hard to detect with GWASs may
account for the ‘missing’ heritability [19]. This suggests the presence of rare variants (found
in less than 5% of the population) between the extremes of the frequency spectrum. Such
rare variants may have large effect sizes as genetic risk factors for diseases. Thus, we need
a paradigm shift from the ‘common disease—common variants hypothesis’ to a ‘common
disease—multiple rare variants hypotheses’ to identify disease-relevant alleles with large
effect sizes [20,21]. These rare variants, although not causative, typically have a significant
impact, and GWASs using common SNPs struggle to capture them due to their large effect
size [22].

The advancement in next generation sequencing technologies has notably enhanced
the efficiency and affordability of both whole exome sequencing (WES) and whole genome
sequencing (WGS) in the recent past [23]. In contrast to the extended timeframe and high
expenses associated with first-generation sequencing, specifically Sanger sequencing which
required several years and millions of dollars to sequence an entire diploid human genome,
an NGS platform can achieve this sequencing within a few weeks, at a modest cost [24].
Furthermore, NGS technology has facilitated the discovery of rare variants with substantial
effects, revealing missense or nonsense single-base substitutions, as well as small insertions
or deletions. These findings bear significant implications for risk prediction, diagnosis, and
the treatment of neurological diseases [14].

Despite the vast array of mutations identified through next-generation sequencing
(NGS), its short-read lengths (150–300 bp) and limited representation in GC-rich/poor areas
poses challenges in resolving expansions beyond several kilobases [25]. In comparison
to NGS, two prevalent long-read sequencers referred as LRS, including single-molecule
real-time (SMRT) sequencing developed by Pacific Biosciences (PacBio), Menlo Park, CA,
USA [26] and nanopore sequencing by Oxford Nanopore Technologies (ONTs), Oxford
Science Park, Oxford, UK [27], present an alternative method for sequencing single DNA
molecules in real time (Figure 2). The reads generated by these platforms are exceptionally
long, extending over several tens of kilobases and capturing entire repetitive regions [28].
Additionally, there is a potential to diminish the guanine-cytosine (GC) bias to a lesser
degree and attain a more even genome coverage without the necessity for PCR amplification,
unlike NGS [28,29]. In the realm of targeted sequencing, a noteworthy advancement is the
integration of clustered regularly interspaced short palindromic repeats/CRISPR-associated
9 (CRISPR/Cas9)-mediated amplification-free enrichment with long-read sequencing (LRS),
presenting an essential tool for targeted sequencing [30]. The distinctive attributes of LRS
render it highly appropriate for unraveling neurodegenerative diseases, particularly in
instances where NGS outcomes are uninformative.
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In a more recent development within the human domain, the telomere-to-telomere
consortium utilized long-read whole-genome sequencing (WGS) to successfully sequence
the very first “complete human genome” [31,32]. The initiative commenced with the aim of
constructing a human reference genome devoid of any gaps; thus, researchers utilized both
PacBio and ONT technologies to meticulously sequence every facet of the genome, includ-
ing the historically elusive telomeres and centromeres [31,32]. Long-read whole-genome
sequencing (WGS) stands out for its capability of navigating through intricate genomic
regions, facilitating the identification of structural variations like insertions, deletions,
inversions, translocations, expansions, and copy number variations [33,34]. Short-read
sequencing, with its typically shorter read lengths, struggles to capture these structural
variations adequately [34]. The exploration of structural variation through long-read WGS
may shed light on some of the unexplained heritability in ALS [35]. Until now, only one
study has delved into long-read whole-genome sequencing (WGS) within the realm of
ALS, specifically targeting C9orf72 repeat expansions. Utilizing the ONT MinION (Oxford
Science Park, Oxford, UK), no reads covering the C9orf72 expansion were identified, while
PacBio SMRT sequencing yielded an 8× coverage of the expansion [35]. Notably, there
have been no reported large-scale association studies in ALS integrating long-read WGS.

3. Genetic Mutations and Corresponding Cellular Alterations in
Neurodegenerative Disorders

In this section, we will delve into the cellular mechanisms of pathogenicity linked to
genetic variations, focusing specifically on neurodegenerative disorders such as ALS, AD,
and PD. Additionally, other neurodegenerative diseases are also touched on briefly in this
section to provide a comprehensive overview of this expansive field.

3.1. Amyotrophic Lateral Sclerosis (ALS)

ALS is a fatal neurodegenerative disease that predominantly affects motor neurons
in the brain, brainstem, and spinal cord [6]. The term “amyotrophy” refers to the loss
of muscles and “lateral sclerosis” refers to the loss of axons and muscle in the lateral
spinal cord columns. ALS causes gradual voluntary muscle weakness that spreads to
neighboring body parts, usually resulting in death from respiratory failure within 2–4 years
of diagnosis. In addition to motor neuron loss, the neuropathological features include
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intracellular cytoplasmic inclusions of eosinophilic Bunina bodies and ubiquitinated TDP-
43 [6]. Furthermore, there is significant variation in disease symptoms, with frontotemporal
dementia (FTD) occurring in about 15% of patients, and cognitive and behavioral changes
occurring in up to 60% of patients [6].

3.1.1. Genetic and Pathological Overlap between ALS and FTD

ALS has a close association with frontotemporal dementia (FTD), sharing a common
molecular etiology with this condition [36]. Roughly 15% of individuals diagnosed with
FTD develop motor neuron disease (MND), while conversely, up to 50% of those with
MND exhibit clear signs of cognitive defects [37]. Numerous studies have revealed clinical,
pathological, and genetic similarities between these conditions. Consequently, they are now
viewed as two expressions of a single disease continuum, known as either the ALS-FTD
spectrum or the FTD-ALS spectrum. The broader term, frontotemporal lobar degeneration,
is linked with motor neuron disorders under the name FTLD-MND [36]. ALS is a degenera-
tive MND marked by progressive muscle atrophy, paralysis, and ultimately, death typically
occurring within 3–5 years of symptom onset due to respiratory failure. On the other hand,
FTD manifests with alterations in social behavior and/or language skills at disease onset,
stemming from neurodegeneration in the frontal and temporal lobes, culminating in death
within 3–12 years of symptom onset [38].

Despite the heterogeneous clinical phenotypes observed in FTD and ALS, implying
potentially divergent underlying biological mechanisms, it is widely acknowledged that
these diseases share significant clinical, genetic, and neuropathological similarities [39]. The
prevalent mutations implicated in disease causation are found in chromosome 9 open read-
ing frame 72 (C9ORF72) and progranulin (GRN), both leading to TDP-43 neuropathology,
as well as in microtubule-associated protein tau (MAPT), which leads to tau neuropathol-
ogy [40]. The leading factors responsible for ALS, FTD, or their co-occurrence (ALS-FTD),
in a familial context, are commonly the pathogenic hexanucleotide repeat expansions
in C9ORF72 [41]. Approximately 25–40% of familial cases of ALS and FTD exhibit this
mutation, while 5–7% of sporadic cases also test positive for pathogenic expansions in
C9ORF72 [41]. In addition to C9ORF72, mutations in several other genes, such as TARDBP,
SQSTM1, VCP, FUS, TBK1, CHCHD10, and UBQLN2, have been identified in association
with both ALS and FTD [34,37]. For patients with ALS and FTD who possess these par-
ticular mutations, excluding FUS, the prevalent pathological feature is the presence of
ubiquitinated protein deposits primarily consisting of TDP-43 [36]. The reason why muta-
tions in the same genes lead to distinct clinical syndromes despite similar neuropathology
remains unclear and could be attributed to variations in mutation localization affecting
downstream processes, as well as potential influences from modifying genetic and/or
environmental factors. However, the presence of shared genetic factors in FTD and ALS
suggests the existence of common molecular mechanisms driving disease pathology, to
some degree. Ongoing efforts in developing novel disease-modifying treatments for both
ALS and FTD patients are targeting specific molecular subtypes.

3.1.2. Epidemiology

The risk of ALS increases with aging and is highest between the ages of 60 and 79 [42].
It is unclear whether the incidence of ALS has changed in the last few decades, but it is
expected to rise as the population ages. According to a meta-analysis, the standardized
global incidence of ALS is only 168 per 100,000 person-years of follow-up, but this varies by
region [42]. In populations with a predominance of European ancestry, like those in Europe
and North America, the incidence ranges from 1.71 per 100,000 to 1.89 per 100,000 and may
even be higher in population-based studies [43]. Asian populations have lower incidences,
varying from 0.73 per 100,000 in south Asia to 0·94 per 100,000 in west Asia, whereas
Oceania universally has the highest incidence (2.25 per 100,000) [43]. Additionally, incidence
differs by sex, with a standardization male-to-female ratio of 1.35 that is influenced by
the age of onset. Genetics also play a role; heritability is higher in mother–daughter pairs,
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whereas the most common known ALS risk gene, C9orf72, lowers the onset age in men
versus women [43]. Thus, ALS is caused by complex interactions between age, gender, and
genetics, which have implications for preclinical and clinical research.

Even though there are several known genetic risks for ALS, approximately 85% of
cases do not have a single genetic cause [44]; thus, the pathophysiology of the disease
remains unknown, delaying the development of effective therapies. Till now, there are
only two effective drugs available: riluzole and edaravone [45]. Recently, two additional
drugs were approved by the FDA that include Toferson (the first gene therapy for ALS) [46]
and Relyvrio [47]. Non-pharmacological multidisciplinary care, for example, the use of
early non-invasive ventilation and feeding tube insertion, can improve patient outcomes
to a certain extent before significant weight loss [6]. Due to the scarcity of treatments,
researchers have focused their efforts on the complex genetics of ALS and the associated
pathomechanism [48].

3.1.3. Genetic Causes and Risk Factor

ALS is typically classified as familial or sporadic. This straightforward division, how-
ever, ignores the disease’s complex genetic architecture, which is characterized by gene
penetrance, heritability, and inheritance (monogenic, oligogenic, and polygenic). Only
10–15% of individuals have Mendelian ALS, though it has incomplete penetrance in most
families [49]. In the remaining 85%, large GWASs may be able to find rare variants, i.e.,
mutations found in a single family that may affect disease risk and phenotypic presenta-
tion [50]. Ancestral European (i.e., European, American, Canadian, and Australian) and
Asian populations are the main sources of the current knowledge of validated genes for
ALS [51]. Although at least 40 genes have been linked to the disease, 4 genes, namely
C9orf72, SOD1, TARDBP (coding for TDP-43), and FUS, account for roughly 48% of familial
cases and 5% of sporadic cases in European populations, and significantly contribute to the
pathophysiology of disease [52].

• Superoxide dismutase (SOD1)

In 1993, the identification of the SOD1 gene as the causative factor for the familial
form of ALS was a major advancement in this field [53]. SOD1 (Cu-Zn SOD) is a 32 kda
homodimeric protein, comprising 153 amino acids and containing one copper and one Zn
binding site, present abundantly in the nucleus, cytosol and mitochondria [54]. Currently,
more than 200 mutations are reported in this gene [55]. SOD1 plays antioxidant role in the
cellular system by lowering the concentration of reactive oxygen species (ROS), and also
converting ROS into oxygen and hydrogen peroxide (H2O2) [56].

Patients with a SOD1-mutation have clinical traits like early onset, longer disease
duration, and motor symptoms that typically start in the lower limbs, with rare occurrences
of cognitive disturbances [57]. The discovery of SOD1 in ALS has significantly added
to the understanding of the disease, in particular with the development of transgenic
models. Mutated SOD1 triggers ROS production and causes oxidative stress and abnormal
iron metabolism, but the detailed molecular mechanism is still to be elucidated [58]. The
mutated SOD1 contains an exposed N-terminal short domain, the derlin-1-binding region
(DBR), that initiates endoplasmic reticulum stress. In ALS, SOD1 mutation induces a
conformational change that may lead to motor neuron toxicity [59].

Excitotoxicity (glutamate-mediated neurotoxicity) is a possible pathogenic mechanism
for ALS, which explains why the glutamate release inhibitor riluzole shows modest thera-
peutic efficiency in this disorder [60]. Even though this is debatable in SOD1 ALS patients,
excitotoxicity may result from a selective loss of the glutamate transporter-1 (GLT1), exces-
sive glutamate efflux, or toxicity of glial cells, the consequences of which are disturbances in
neuronal calcium homeostasis [58,61]. Mitochondrial dysfunction has also been observed
in SOD1-mutated ALS animal models; an increase in the production of oxidative stressors
such as nitric oxide, superoxide, and peroxynitrite, as well as a decrease in the ability of
mitochondria to synthesize adenosine triphosphate (ATP) are mitochondrial-based mecha-
nisms causing motor dysfunction [62]. Depolarization is a crucial phenomenon in axonal
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transports. Motor neurons are particularly sensitive to energy reduction because it disturbs
ionic Na+/K+ pumps and quickly results in a slow depolarization with hyperexcitability
due to the progressive loss of Na+ and K+ reversal potentials [63]. The depolarization is
further worsened by persistent sodium channels (pNa+) and raises intracellular calcium
that triggers apoptotic pathways [63]. Interestingly, Riluzole is a pNa+ blocker and this
property may also play a role in its neuroprotective effects [64].

Recently, some authors have proposed the ‘prion-like propagation’ of mutant SOD1 mis-
folding and motor neuron degeneration along corticospinal pathways [65]. The concept
driving this hypothesis is that a mutant or wild-type misfolded protein spreads along
anatomical pathways and transmits its abnormal misfolding properties to native proteins,
causing toxic aggregation. These properties have been reported in vitro for SOD1, TARDBP,
FUS, and C9ORF72, but in vivo only for SOD1 so far [66].

Moreover, the genome-wide data showed that the disease progression and severity are
correlated with SOD1 point mutations, like the p.A4V mutation is associated with severe
disease symptoms and p.H46R shows slow progression [67,68]. In homozygous cases, a
fast disease progression is reported in the p.L126S mutation [69], which is relatively slow
in heterozygous cases [70]. Recently, another SOD1 (p.L144S) variation in an Iranian family
was reported as severe in a homozygous condition [71]. The relatively common mutation
p.N86S shows low penetrance and phenotypic diversity even within families [72].

• Chromosome 9 open reading frame 72 (C9ORF72)

The C9ORF72 gene is present at the 9p21 locus of chromosome 9. In 2011, a massive
GGGGCC (G4C2) hexanucleotide repeat expansion mutation (HREM) within intron 1 of
C9ORF72 was recognized as a pathogenic mutation in ALS [73]. Nearly 30 G4C2 HREMs
have been reported in healthy individuals, whereas more than 70 repeats are speculated in
ALS patients [73]. Presymptomatic carriers of the C9ORF72 expansion mutation have ear-
lier brain atrophy (especially focal atrophy of the left supramarginal gyrus) and cognitive
alterations than healthy controls of similar ages [74]. A few theories have been put forth to
explain how C9ORF72 contributes to the emergence of C9ORF72-related disorders. The first
theory says that a decrease in the C9ORF72 protein level inhibits endosomal trafficking and
perturbs endocytosis, which results in impaired autophagy; however, C9ORF72 knockout
mice do not exhibit motor neurodegeneration [75]. Another theory postulates that the
massive G4C2 HREMs could be neurotoxic by forming length-dependent RNA foci that
would enclose RNA binding proteins and shut down the RNA processing system [76].
According to a third hypothesis, the C9/ALS pathogenicity is mediated by dipeptide
repeats (DPRs) which are derived from repeat-associated non-AUG translation of G4C2
(or G2C4) RNA in five different DPRs called ‘polyGA’, ‘polyGP’, ‘polyGR’, ‘polyPA’, and
‘polyPR’ [77]. The aggregated DPRs have been reported in the motor neuron of an ALS
patient, but their role in disease progression is not clear [77]. C9ORF72 expansion mutations
result in susceptibility to Ca2+ permeable-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid (AMPA) receptor-mediated excitotoxicity and cause motor neuron degeneration [78].
C9ORF72 repeat expansion results in mutant protein and haploinsufficiency from the wild-
type allele. Therefore, in C9ORF72 ALS patients, haploinsufficiency for C9ORF72 activity
results in neurodegeneration, which is caused by at least two mechanisms: accumulation of
glutamate receptors (which results in excitotoxicity) and impaired clearance of neurotoxic
DRPs derived from the repeat expansion. Additionally, C9ORF72 expansion RNA tran-
scripts aggregate into toxic RNA foci, blocking RNA-binding proteins and altering RNA
metabolism. The abnormal translation of C9ORF72 transcript expansions produces toxic
dipeptide repeats, e.g., poly proline-arginine repeats (poly-PRs) and poly glycine-arginine
repeats (poly-GRs) [79].

• TARDBP

In 2008, TARDBP (encoding TDP-43) was recognized as a causative gene of ALS [80].
TDP-43 aggregates in the cytoplasm of motor neurons were reported in approximately 90%
of sporadic and familial (with C9ORF27 mutation) cases, and hence considered as a key
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pathological feature in ALS. The cytoplasmic aggregates of TDP-43 are characterized by
abnormal phosphorylation, truncation, and mislocalization. The accumulation of abnormal
TDP-43 or loss of function in physiological TDP-43 causes neurodegeneration in the ALS
disease. TDP-43 propagates in a prion-like fashion along the motor pathway [81]. Moreover,
even if TDP-43 is common in both ALS and FTD, in ALS, the inclusions are circumferential
(curved) in contrast to FTD where the inclusions are rounded.

Familial ALS with TARDBP mutations is more common in the limbs and has a wider
age range of onset. Among these mutations, the p.G376D mutation has a notably fast
disease progression, taking less than 1.5 years from onset to death [82]. The p. G298S
is another mutation considered as short-lived [57], whereas the p.A315T mutation has a
longer disease course of 8–10 years [57].

TARDBP-coded TDP-43 is a ribonucleoprotein involved in exon splicing, gene tran-
scription, mRNA stability, mRNA biosynthesis, and the formation of nuclear bodies [83].
The C-terminal region of TDP-43, which is rich in Gln/Asn-sequence like prions, is capable
of binding directly to several ribonucleoproteins mediating protein–protein interactions
and splicing repression [84]. TDP-43 loses the ability to mediate splicing repression when
its C-terminal region is lacking [84]. TDP-43 accumulation results in RNA instability that
triggers apoptosis by disrupting the pathways for energy production and protein synthe-
sis [85]. TDP-43 cytoplasmic inclusions are nearly the most common feature, reported in
about 97% cases of ALS [48]. It is a nuclear DNA/RNA binding protein that mislocalized
to the cytoplasm and underwent significant post-translational modification or truncation in
patients with ALS. TDP-43 mislocalization impairs the RNA splicing of stathmin-2, a pro-
tein required for microtubule stability, lowering stathmin-2 concentration, and impairing
axonal growth and motor neuron function [86].

• FUS

FUS was identified as a causative gene for ALS in 2009 [87]. In the early onset of
ALS, the frequency of FUS mutation is high because of de novo mutation [88]. The FUS
mutations typically manifest in patients in their 30s or 40s, with upper extremity or cervical
onset and a fast-progressing disease course of 2 years [89]. In contrast, p.Q519E and p.S513P
are reported mutations showing older age of onset and slow disease progression [55].

TDP-43 neuronal inclusions are widely accepted pathological hallmarks of both ALS
and FTD; however, it has been demonstrated that 10% of FTD patients also have inclusions
in their neuronal and glial cells that are immunoreactive for FUS but lack TDP-43 inclu-
sions [90]. The cytoplasmic FUS inclusions comprise RNAs and proteins (from suspended
translation units) and promote cell survival under stressed environments by redistributing
translational resources. FUS are also involved in synaptic plasticity and dendritic integrity
of neurons [91]. In the presence of mutated FUS, the function of stress granules (FUS
inclusions) is compromised and results in motor neuron dysfunction [92].

3.1.4. Additional Risk Loci from Genome-Wide Association Studies

In recent years, new genes for ALS have been identified, including TBK1, NEK1,
CCNF, C21ORF2 (also known as CFAP410), ANXA11, TIA1, KIF5A, GLT8D1, LGALSL,
and DNAJC7, which have highlighted significant recurrent pathways and opened new
research directions [48]. Importantly, the genes linked to ALS have a different degree
of pathogenicity and susceptibility risk. Highly penetrant mutations (e.g., in TARDBP,
SOD1, and FUS) usually cause disease, whereas some variants associated with ALS (e.g.,
ANG, ATXN2, and DCTN) do not necessarily cause the disease, rather increase the risk of
its development [48]. Moreover, even causative mutations are not completely penetrant,
and interactions with the environment alter the risk of disease development. A recently
published GWAS, including 29,612 patients with ALS and 122,656 controls, identified
15 risk loci (Table 2) [93]. Among the newly discovered genes in ALS, TIA1 participates
in RNA metabolism; TBK1, CCNF, and NEK1 are involved in proteostasis or autophagy;
and ANXA11, C21orf2, and KIF5A are involved in cytoskeletal or trafficking defects [94].
The mechanism of neurodegeneration mediated by DNAJC7, GLT8D1, and LGALSL is not
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clear. It is speculated that DNAJC7, a heat shock protein co-chaperone, may be involved in
proteostasis or autophagy, and GLT8D1, a glycosyltransferase, may interfere in ganglioside
biosynthesis and O-linked β-N-acetylglucosamine modification [48]. The cellular role
of galectin-related protein (encoded by LGALSL) is unknown; however, galectins are
galactoside-binding proteins.

Table 2. Risk loci identified in cross-ancestry genome-wide association study (GWAS), the associated
function and disease mechanism in amyotrophic lateral sclerosis.

S.No. Gene (ALS) Function Disease Mechanism

1 C9orf72 Regulates vesicular transport and autophagy

C9ORF72 haploinsufficiency (loss of function)
Sense and antisense RNA (GGGGCC)n the
function of RNA binding protein (gain
of function)

2 UNC13A Facilitates Neurotransmission Impaired synaptic transmission [95]

3 SOD1 Antioxidant role Oxidative stress, mitochondrial dysfunction,
and excitotoxicity

4 SCFD1 Regulates ER to Golgi anterograde
vesicular transport Protein misfolding and aggregation [96]

5 MOBP-RPSA Neurons myelination Demyelination of neurons [97]

6 HLA Antigen presentation and immune response Inflammation due to suppressed immune
response [98]

7 KIF5A Engaged in anterograde transport of cargos
along the microtubule rails in neurons

Impaired axonal transport, synaptic
transmission, and motor neuronal toxicity [99]

8 CFAP410 Cytoskeletal organization and ciliary function
Decreased stability and increased degradation of
mutant protein causes dysfunction of primary
cilium [100]

9 GPX3-TNIP Antioxidant Oxidative stress, mitochondrial dysfunction, and
excitotoxicity [101]

10 SLC9A8 Na/H exchanger Excitotoxicity and axonal degeneration [102]

11 TBK1 Requires in cargo recruitment during autophagy Neuroinflammation and autophagy [103]

12 ERGIC1 Maintains ER-Golgi structure Disintegration of ER and mitophagy [104]

13 NEK1 A protein kinase that regulates cell cycle, DNA
damage repair, apoptosis, and ciliary function Induces DNA damage [105]

14 COG3 Regulating Golgi processes, protein trafficking,
and glycosylation in neurons Protein trafficking by Golgi fragmentation [106]

15 PTPRN2 Involved in vesicle-mediated secretory process
in hippocampus [107]

Not clear. Probably motor neuron
dysfunction [108]

Thus, the identification of novel genes for ALS may open unexplored research fields
and pathological mechanisms [48]. Despite significant progress in ALS research, the
pathophysiology is still only partially understood. However, as we obtain more insights
into the genetic architecture of ALS, the molecular mechanisms by which various mutations
converge on recurrently dysregulated nervous system pathways are being discovered.
Impaired RNA metabolism, trafficking defects, autophagy, mitochondrial dysfunction,
and compromised DNA repair are the most common pathological pathways reported in
ALS patients [79]. Among the most prevalent ALS genes, mutant C9ORF72, TARDBP, and
FUS all impair RNA metabolism; C9ORF72 repeat expansions, TARDBP, and SOD1 cause
defects in protein homoeostasis and autophagy.
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3.2. Alzheimer’s Disease (AD)

Alois Alzheimer, on 3 November 1906, in the 37th Meeting of the South-West Ger-
man Psychiatrists, reported an unusual case study involving a “peculiar severe disease
process of the cerebral cortex” and this study was later published in 1907 [109]. Alzheimer
described a 51-year-old woman with paranoia, progressive sleep and memory disturbance,
aggression, and confusion in his seminal paper. Less than 5 years after she passed away, a
neuropathologic examination of her brain revealed the plaques and tangles that are now
considered as the main pathological feature of the disease [110]. With shared underlying
neuropathologic changes, AD is now understood to be a heterogeneous and polygenic
group of both hereditary and sporadic neurodegenerative disorders. Even though there are
many different variants of AD, most cases still have a clinical presentation like that of the
original case, albeit with a later age of onset. A clinical diagnosis is frequently made based
on initial memory dysfunction that later stretches to affect multiple cognitive domains. A
neuropathologic diagnosis of AD requires the presence of both amyloid beta (Aβ) plaques
outside neuronal cell, and neurofibrillary tangles (NFTs) inside the neurons, which can
now be easily identified using immunohistochemical stains such as Aβ and tau, respec-
tively [111]. Alzheimer’s initial discoveries laid the groundwork for the current clinical
and neuropathologic diagnostic criteria for AD; however, over time, our understanding of
the underlying genetics has led to changes in the conceptualization and characterization of
this disease.

The Aβ plaques and NFTs had previously been reported in the brains of elderly
subjects both with and without dementia, and some researchers considered them a part of
the aging process [112]. What set Alzheimer’s case apart was that it occurred in a relatively
young individual; therefore, AD was defined as a separate disease from what was observed
in older people. In the second half of the 20th century, however, AD became redefined as a
clinically heterogeneous disease, united by a common underlying set of pathologic changes
in the brain that could affect more commonly older but also younger adults [113].

Based on an age cutoff of 65 years, AD is commonly classified as either early onset
(EOAD) or late onset (LOAD) [114]. LOAD cases have some genetic risk factors but often
occur sporadically and are by far the most common. On the contrary, EOAD is responsible
for only 5–10% of all AD cases [115]. In general, two types of inheritance patterns have been
noticed in EOAD: mendelian (mEOAD) patterns and nonmendelian (nmEOAD) patterns.
mEOAD forms are fully penetrant, with an autosomal dominant inheritance pattern and
frequent mutations in APP, PSEN1, and PSEN2. nmEOAD, on the other hand, is sporadic or
has irregular inheritance patterns (i.e., inheritance patterns that are not obviously autosomal
dominant, or with highly variable age at onset, including LOAD). The genetic etiology
of nmEOAD is unknown, but it is widely assumed to be polygenic and multifactorial in
nature [114].

3.2.1. Epidemiology

AD is the most prevalent type of dementia, accounting for 50–75% of all cases [114].
According to current estimates, 5.4 million Americans have AD; by the middle of the next
century, that number is expected to quadruple, largely due to population aging [116]. It is
estimated that by 2050, a new case of AD will be diagnosed every 33 s, resulting in nearly a
million new cases each year [116]. After age 65, the incidence of AD rises exponentially
with age and doubles every five years. Currently, the disease affects one in nine people
over the age of 65 and one in three people over the age of 85 [116]. While deaths from heart
disease, prostate cancer, and stroke have decreased over the past ten years, the number
of deaths from AD have increased, making it the sixth leading cause of mortality in the
United States. By the year 2050, it is anticipated that the total cost of health-care, long-term
care, and hospice services for those with dementia will have increased from the current
USD 290 billion to more than USD 1.1 trillion [116].

While the field still has challenges in defining the etiology, diagnosis, and treatment
of AD, significant progress has been made in our comprehension of the role of genetics in
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LOAD as well as in the sporadic and familial EOAD forms. It is a consensus that a precision
medicine strategy will be necessary to treat this complicated and multifactorial disease,
which requires a highly sophisticated understanding of its genetic frameworks.

3.2.2. Genetic Causes and Risk Factors

In 1991, Goate et al. discovered a missense mutation on exon 17 of the APP gene
that changed amino acid 717 from valine to isoleucine (p. Val717Ile) [117]. The mutation
is known as the London mutation because it was first identified in an English family.
Following this initial finding, Chartier-Harlin et al. and Murrell et al. discovered different
mutations (V717G and V717F, respectively) in the same amino acid in additional families
with AD [118,119]. Despite being in ethnically Romanian kindred, the mutation discovered
by Murrell et al. became known as the Indiana mutation. In 1993, Mullan et al. identified
two large Swedish families with EOAD who had a double mutation (K670N/M671L) in the
N terminus of APP called the Swedish mutation [120]. Since then, numerous additional APP
mutations have been found, directing research towards the APP processing pathways [121].

The known APP mutations were unable to account for the presence of EOAD in several
families. The first non-APP mutations in the presenilin 1 (PSEN1) gene were discovered in
multiple ethnic families in 1995 [122]. These included PSEN1 C410Y (Ashkenazi Jewish),
H163R (American and French Canadian), M146L (Italian), L286V (German), and A246E
(Anglo-Saxon–Celt). Shortly after this finding, Campion et al. found six novel PSEN1
mutations in eight additional families, all of which were in highly conserved regions of the
gene [123]. Since then, numerous additional PSEN1 mutations have been identified [124].
A third case of the PSEN1 variant, Y389H, has been identified with EOAD in a Korean
patient [125]. The identification of presenilin 2 (PSEN2), a gene homologous to PSEN1
on chromosome 1, was the next major genetic discovery in AD. Rogaev et al. [126] dis-
covered two different mutations that were associated with familial AD namely M239V
in Italian kindred and N141I in a Volga German pedigree, while Levy-Lahad et al. [127]
also discovered the N141I mutation in Volga German kindred. With the advancement in
sequencing technology, Finckh et al. sequenced individuals with EOAD and discovered
additional mutations in PSEN1 (F105L) and PSEN2 (T122P and M239I), respectively [128].
Furthermore, known mutations in these three genes, APP, PSEN1, and PSEN2, account
for only about 1% of autosomal dominantly inherited AD [129], but their identification
has resulted in a significant advancement in understanding of the pathophysiology of
AD. According to estimates, between 55–75% of LOAD cases are heritable. In contrast to
EOAD, no causal genes for LOAD have been found; instead, several risk genes have been
identified [114].

• APOE

The gene APOE on chromosome 19 encodes apolipoprotein E, and unlike all other
mammals, humans have three prevalent alleles (ε2, ε3, and ε4). Pericak-Vance et al.,
using an affected-member-pedigree linkage analysis, discovered that the patients’ genomic
markers were linked to chromosome 19 (HAS 19) rather than to the previously identified
chromosome 21 locus [130]. Simultaneously, Namba et al. found that apoE was localized to
NFTs and Aβ deposits in the brain of AD patients [131]. Strittmatter et al. used an in vitro
assay in 1993 to demonstrate that apoE binds to Aβ with high avidity and that APOE-
4 was more prevalent in LOAD patients than in unrelated, age-matched controls [132].
Following this, Corder et al. evaluated 42 LOAD families and discovered a gene dosage
effect, resulting in approximately a 3-fold higher risk in APOE ε4/ε4 genotype (homozygous)
compared to those with a single APOE ε4 allele [133]. Even though the frequencies of APOE
genotypes vary across ethnic groups, the ε4 allele has been repeatedly linked to an increased
risk of AD. Interestingly, in a large Colombian EOAD cohort, a carrier of the PSEN1 (E280A)
mutation also had two copies of the rare APOE3 Christchurch mutation (R136S), and she
did not experience cognitive deficits until her 70s, nearly three decades after the usual age
of onset [134]. This discovery has sparked interest in the potential protective benefits of
this mutation.
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• SORL1

Following the discovery of the gene dosage-dependent risk of APOE ε4 with LOAD,
researchers investigated other genes in the endocytic and cellular recycling pathways.
Scherzer et al. discovered six genes that exhibited differential expression in AD patients
using a DNA microarray screen [135]. One of those genes was SORL1, which encodes
a neuronal apoE receptor. Six SNPs were found by Rogaeva et al. to be significantly
associated with AD in two different regions of the SORL1 gene using previously identified
SNPs in these pathways [136]. Intronic variants in SORL1 have been linked to familial and
sporadic AD, according to Lee et al. [137], and the TGen data set and an urban multiethnic
community have confirmed these findings [135]. These intronic variants are thought to be
in regulatory sequences and may affect SORL1′s physiological role in APP processing.

• MAPT

Multiple NDDs have been linked to NFTs which are encoded by microtubule-associated
protein tau (MAPT). Several missense mutations, insertions, deletions, and splice-site mu-
tations were found in the MAPT gene, which was initially studied in relation to FTD [138].
Roks et al. performed an association study using the A169 polymorphism in exon 9 and the
(CA) n-repeat polymorphism in intron 9 and discovered no mutations causally associated
with EOAD [139]. Baker et al. sequenced the MAPT gene to look for an association between
MAPT and progressive supranuclear palsy (PSP) [140]. They discovered a series of SNPs
that were completely out of sync with one another, revealing two extended haplotypes
(H1 and H2) that covered the entire MAPT gene. Further research showed that Caucasian
patients with tauopathies have an overrepresentation of the H1 haplotype [141]. However,
subsequent research on the MAPT haplotype and AD has produced mixed results, with
some studies finding a link between the H1 haplotype and AD and others failing to support
these findings [142]. Since the H2 haplotype is almost exclusively found in Caucasian
populations, Sun and Jia evaluated only the H1 haplotype in a Chinese Han population
and discovered an SNP within the promoter of MAPT [143]. Comparing patients with
sporadic AD from the Chinese Han ethnic group to healthy controls revealed that the 347C
allele was overrepresented and when tested in cell lines, the SNP (347C/C versus 347 G/G)
significantly increased transcriptional activity, upregulating gene expression [143].

• TREM2

Triggering receptor expressed on myeloid cells 2 (TREM2) is a receptor of the innate
immune system expressed on microglia, macrophages, dendritic cells, and encoded by
TREM2 [144]. TREM2 mutations were discovered in the early 2000s to cause polycys-
tic lipomembranous osteodysplasia with sclerosing leukoencephalopathy (PLOSL), also
known as Nasu–Hakola disease [145]. Presenile dementia with neurological abnormalities
is among the prominent symptoms of PLOSL. However, TREM2 was not thought to be a po-
tential candidate gene for dementia until TREM2 mutations were discovered in a Lebanese
family with early-onset dementia but no PLOSL [146]. Following the discovery of TREM2’s
potential role in early onset dementia, Guerreiro et al. studied whole exome/genome
sequencing of 281 AD patients and 504 healthy controls. They observed a disproportionate
number of variants in exon 2 of TREM2 in AD patients compared to healthy controls,
and these variants increased the AD risk in a heterozygous state [147]. So far, 46 genetic
variants in TREM2 have been investigated in relation to LOAD. Within each population,
these variants cause a roughly 2–4-fold increase in the risk of developing LOAD [148].
Additionally, TREM2 variants have been linked to ALS, PD, and FTD indicating that altered
TREM2 function may indirectly increase the risk of neurodegeneration, possibly through
dysfunctional microglia [149].

• ABCA7

ABCA7 is a membrane-bound protein associated with transporting lipids across the
cell membrane through the utilization of energy derived from ATP. It plays pivotal roles
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in three key cellular processes: regulating cholesterol metabolism, managing phospho-
lipids, and facilitating phagocytosis [150,151]. ABCA7 facilitates the formation of lipid
and exchangeable apolipoproteins, including apolipoprotein E (apoE), into high-density
lipoprotein (HDL) particles, which are then discharged into the extracellular environment.
This process, known as cell lipid efflux, ultimately results in the removal of lipids from
the cells [152]. ABCA7 is involved in AD pathogenesis, contributing to the clearance of
Aβ and the transport of the amyloid-β protein precursor (AβPP) [151]. Disruptions in the
ABCA7 gene due to mutations can impair one or more functions of the protein, potentially
leading to the development of the neuropathology associated with AD. However, muta-
tions in ABCA7 do not have uniform effects, and the precise alterations in ABCA7 function
resulting from these mutations associated with AD risk remain elusive. Understanding
these variations is particularly crucial due to the significant impact of ABCA7-related AD
risk among African American/Black adults [153]. In mouse models of AD, the absence
of ABCA7 leads to elevated levels of Aβ in the brain, either by enhancing Aβ production
or impairing its clearance [153]. Both mouse Abca7 knockouts and human carriers of the
ABCA7 AD-risk allele, who do not have AD, generally demonstrate minor behavioral and
cognitive alterations [154].

3.2.3. Additional Risk Loci from Genome-Wide Association Studies (GWASs)

GWASs have been a more recent method for determining genetic susceptibility to AD.
A total of 695 genes have been found to affect the risk of LOAD through 1395 GWASs and
320 meta-analyses [155]. According to the GWASs, the top 10 genes that are most strongly
linked to the risk of LOAD are APOE, BIN1, CLU, ABCA7, CR1, PICALM, MS4A6A, CD33,
MS4AE, and CD2AP [155]. Several of these studies combined multiple GWAS data sets
with the idea that a common disease might present with a common variant, necessitating
a large number of samples. A more recent, two-stage GWAS involving 111,326 clinically
diagnosed/“proxy” AD cases and 677,663 controls was recently published. They discovered
75 risk loci (Table 3), 42 of which were novel at the time of the study [156].

Table 3. Risk loci identified in cross-ancestry genome-wide association study (GWAS), the associated
function and disease mechanism in Alzheimer’s disease.

S.No. Gene (AD) Function Disease Mechanism

1 SORT1 Directs trafficking of APP into
recycling pathways

Low level of SORT1 in AD causes increased Aβ

deposition [157]

2 CR1 Immune complement cascade Regulates Aβ metabolism [158]

3 ADAM17 Alpha-secretase imparts a role in APP processing Causes increased APP production [159]

4 PRKD3 Cell proliferation Causes neuroinflammation [160]

5 NCK2 Axon growth and synapse formation and
Epinephrin-mediated axon guidance Disturbs motor axon trajectory selection [161]

6 WDR12 Ribosome biogenesis and cell proliferation Possibly causing neuroinflammation [162]

7 BIN1 Endocytosis and intracellular trafficking Endosome defect [163]

8 INPP5D Immune signaling Inflammasome activation in microglia [164]

9 MME Cleaves and degrades beta-amyloid Increased Aβ deposition and axonal
neuropathy [165]

10 IDUA Lysosomal protein acts in degradation of
misfolded protein

Lysosomal dysfunction and increased
proteinopathy [166]

11 RHOH Regulation of actin cytoskeleton, and
dendrites formation Synaptic loss and spinal dysfunction [167]
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Table 3. Cont.

S.No. Gene (AD) Function Disease Mechanism

12 CLNK Immunomodulatory function Disturbed immune signaling and
neuroinflammation [168]

13 ANKH Regulating inflammation NF-κB-mediated neuroinflammation [162]

14 COX7C Mitochondrial bioenergetics Mitochondrial respiratory defects [169]

15 TNIP1 Inhibition of the TNF-α signaling pathway and
NF-κB activation/translocation Microglial activation and inflammation [170]

16 RASGEF1C Associated with immune function Neuroinflammation [171]

17 HS3ST5 Cellular uptake and distribution of molecules
like growth factors and morphogens Promotes tau fibrillation into NFTs [172]

18 HLA-DQA1 Dendritic cells, macrophages and B cells and
involved in adaptive immune responses

Stimulates adaptive immune signaling in AD
and also activates PKC and TLR signaling [173]

19 UNC5CL
Involved in mediating axon growth, neuronal
migration in neuronal development, regulation
of cell apoptosis.

Contributes to AD pathogenesis by activating
DAPK1 which in turn causes aberrant tau, Aβ

and neuronal apoptosis/autophagy

20 TREM2 Regulates microglia proliferation, survival,
migration, and phagocytosis.

Downregulation induces
neuroinflammation [174]

21 TREML2 Regulates microglial proliferation Immune-related neuroinflammatory and
increased tau deposition [175]

22 CD2AP Early endosome formation and
protein trafficking

Regulates Aβ generation by a neuron-specific
polarization of Aβ in dendritic early
endosomes [176]

23 UMAD1 Involved in endosome-ubiquitin
homeostasis [177]

Possibly defects in protein degradation cascade
and increased deposit of Aβ and tau

24 ICA1 ICA1 regulates AMPA receptor trafficking [178] Possibly disturb synaptic signaling

25 TMEM106B Brain lipid metabolism, Disturbed lipid homeostasis [179]

26 JAZF1 Lipid/cholesterol metabolism and microglial
efferocytosis [180]

Neuroinflammation by defective efferocytosis
and defective lipid metabolism (not clear)

27 SEC61G Protein trafficking, ER calcium leak channel [181] -

28 EPDR1 Neurogenesis and synaptic signaling [162] Not clear

29 SPDYE3 Cell cycle regulator [182] -

30 EPHA1 Immune response, cholesterol metabolism, and
synaptic function

Spine morphology abnormalities and synaptic
dysfunction [183]

31 CTSB Regulates apoptosis, neuroinflammation,
and autophagy

lysosomal leakage of cathepsin B to the cytosol
leads to neurodegeneration and behavioral
deficits [184]

32 SHARPIN Inflammation and immune system activation
Synaptic signaling

Attenuated inflammatory/immune
response [185]

33 PTK2B Ca2+-activated non-receptor tyrosine kinase,
involved in synaptic plasticity

Neuronal hyperexcitability by neuronal
differentiation and electrical maturation [186]

34 CLU Secreted by glia binds to Aβ and plays a
protective role by preventing Aβ aggregation Aβ clearance [187]

35 ABCA1 Cholesterol mobilization Defective lipid metabolism, and
neuroinflammation [188]

36 ANK3
Scaffolding proteins recruit diverse membrane
proteins, (ion channels and cell adhesion
molecules) into subcellular membrane domains

Altered neuronal excitability and altered
neuronal connectivity [138]
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Table 3. Cont.

S.No. Gene (AD) Function Disease Mechanism

37 TSPAN14 Regulates maturation and trafficking of the
transmembrane metalloprotease ADAM10 [189] Not clear

38 BLNK Participates in the regulation of PLC-γ activity
and the activation of Ras pathway [190]

Not clear. Possibly involved in
immune regulation

39 PLEKHA1 Adaptive immunity Inflammatory responses [191]

40 USP6NL GTPase-activating protein involved in control
of endocytosis

Dysfunction of the myeloid endolysosomal
system [192]

41 SPI1 Controls microglial development and function Regulating neuroinflammation [193]

42 EED Catalyzes the methylation of histone and
mediates the repressive chromatin

Synaptic dysfunction due to upregulation of
synapse related gene [194]

43 SORL1 Regulates the recycling of the APP out of
the endosome

Endosomal swelling and APP
misprocessing [195]

44 TPCN1
Encodes a voltage-dependent calcium channel
and involved in long-term potentiation in
hippocampal neurons,

Altered calcium signaling and cognitive
dysfunction [196]

45 IGH gene
cluster Immune response [197] Not clear

46 FERMT2 APP metabolism and axonal growth Impaired synaptic connectivity, and long-term
potentiation in an APP-dependent manner [198]

47 SLC24A4 Neural development and cholesterol metabolism Increased deposition of Ab and tau [199]

48 SPPL2A Engaged in the function of B-cells and
dendritic cells. Activates TNF-α signaling [156]

49 MINDY2 Deubiquitination Not clear

50 APH1B γ-secretase Brain atrophy and amyloid-β deposition [200]

51 SNX1 Endosome trafficking
Prevents BACE1 trafficking to the lysosomal
degradation system, resulting in increased
production of Aβ [201]

52 CTSH Immune regulation Role in neuroinflammation and amyloid β

production [202]

53 BCKDK Regulation of neurotransmitter synthesis, and
mTOR activity.

Causes hyperexcitability, neuroinflammation,
and dysregulation of neurotrophic factors [203]

54 IL34 Stimulates proliferation of monocytes and
macrophages

Triggers neuroinflammation via
colony-stimulating factor-1 receptor
(CSF-1r) [204].

55 PLCG2 Present on microglia and function as
immune regulator

Upregulated and activates inflammation related
pathway [205]

56 DOC2A A calcium sensor, facilitates neurotranbsmitter
release in Ca2+-dependent manner Abnormality in synaptic transmission [206]

57 MAF Regulates T-cell susceptibility to apoptosis Probably immune cell dysfunction and
neuroinflammation [207]

58 FOXF1 Cell proliferation, cell cycle, and
regulatory protein

Activated by PI3K/AKT and stress response and
may cause inflammation [208]

59 PRDM7 Methyltransferases induce trimethylation Possibly suppresses the synaptic gene [209]

60 WDR81 Facilitates the recruitment of autophagic protein
aggregates and promotes autophagic clearance Impaired autophagy [210]

61 MYO15A A myosin involved in actin organization Retromer dysfunction [211]
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Table 3. Cont.

S.No. Gene (AD) Function Disease Mechanism

62 GRN Regulates lysosomal biogenesis, inflammation,
repair, stress response, and aging. Neuroinflammation [211]

63 SCIMP Immune regulation via major histocompatibility
complex class II signaling. Neuroinflammation [212]

64 WNT3 Synaptic function and
immune regulation

Causes synaptic dysfunction and inflammation
via Wnt3/β-catenin/GSK3β signaling
pathway [213]

65 ABI3 Regulator of microglia Neuroinflammation [214]

66 TSPOAP1
TSPO-associated protein 1, interacts with
translocator protein (TSPO) and act indirectly to
activate microglia

Neuroinflammation [215]

67 ACE An endopeptidase ACE has been shown to cleave amyloid-β
(Aβ) [216]

68 KLF16 Regulates dopamine receptors Modulates dopaminergic transmission in the
brain [217]

69 SIGLEC11 Immune regulation Proinflammation and phagocytosis [218]

70 LILRB2 Aβ receptor Perturbance in synaptic signaling and cognitive
impairment [219]

71 ABCA7 Lipid homeostasis and phagocytosis. Disturbed lipid metabolism, ER stress. Impaired
microglial response to inflammation

72 RBCK1 Involved in ubiquitination TNF-α-mediated activation of NF-κB pathway.

73 SLC2A4RG Encodes solute carrier protein. Involved in cell
cycle via CDK1 pathway [220] Not clear. Possibly induces proliferation

74 CASS4 Role in inflammation, calcium signaling, and
microtubule stabilization.

Disturbed synaptic signaling and
neuroinflammation [221]

75 APP Proliferation, differentiation, and maturation of
neural stem cells.

Abnormal cleavage causes plaque
deposition [222]

76 ADAMTS1 APP hydrolysis Increased Aβ generation through
β-secretase-mediated cleavage [223]

To validate CLU, CR1, and PICALM as risk loci for LOAD, Jun et al. examined the
SNPs within each gene in various populations (Caucasian, African American, Arab, and
Caribbean Hispanic), as well as in a combined data set [224]. They stated that the CLU,
CR1, and PICALM loci in this population are susceptibility loci for AD. Additionally, the
authors examined these SNPs collectively with APOE genotypes and discovered that the
association with PICALM was only seen in patients who had the APOE 4 allele, whereas the
CLU was only present in patients lacking the APOE 4 allele [224]. Kunkle et al. confirmed
many previously identified genome-wide significant loci in 94,437 LOAD patients (CR1,
BIN1, INPP5D, HLA-DRB1, TREM2, CD2AP, NYAP1, EPHA1, PTK2B, CLU, SPI1, MS4A2,
PICALM, SORL1, FERMT2, SLC24A4, ABCA7, APOE, and CASS4) [225]. These genes may
have a pleiotropic connection with traits associated with AD. The authors further compared
the genetic makeup of LOAD to 792 other human illnesses, traits, and behaviors to further
explore this theory [225]. They confirmed the findings of Marioni et al. that the genetic
architecture of LOAD is more strongly associated with a maternal family history of AD than
with a paternal family history of AD [226]. Kunkle et al. performed a pathway analysis
for common and rare variants found in LOAD patients to better understand how all these
genetic risk loci may contribute to AD. The majority of genes belonged to the gene ontology
pathway for immune response activation; the assembly of protein–lipid complexes was
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the most significant common variant pathway, while tau protein binding was the most
significant rare variant pathway [225].

Overall, NFTs and amyloid plaque deposition are considered as the major pathway in
AD progression. It is noteworthy that newly discovered genetic risk factors are frequently
first assessed in relation to established pathways; therefore, much research is needed to
understand the underlying mechanisms in AD progression which may also avail novel
therapeutic options.

3.3. Parkinson’s Disease (PD)

PD is a complicated and progressive neurodegenerative disorder first described by
James Parkinson in his 1817 publication, “Essay on the Shaking Palsy” [227]. In that essay,
Dr. Parkinson expressed hope by writing, “there appears to be sufficient reason for hoping
that some remedial process may ere long be discovered, by which, at least, the progress of
the disease may be stopped” [227]. Until now, no definitive neuroprotective therapy for PD
has been developed after more than 200 years.

However, significant advances in our understanding of the molecular basis of neu-
rodegeneration in PD have been made in recent years, bringing us closer to developing
effective disease-modifying treatments. Pathologically, PD is characterized by the loss of
dopaminergic neurons and deposition of α-synuclein aggregates (Lewy bodies) in the sub-
stantia nigra pars compacta (SN) located in the midbrain [228]. Additional brain areas and
nondopaminergic neurons are also included in PD pathology. However, recent research has
indicated that the loss of dopaminergic terminals in the basal ganglia, rather than neurons
in the SN, is critical for the onset of motor symptoms [229]. Moreover, symptomatically,
the disease is characterized by resting tremors, cogwheel rigidity, bradykinesia, autonomic
dysfunction, and cognitive decline. Additionally, anosmia, constipation, depression, and
rapid eye movement (REM) sleep behavior disorder could be noticed long before the motor
dysfunction in PD patients [230].

3.3.1. Epidemiology

According to health-care utilization estimates, the annual incidence of PD ranges
from 5/100,000 to more than 35/100,000 new cases [231]. Age is a significant risk factor,
and the prevalence of PD increases with age. The prevalence of PD is anticipated to rise
sharply as the world’s population ages, doubling in the following two decades [232]. In a
meta-analysis of four populations in North America, it was found that prevalence increased
from less than 1% of men and women aged 45–54 to 4% of men and 2% of women aged
85 or more [229]. Along with this increase, the societal and economic burden of PD will
also rise unless more effective treatment options, or prevention methods, are discovered.

Most PD cases are likely to have a multifactorial etiology caused by the interaction
of environmental and genetic factors. PD risk may be increased by head trauma and
toxic chemical exposure, while it may be decreased by certain lifestyle choices. Although
5–10% cases of PD can be linked directly to identifiable mutations in particular genes, most
PD patients lack these mutations [233]. The most prevalent PD-linked genetic mutations
also have incomplete penetrance, suggesting the involvement of additional genetic or
environmental factors. Simon et al. (2020) compared the prevalence rate in monozygotic
and dizygotic twins and found that the heritability of PD is only 30%, implying that most
of the PD risk is related to environmental and behavioral factors [233].

3.3.2. Genetic Causes and Risk Factors

PD genetics provides an important window into the disease’s mechanism by high-
lighting specific molecular pathways and their cellular effects. The intricate genetics of
PD are outlined in this section, with an emphasis on the genes that have been most exten-
sively studied.
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• SNCA

SNCA (PARK1/4) is a five-exon gene present on chromosome 4 (4q22.1) and is one
of three paralogs that comprise the synuclein family. Synucleins are presynaptic proteins
and include α-synucleins, β-synucleins, and γ-synucleins encoded by SNCA, SNCB, and
SNCG, respectively [234]. SNCA-encoded α-synuclein is a 14-kDa protein and expressed
ubiquitously in the brain. It has been shown to promote the long-term maintenance of
the presynaptic compartment, aid in the formation of SNARE complexes, and control the
release of dopaminergic vesicles [234]. β-Synuclein shares 78% structural homology with
α-synuclein and is co-expressed with α-synuclein throughout the brain, including the
presynaptic region. Meanwhile, γ-synuclein exhibits 67% homology and is found in the
peripheral nervous system, specific central neuronal subtypes, and in breast, colon, and
pancreatic cancers [234]. Even though only α-synuclein is thought to be involved in the
pathophysiology of PD, patients with DLB (dementia with Lewy bodies) have been found
to have lower levels of the SNCB transcript, and in vitro studies indicate that β-synuclein
may antagonize α-synuclein-induced aggregation and toxicity [235]. Point mutations in
SNCA were discovered to be the first cause of autosomal dominant PD [236], leading to
the discovery that α-synuclein is the most abundant protein component of Lewy bodies
(LBs) [237]. Other reported pathogenic SNCA variants, in addition to p.A53T, are p.A30P,
p.E46K, and p.G51D. These missense mutations are all found in the membrane-binding
region of α-synuclein [238].

Additionally, there is intrafamilial heterogeneity, which affects how people with SNCA
mutations present clinically. Generally, all patients have an early onset of the disease (as
young as 19 years old), with the majority of cases developing symptoms when patients
are 40 to 60 years old [239]. All patients present with the traditional motor symptoms
of PD. However, patients with p.A53T, p.E46K, or p.G51D mutations also have early
cognitive impairment. Pathologically, these patients exhibit widespread LB accumulation,
SN degeneration, cortical thinning (p.A53T), and involvement of the motor cortex, among
other features (p.G51D) [239].

A disease-causing triplication of the wild-type SNCA locus was described shortly after
the discovery of these point mutations in a family with autosomal dominant parkinsonian
motor signs, early onset of symptoms (mean age 36 years), and prominent cognitive de-
fects [240]. Complete loss of the SN and severe cortical and hippocampal atrophy were
present in the four patients from this family who underwent neuropathological exami-
nation [240]. Later, more than 19 families have been reported with autosomal dominant
disease caused by duplications in wild-type SNCA [241]. The identification of these families
provides several important insights into the pathophysiology of PD. It first suggests that
increases in wild-type α-synuclein levels are enough to trigger PD pathogenesis. Second,
the disease symptoms are linked to gene dosage, with SNCA triplication patients experi-
encing symptoms sooner than duplication patients [242]. Thirdly, this implies that PD risk
may be raised by less penetrant SNCA variants that result in small changes in α-synuclein
levels. This latter hypothesis is supported by a study published in 2016, which discovered
a variant in the SNCA enhancer linked to an elevated risk of PD, that reduces the binding
of transcriptional repressors and increases SNCA expression [243].

• LRRK2

Autosomal dominant PD is also caused by variations in LRRK2 (PARK8) [244]. The age
of disease onset differs between LRRK2 pathogenic variants and families [242]. Leucine-rich
repeat kinase 2 (LRRK2) is a 253-kDa protein, encoded by the LRRK2 gene and expressed
in the brain, lungs, kidneys, and immune system [239]. It has both GTPase and kinase
activity, with the GTPase activity being carried out by a Ras of complex proteins (ROC)/C-
terminal of Ras (COR) and the kinase activity being carried out by the kinase domain [245].
The remaining domains of this protein participate in interacting with other proteins. Up
to 1% of all cases of sporadic PD are caused by mutations in LRRK2, the second most
frequent genetic risk factor. LRRK2 variants account for 29% of familial PD in Ashkenazi
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Jews [246] and 70% of PD in North Africans [247]. All the highly penetrant LRRK2 variants
are thought to increase the kinase activity directly or indirectly. Later, a clinical report
documented an increased LRRK2 kinase activity in sporadic PD patient brains and provided
additional evidence to support this hypothesis [248]. This, coupled with the absence of
any PD-like phenotypes in Lrrk2−/− mice, has led to the hypothesis that elevated kinase
activity is what causes LRRK2 to have a pathogenic effect [249]. LRRK2-PD patients
have a clinical phenotype like sporadic PD, but the pathology varies [250]. Given the
complexity of how LRRK2 mutations affect the biology of the protein, it is perhaps not
surprising that different mutations cause different pathological phenotypes or that they
cause incomplete penetrance.

• VPS35

VPS35 (PARK17) encodes vacuolar protein sorting 35 (VPS35), a heteropentameric
protein complex that is responsible for retrograde protein sorting from the endosome to
the cell membrane and trans-Golgi network, and vice versa. The c.1858G>A (p.D620N)
variant, which is found primarily in Caucasian populations, accounts for an estimated
0.1–1% of patients with familial PD and causes autosomal dominant PD with high but
incomplete penetrance [251]. Patients with VPS35 p.D620N present clinical symptoms
similar to those seen in idiopathic PD, with an average age of onset ranging from 48.3 to
53 years old, depending on the family [252]. It remains to be seen whether this variant has
a dominantly negative effect, a toxic gain-of-function, or another mechanism. Patients with
VPS35 variants may or may not have α-synuclein pathology. This is because the only data
available are based on a single autopsy with only a few pathological investigations [251].

• GBA

GBA is the gene that encodes β-glucocerebrosidase (GCase), a lysosomal enzyme
that degrades glucosylceramide (GluCer) into glucose and ceramide. Homozygous GBA
mutations cause Gaucher’s disease, a recessive lysosomal storage disorder (GD) [253]. This
disease primarily affects the liver, spleen, and bones, but it can also affect the central nervous
system. GD patients are classified based on brain involvement, with type 1 patients having
no neurological symptoms and types 2 and 3 experiencing neurological symptoms [253].

However, depending on the variant and population studied, heterozygous GBA muta-
tion carriers have a 5–8-fold increased risk of PD [253]. The risk of PD or DLB is increased
by GBA variants in heterozygosity that result in GD in homozygosity [254]. GBA variants
are the most prevalent genetic risk factor for PD. Two GBA variants, namely E365K and
T408M, raise the risk of but do not result in GD [255,256]. Clinically, people with PD having
mild GBA mutations exhibit motor symptoms that are like those of idiopathic PD and
respond to levodopa quickly. The clinical symptoms, however, are related to the relevant
variant, with some patients showing early disease onset like sleep disorders, dementia,
and a higher frequency of psychiatric symptoms such as depression and anxiety [257].
The brains of these patients show typical neuropathological features of PD, such as nigral
degeneration and LB deposition throughout the brain [257].

3.3.3. Additional Risk Loci from Genome-Wide Association Studies

In 2009, the first GWAS loci for PD were identified using information from about
5000 patients and 9000 healthy controls [258]. To date, the largest GWAS of PD was carried
out including the study of 7.8 M SNPs in 37.7 K cases, 18.6 K UK Biobank (Cheshire, UK)
proxy-cases (having a first degree relative with PD), and 1.4 M healthy controls. Conse-
quently, 90 distinct independent risk signals (Table 4) were identified in 78 genomic regions
across the entire genome, including 38 novel independent risk signals in 37 loci [259].
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Table 4. Risk loci identified in cross-ancestry genome-wide association study (GWAS), the associated
function and disease mechanism in Parkinson’s disease.

S.No. Gene (PD) Function Mechanism

1 KRTCAP2 Dementia-related gene Inflammation and neurodegeneration [260]

2 PMVK Involved in mevalonate pathway Not clear. Possibly same as GBA [261]

3 GBAP1 Encodes for the enzyme glucocerebrosidase
(GCase), a lysosomal enzyme Lysosomal dysfunction [262]

4 FCGR2A Phagocytosis and modulates
inflammatory responses

Binds with IgG-specific immune complexes and
activates signaling [263]

5 VAMP4 Endosomal trafficking of synaptic proteins Impaired synaptic signaling and lysosomal
degradation [264]

6 NUCKS1 Cell growth and proliferation [265] Not clear

7 RAB29 Lysosome-related organelle biogenesis Lysosomal dysfunction
Axon termination [266]

8 ITPKB Involved in inositol metabolism and calcium
release from ER

Causes α-synuclein aggregation by dysregulated
calcium release from ER-to-mitochondria [267]

9 SIPA1L2 Controls protein trafficking and BDNF/TrkB
signaling [268] Not clear; possibly abrupt synaptic signaling

10 KCNS3 Potassium channel Neuroinflammation [269]

11 KCNIP3 Associated with inositol biosynthetic
pathway [270] Not clear

12 MAP4K4 Cell proliferation, inflammation, and stress
response

Cytokine activation and
neuroinflammation [271]

13 TMEM163 Influx or efflux transporter particularly Zn
transport [272] Not clear

14 STK39 Immune regulation Inflammatory pathway [273]

15 SATB1 Transcriptional response in
dopaminergic neurons Senescence-mediated neuroinflammation [274]

16 LINC00693 Involved in miRNA processing complex [275] Might affect protein expression and
accumulation

17 IP6K2 Mitochondrial respiration Mitophagy via PINK1 signaling [276]

18 KPNA1 Encodes importin α5 and is involved in
lysosomal biogenesis and autophagy Disturbed protein degradation [277]

19 MED12L

Transcriptional coactivation of nearly all RNA
polymerase II-dependent genes,
Wnt/beta-catenin pathway, and immune
response [278]

Possibly transcriptional defects

20 SPTSSB Regulates de novo synthesis of ceramides Neuronal signaling, synaptic transmission, cell
metabolism [279]

21 MCCC1 Mitochondrial enzyme and involved in leucine
catabolism [280]

Possibly associated with mitochondrial
dysfunction

22 GAK Associated with lysosomal and chaperons Defected lysosomal-mediated protein
degradation [281]

23 TMEM175 Proton channel to maintain optimum pH
in lysosomes

Downregulation of TMEM175 causes lysosomal
over-acidification, impaired proteolytic activity,
and facilitated a-synuclein aggregation [282]

24 BST1 Serves as a receptor that regulates leukocyte
adhesion and migration Immune regulation and inflammation [283]

25 LCORL - -



Int. J. Mol. Sci. 2024, 25, 2320 22 of 50

Table 4. Cont.

S.No. Gene (PD) Function Mechanism

26 SCARB2 Encodes a receptor responsible for the transport
of glucocerebrosidase (GCase) to the lysosome Associated with lysosomal defects [284]

27 FAM47E Present in close proximity to SCARB2 Lysosome/autophagy dysfunction

28 FAM47E-
STBD1 - -

29 SNCA

Dopamine release and transport, fibrillization of
MAPT, and suppression of both p53 expression
and transactivation of proapoptotic genes
leading to decreased caspase-3 activation

Synuclein aggregation and induction of
apoptosis [285]

30 CAMK2D
Calcium/calmodulin-dependent protein kinase
ii delta.
Involved in synaptic plasticity

Disturbed calcium signaling and synaptic
function [286]

31 CLCN3 Ion channel transporter and neurotransmitter
signaling [239]. Disturbed synaptic signaling

32 ELOVL7 Catalyzing the elongation of very long-chain
fatty acids.

Possibly disturbed lipid metabolism and
oxidative stress [287]

33 PAM Glutamate receptor at parasynapses, associated
with anxiety and hyperexcitation.

Disturbed glutamatergic and GABA
signaling [288]

34 C5orf24 -
Function and mechanism are not clear. However,
upregulated expression and DNA methylation in
disease condition [289]

35 LOC100131289 - -

36 TRIM40 E3 ubiquitin-protein ligase and inhibits NF-κB
activity Protein degradation and inflammation [290]

37 HLA-DRB5 Immune regulation Inflammation [291]

38 RIMS1
Encodes a synaptic protein and involved in
neurotransmitter release and synaptic
transmission [277]

Possibly perturbance in synaptic signaling

39 FYN Ion channel function, growth factor receptor
signaling, immune system regulation.

Activates BDNF/TrkB, PKCδ, NF-κB, MAPK,
Nrf2, and NMDAR signaling pathway and
induces synuclein phosphorylation,
inflammation and excitotoxicity [292]

40 RPS12 A special function in cell competition that
defines the competitiveness of cells.

Not clear in PD; however, reported to cause
inflammation [293]

41 GPNMB Cell differentiation, migration, proliferation
Interacts with a-synuclein and induces its
phosphorylation, cellular internalization, and
fibrillization [294]

42 GS1-124K5.11 - -

43 CTSB Lysosomal hydrolase cathepsin B involved in
waste degradation in cells

Autophagy and lysosomal dysfunction causing
a-synuclein aggregation [295]

44 FGF20 Maintenance of dopaminergic neurons Affects dopaminergic neurons in paracrine
manner [296]

45 BIN3 Cytokinesis and RNA methyltransferase Probably target transcription and translation
step [297]

46 FAM49B Regulates mitochondrial function Mitochondrial fission, oxidative stress, and
inflammation [298]

47 SH3GL2 Encodes Endophilin A which regulates
autophagy in calcium dependent manner Autophagy dysfunction at synapses [299]

48 UBAP2 Synapse formation, maintenance, and signaling -
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S.No. Gene (PD) Function Mechanism

49 ITGA8 Alpha8 integrin, cell adhesion, cell signaling,
and cytoskeletal organization Increases cell-to-cell transfer of a-Syn [300]

50 GBF1
Maintenance and function of the Golgi
apparatus, and mitochondria migration
and positioning

Increase in Golgi fragmentation [301]

51 BAG3 A chaperone and regulates autophagy Its downregulation promotes autophagy
dysfunction and disease progression [302]

52 INPP5F PI4P-phosphatase
Involved in endocytic pathway Disturbed endocytosis [303]

53 RNF141 - -

54 DLG2 DLG2-encoded protein involved in glutamate
receptor phosphorylation

Phosphorylation of NR2 subunit and
hyperexcitability [280]

55 IGSF9B
Cell adhesion molecule at inhibitory synapses
and plays role in neuroplasticity and
synaptic transmission

Any disturbance in inhibitory synapses causes
dysregulation of information flow and cognitive
defects [304]

56 LRRK2 Associated with intracellular membranes and
vesicular structures

Causes accumulation of a-synuclein, which
activates MAPK signaling and microglial
activation leading to inflammation [305]

57 SCAF11 Encodes a caspase -

58 HIP1R Clathrin-mediated endocytosis, actin dynamics,
intrinsic cell death pathway [306]

Not clear. Probably affects the endocytosis of
a-synuclein and activate caspase response

59 FBRSL1 - -

60 CAB39L Encodes calcium binding 39-like protein -

61 MBNL2
Encodes for the muscleblind-like protein 2,
which belongs to a conserved family of
RNA-binding proteins

Reduced MBNL2 expression accompanied by the
reduction in a developmental RNA
processing [307]

62 MIPOL1 - -

63 GCH1 Essential for dopamine production Affects dopaminergic signaling [308]

64 RPS6KL1 - -

65 GALC Encodes galactocerebrosidase Impaired autophagy and disturbed protein
trafficking causes a-synuclein deposition [309]

66 VPS13C Localized to the outer membrane of
mitochondria PINK1/Parkin-dependent mitophagy [310]

67 SYT17
Encodes synaptotagmin-17,
associated with vesicle trafficking and transport
at synapses

Disturbed synaptic trafficking [311]

68 CD19 Immune regulatory molecule presents on
B lymphocyte

Neuroinflammation by suppressing local
immune response [312]

69 SETD1A Histone methyltransferase Might affect synaptic signaling, excitation and
glutamatergic signaling [313]

70 NOD2 Immune homeostasis
Nox-2-mediated oxidative stress and
neuroinflammation followed by loss of
dopaminergic neurons [314]

71 CASC16 - -

72 CHD9 Activates transcription factor CREBPP, Involve
in Notch signaling Aberrant survival signaling pathway [315]
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S.No. Gene (PD) Function Mechanism

73 CHRNB1
Encodes subunit of the n-acetylcholine receptor,
Ion channels, transporters, and neurotransmitter
signaling [239]

Disturbed cholinergic signaling

74 RETREG3 Involved in ER autophagy Activation of ER autophagy by mTOR
signaling [316]

75 UBTF Transcription factor associated with ds-DNA
break and apoptosis Altered protein expression [317]

76 BRIP1 Facilitates repair of SSBs and DSBs Excitotoxicity, mitochondrial damage, and cell
death [318]

77 DNAH17

Encodes dynein axonemal heavy chain
17 involved in cytokinesis, microtubule-based
movement, mitotic spindle organization, meiotic
nuclear division [319]

-

78 ASXL3 - -

79 RIT2 Involved in lysosomal activity Activate LRRK2 gene and lysosomal dysfunction
and leads to a-synuclein deposition [320]

80 MEX3C Encodes RNF 194, an RNA binding protein
impart immunoregulatory role Neuroinflammation [321]

81 SPPL2B - -

82 CRLS1 Encodes cardiolipin synthase 1, involved in
mitochondrial membrane formation Mitophagy [322]

83 DYRK1A Synaptic and nuclear proteins, including
transcription factors

Causes phosphorylation of a-synuclein and
downregulates PI3K/AKT pathway to induce
apoptosis [323]

84 FAM171A2
Downstream of GRN, is a novel genetic regulator
of progranulin production expressed on
microglial surface

Downregulates progranulin level in brain [324]

85 CRHR1
Encodes corticotropin-releasing hormone
receptor, involved in regulation of stress and
immune responses

Downregulates CREB signaling [325]

86 WNT3 Immune regulation PD-related gene expression in immune cells [291]

Numerous GWAS loci have been found to be close to the so-called monogenic PD gene
(SNCA, LRRK2, GBA, and VPS35); these regions are referred to as pleomorphic risk loci [326].
PD can be caused by rare coding variants at these genes, but more common variants—
often non-coding and with a smaller effect size—can also raise the risk of developing the
condition. Additionally, some loci are near genes that contribute to the development of
additional conditions, including MAPT, GRN, NEK1 linked to FTD and ALS, and NOD1
linked to Crohn’s disease and Blau syndrome [326]. According to estimates, the heritable
portion of PD caused by common genetic variability is approximately 22% [327], and the
GWAS loci discovered to date only account for a small portion of this. So, there are still a
ton of undiscovered risk variants.

Overall, understanding the genetic factors influencing PD risk, onset, and progression
is critical for developing treatments that can slow or stop disease progression. Many
genes and GWAS loci that contribute to the development of PD have been identified so
far. The search for genetic risk factors must continue, and a concerted, cooperative effort
must be made to comprehend the implications of these findings on the molecular and
biological levels.

Based upon the discussion so far, it is clear that genetic factors play a significant role
in increasing the risk of neurodegenerative diseases and influencing the expression of
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disease characteristics; however, only about 10% cases of NDDs are considered to have
familial form of disease, and among these cases only a fraction can be attributed to known,
rare, highly penetrant genetic variants. Similarly, while genome-wide association studies
(GWASs) have made notable progress in identifying common GWAS-SNPs in cohort with
neurodegenerative disease, despite the advancement, these variants account for only a
small portion of heritable risk [328,329]. Even after combining the effect of both Mendelian
large-effect rare mutations and common disease-associated SNPs, a considerable portion
of heritability across NDDs remains unexplained [330,331], suggesting its multifactorial
nature and the involvement of environmental factors.

As a result, identifying particular risk factors, relevant biomarkers, prospective new
therapeutic targets and agents, and even definitive diagnoses remain difficult. Pathological
brain features during neurodegeneration demonstrate a significant overlap across distinct
forms of neurodegenerative disorders. There is currently no diagnostic test that can clearly
establish the existence, absence, or categorization of a neurodegenerative disorder. The
underlying mechanism is another unsolved subject in the majority of neurodegenerative
disorders. Most can be identified by intracellular protein deposits; however, it is unclear
whether this is a key mechanism or a result of another disrupted cell function. There
are numerous proposed pathways of neurodegeneration, including primary impacts of
protein homeostasis, disrupted protein degradation, mitochondrial dysfunction, and so on
(Figure 3). It is critical to better understand the disease pathophysiology to enhance early
diagnosis and the development of disease-modifying medicines.
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the intricate molecular mechanism involved, and the resultant damage to neurons in common
neurodegenerative conditions.
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3.3.4. Other Neurodegenerative Disorders

Huntington’s disease (HD) manifests as a rare monogenic neurodegenerative condition
marked by motor, cognitive, and psychiatric deficits. These symptoms typically arise in
patients aged 30–50 years and death occurs approximately 10–15 years after the onset
of clinical symptoms [332]. Huntington’s disease (HD) results from the expansion of a
CAG repeat region in exon 1 of the huntingtin (HTT) gene, situated on chromosome 4,
surpassing a pathogenic threshold of at least 37 CAGs. Inheritance of 40 or more CAGs
within this region is linked with 100% disease penetrance [332]. While Huntington’s
disease (HD) is primarily attributed to inheriting at least one mutant HTT allele, there
is growing recognition of additional genetic factors that influence the age-of-onset and
severity of HD. These factors are currently under investigation as potential targets for
therapeutic interventions [333]. The expansion of CAG repeats results in the production
of mutant HTT (mHTT) proteins containing elongated N-terminal polyQ tracts. These
expanded tracts directly induce misfolding of the mHTT protein [334]. Misfolded mHTT
proteins aggregate into amyloid structure, forming intranuclear inclusion bodies, which
are a distinctive diagnostic hallmark observed in the brain of individuals with HD [335].
The misfolding and aggregation of HTT disturb various cellular processes, supported by
significant evidence suggesting that oligomers and/or insoluble fibrils of mHTT play a
direct role in causing neurodegeneration in HD [334]. HTT knockout is embryonic lethal,
while conditional knockout induces progressive neurodegenerative phenotypes in adult
mice. This highlights the indispensable role of HTT expression in the normal development
of the CNS [336].

Prion diseases represent a distinctive and uncommon set of neurodegenerative dis-
orders found naturally in both humans and various animal species. Creutzfeldt-Jakob
disease (CJD) in humans, scrapie in sheep and goats, bovine spongiform encephalopathy
(BSE) in cattle, and chronic wasting disease (CWD) in cervids are just a few examples of
well-known forms of prion disease [337]. Both human and animal prion diseases share
a common pathology, featuring spongiform degeneration in the grey matter regions of
the brain, reactive proliferation of glial populations, neuronal loss, and the accumulation
of a misfolded and disease-associated form of the prion protein known as PrPSc in the
CNS [338]. Human prion diseases, like other neurodegenerative disorders, primarily occur
as sporadic or genetic conditions. Notably, sporadic CJD is the most prevalent form, consti-
tuting roughly 85% of all human prion diseases [337]. The revelation that prion diseases
are linked to the conversion of the normal host-encoded cellular prion protein (PrPC) into a
misfolded form (PrPSc) through post-translational modification, regardless of nucleic acid
involvement, is recognized as the protein-only hypothesis [338]. A polymorphism at codon
129 (c129) within the prion protein gene (PRNP) significantly impacts both susceptibility to
and the clinical characteristics of human prion diseases [338].

Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative disease of
the CNS, mediated by the immune system [339]. MS stands as a primary contributor
to disability among young adults and is estimated to impact approximately 2.8 million
individuals globally [340]. GWASs have uncovered over 230 risk alleles associated with MS,
the majority of which are genes involved in regulating the immune system [341]. The initial
event triggering symptomatic pathology involves the infiltration of peripheral immune
cells previously sensitized to elements of the myelin sheath. A key characteristic of MS
is the formation of focal inflammatory and demyelinating lesions, primarily occurring in
white matter regions of the brain, optic nerve, and spinal cord, although lesions in intra-
cortical and deep gray matter are also observed [339]. T and B lymphocytes, along with
macrophages, predominantly migrate from the periphery into the CNS parenchyma, result-
ing in the emergence of perivascular demyelination, subependymal/pial demyelination,
and neuroaxonal degeneration. Inflammatory demyelination and compromised healing ul-
timately lead to axonal transection, resulting in permanent neurodegeneration and clinical
disability [339]. MS is characterized by three primary disease courses: relapsing–remitting
(RRMS), primary progressive (PPMS), and secondary progressive (SPMS). In each clinical
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course, patients may encounter fluctuating disease activity, manifested by the emergence
of new or worsening neurological dysfunction [342].

4. Gene Therapy for Neurodegenerative Diseases

In concept, gene therapy is a simple and clear-cut process. It entails treating a disease
through the introduction of a transgene that either replaces or repairs a malfunctioning
gene [343]. In practical application, the process is significantly more intricate, requiring
optimization of various factors like selecting the appropriate vector, optimizing the delivery
method, and carefully choosing the transgene are pivotal in practice. The dynamics between
the host’s immune system and the vector or transgene can introduce further complexities
to the overall therapeutic approach. In neurodegenerative diseases, the intricacies of the
target tissue add an additional layer of complexity.

In the domain of gene therapy vectors, there are two primary classifications: viral and
non-viral [344]. Viral vectors utilize the inherent infective properties of viruses, undergoing
genetic modifications to eliminate replicative genes, making them suitable for clinical
applications [344]. In addressing neurodegenerative diseases, the prominent viral vectors
include adeno-associated viruses (AAVs) and lentiviruses [345]. Both AAVs and lentiviral
vectors can effectively infect dividing and non-dividing cells. However, a key distinction
lies in the fact that lentiviruses integrate into the host genome, whereas AAVs do not [345].
Integration provides enduring and stable expression but simultaneously introduces the
potential risk of integrational mutagenesis. Even though AAVs do not integrate, they
can still facilitate persistent gene expression in nondividing cells [345]. Non-viral vectors
typically involve either naked plasmid DNA or complexes with cationic lipids or polymers.
These vectors exert a localized impact and demand a higher therapeutic dosage compared to
viral vectors [346]. Generally, non-viral delivery results in only temporary gene expression,
often inadequate for effectively addressing chronic neurodegenerative conditions [346].

Choosing the delivery route is crucial, especially for the central nervous system (CNS).
Remote delivery achieved through intravenous injection, as a non-invasive approach, is
advantageous. However, the blood–brain barrier (BBB) stands as a substantial barricade
impeding the entry of most vectors into the CNS [347]. Therefore, the significant discovery
that AAV9 can penetrate the blood–brain barrier (BBB) is notable [348]. Remote delivery
poses certain drawbacks, including an elevated risk of off-target effects and the necessity
for a larger dose to attain a therapeutic level in the target tissue. Conversely, direct deliv-
ery to the CNS mitigates off-target effects and lowers the necessary dosage of the gene
therapy vector [347]. In the central nervous system (CNS), this can be achieved through
intraparenchymal injection (directly into the brain or spinal cord) or by injecting into
the cerebrospinal fluid (CSF), either through intracerebroventricular (ICV) or intrathecal
routes [347].

The resurgence of gene therapy brings with it the enticing promise of not only target-
ing the fundamental causes of disease but also providing enduring corrections [349]. Severe
combined immune deficiency (SCID) was the first clinical success with gene therapy. SCID
is the most severe human inborn errors of immunity, with absent T and B lymphocyte func-
tion, making the infant susceptible to life-threatening infections with high mortality in the
absence of treatment [350]. Additionally, Casgevy is the first FDA-approved gene therapy
to utilize a type of novel genome-editing technology (CRISPR-Cas9) for the treatment of
sickle cell disease (SCD) in patients 12 years and older [351]. In neurodegenerative diseases,
spinal muscular atrophy (SMA) was the first to be cured with the exogenous introduction
of SMN1 gene to children under two years of age [352].

Embracing various forms of genome manipulation, this approach is particularly at-
tractive in the domain of neurodegenerative diseases, where traditional pharmacological
interventions have faced consistent challenges [345]. In contrast to organs where achieving
therapeutic concentrations through repeated doses is more feasible, most agents adminis-
tered peripherally encounter difficulties in efficiently crossing the blood–brain barrier when
targeting the brain. Hence, the notion of a singular, enduring intervention, often termed
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“one and done”, becomes particularly attractive when addressing diseases impacting the
central nervous system (CNS) [353]. In the following discussion, we will briefly explore
relevant technologies for therapeutics targeting neurodegenerative diseases.

5. Gene Expression
5.1. The Exogenous Introduction of Genes into the CNS

The most direct approach in gene therapy involves the exogenous introduction of
genes into the CNS. These introduced genes have the potential to rectify the loss of gene
function caused by pathological mutations, such as the instance of the SMN1 gene in spinal
muscular atrophy [352].

5.2. DNA Editing

The clinical adoption of DNA-editing tools is underway, with their ability to mod-
ify gene expression or address pathogenic mutations [354]. In broad terms, two crucial
elements come into play: DNA-binding domains designed to identify specific genomic
sequences and nucleases that create double-stranded breaks (DSBs). DSB repair is fa-
cilitated by nonhomologous end-joining (NHEJ), an endogenous mechanism prone to
errors, resulting in the insertion and deletion of sequences (INDELs) within the reading
frame [354]. Typically, this leads to frameshift mutations and premature termination codons
(PTCs), ultimately causing the targeted gene to be knocked out. In an alternative scenario,
when an external template is available, intrinsic homology-dependent repair (HDR) mech-
anisms come into play to introduce desired sequences or point mutations into the host
genome [354]. Three fundamental DNA-editing nucleases include zinc-finger nucleases
(ZFNs), transcription activator-like effector nucleases (TALENs), and CRISPR-associated
nucleases [355]. The structure of ZFNs involves two essential segments: a DNA-binding
domain composed of three–six zinc fingers, each with the capability to recognize three
DNA base-pairs in the host genome, and a DNA-cleaving domain originating from the en-
donuclease Fok1 [355]. Given that Fok1 functions as a dimer, the design involves two ZFNs
binding to opposite strands of the intended genomic DNA. This configuration enables the
Fok1 domains to dimerize and initiate DNA cleavage [355]. In the case of the transcription
activator-like effector nucleases (TALENs), they incorporate a sequence of transcription
activator-like effectors (TALEs) along with the Fok1 DNA-cleavage domain [356]. The
TALE polypeptide is made up of 33 or 34 amino acids, and within this structure, residues
12 and 13 are responsible for recognizing a specific DNA base [356].

In the synthetic CRISPR system, a custom-designed guide RNA (gRNA) is employed to
direct a Cas9 nuclease to specific locations on the host DNA (Figure 4). Another prerequisite
involves the presence of protospacer adjacent motif (PAM) sites, which are scattered
throughout the genome [357]. For the frequently used Cas9, streptococcus pyogenes
Cas9 (SpCas9), the corresponding guide RNA (gRNA) is comprised of a CRISPR RNA
(crRNA) recognizing the genomic target sequence and a trans-activating CRISPR RNA
(tracrRNA) that facilitates the recruitment of Cas9 [357]. Following the introduction of
DSBs by Cas9 and subsequent repair through NHEJ, INDELs commonly lead to a shift in
the reading frame, introducing a PTC [358]. Typically, mRNAs containing these mutated
PTCs undergo degradation via nonsense-mediated decay (NMD), an intrinsic surveillance
mechanism, resulting in the depletion of the corresponding protein. Theoretically, CRISPR-
guided HDR offers the potential to introduce specific point mutations or insertions into
the native genome using donor templates (the flow-chart is shown in Figure 5). However,
the frequency of HDR-mediated repair is generally lower than that of NHEJ in most cells,
restricting the scope of recombination [353]. Additionally, HDR naturally transpires during
mitotic recombination, limiting its application primarily to postmitotic neurons. Despite
these challenges, ongoing strategies are being developed to enhance HDR efficiency in the
brain [359].
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Figure 4. This illustration provides an overview of CRISPR-Cas9-mediated gene editing. The
Cas9 enzyme is triggered by attaching to guide RNA (gRNA) and then binding to the corresponding
genomic sequence just before the 3-nucleotide PAM sequence. After binding, Cas9 induces a double-
strand break, and the DNA is repaired using either the NHEJ or HDR pathway, leading to an edited
gene sequence.
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5.3. CRISPR-Mediated Base Editing and Prime Editing

The prevalent genetic disorders in human pathologies, encompassing inherited neu-
rodegenerative diseases, are attributed to single-base pair point mutations [360]. DNA base
editors are hybrid proteins formed by the fusion of a dCas9 or nCas9 with a deaminase pro-
tein, enabling the deamination and modification of cytidine or adenine base pairs (Figure 6).
Cytosine base editors facilitate the transformation of C:G to T:A, while adenine base editors
alter A:T to G:C [361,362]. The effective use of base editing encounters limitations due to
the necessity for appropriate PAM sequences and the occurrence of undesired nucleotide
substitutions in the vicinity of the target site, arising from the broad activity range of deam-
inases. Recent Cas9 variations have been created exhibiting increased PAM compatibility
and cytidine deaminase variants with more restricted activity windows [183]. Overcoming
the obstacles associated with the large size of the base editors for AAV packaging in in vivo
delivery, a recent study employed dual AAVs. These dual AAVs transported split base
editors, which were subsequently reassembled in situ through trans-splicing inteins [363].
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Figure 6. The flow chart details the sequential steps in the CRISPR-mediated base editing process,
encompassing the design of guide RNA, the formation of the CRISPR base editing complex, targeted
base pair modification, and the final edited genetic sequence.

Off-target effects, particularly undesired RNA editing, have been documented in the
context of base editing [364]. Nevertheless, more recent versions of base editors have been
reported to demonstrate reduced off-target activity [365]. The concept of prime editing
(Figure 7) broadens the scope of base editing, offering expanded genomic targeting, more
possibilities for genetic alterations, and enhanced precision. The prime-editing guide
RNA (pegRNA) is designed to encompass both the typical DNA-targeting sequence and
the desired editing sequence, allowing for the substitution of targeted genomic DNA
nucleotides [366]. The associated nCas9 is coupled with a reverse transcriptase, initiating
the reverse transcription of pegRNA (Figure 8). This process transfers the encoded genetic
information from the pegRNA, encompassing insertions, deletions, and base conversions,
to the targeted genome [366].
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inhibit (A) or activate (B) transcription of targeted gene. CRISPR-mediated base editing involves a
dCas9 or nickase Cas9 (nCas9) to bind with adenosine or cytosine (C) deaminase that changes AT
to GC or CG to TA. The prime editing (D) involves nCas9 fused with RT that transcribes a part of
pegRNA at target site.

6. Genetic Therapy for AD

One of the initial clinical trials in gene therapy for Alzheimer’s disease involved
introducing the gene encoding nerve growth factor (NGF) to the cholinergic nucleus basalis
of Meynert. This was accomplished through direct, bilateral injections of AAV2 into the
brain [367]. NGF, as an intrinsic neurotrophic factor, governs the growth and viability of
cholinergic neurons by functionally activating the TRKA receptor [368]. Studies conducted
in preclinical animal models, including non-human primates (NHPs), demonstrated the
favorable impact of administering external NGF, thereby establishing a rationale for human
trials [369]. Despite the safety and sustained expression of AAV2–NGF observed in Phase
1/2 clinical trials for mild-to-moderate AD, there was no obvious improvement in cognitive
function [370]. Furthermore, analysis of autopsy brains from this study revealed that the
administered AAV2–NGF did not reach the intended cholinergic neurons in the nucleus
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basalis of Meynert [371]. Consequently, the effectiveness of this therapeutic approach
remains uncertain.

6.1. Targeting MAPT

Utilizing antisense oligonucleotides (ASOs) against the MAPT gene, which encodes
tau, researchers have effectively reduced MAPT mRNA and tau protein levels in animal
models. These ASOs demonstrate the ability to mitigate tau phosphorylation and ag-
gregation, prevent neuronal death, and extend survival in transgenic mice expressing a
human mutant (P301S) tau. Moreover, they contribute to a reduction in CNS tau levels in
NHPs [372]. This strategy is presently being tested in a clinical trial and reported more than
50% reduction in tau synthesis in the CNS of mild AD patients (NCT03186989) [372]. In an
alternative approach, ASO-mediated exon skipping can effectively lower MAPT mRNA
and tau protein levels in both cellular and in vivo settings [373]. Emerging evidence indi-
cates that tau is involved in regulating presynaptic function [374] and the acute knockdown
of tau in adult mice led to learning and memory deficits [375].

6.2. Targeting APOE

Human susceptibility to Alzheimer’s disease is linked to three apolipoprotein E
(APOE) polymorphic alleles—E2, E3, and E4. APOE4 is recognized as the primary risk
factor for sporadic Alzheimer’s disease, while APOE2 is associated with a protective ef-
fect [376]. Research with animal models implies an association between APOE4 and the pro-
gression of both amyloid beta and tau pathology [377]. A gene therapy approach involves
increasing the levels of protective APOE2 in the brain. Indeed, expressing APOE2 through
viral vectors attenuates Aβ pathology in a mouse model that relies on amyloid [378]. A
Phase 1 trial involving the delivery of AAV–APOE2, administered into the cerebrospinal
fluid through intracisternal injections, is anticipated to commence shortly (NCT03634007).
Human APOE4 and APOE3 exhibit a distinction in only one amino acid residue at position
112 [379]. While current technology faces limitations in producing widespread single-
nucleotide changes in the brain, research has demonstrated that converting APOE4 to
APOE3 through gene editing in induced pluripotent stem cells (iPSCs) or cerebral organoids
can alleviate AD-associated phenotypes [380]. This approach holds promise as a potential
option for gene therapy in the future.

6.3. Targeting APP

The APP gene plays a pivotal role in both sporadic and familial AD, making the
silencing or modulation of APP an attractive prospect for gene therapy. Employing CRISPR–
Cas9 technology, a recent investigation selectively deactivated mutant familial APP Swedish
alleles in both cellular and in vivo settings, without impacting the corresponding wild-type
alleles [381]. In an alternate study, antisense oligonucleotides (ASOs) were employed to
omit the penultimate exon (exon 17) of APP [382]. The γ-secretase cleavage site and a
substantial portion of the transmembrane domain of APP are encoded by exon 17. Deleting
this exon results in the removal of the membrane-anchoring segment of APP, leading
to a decrease in Aβ secretion in both cellular and in vivo settings [382]. Nonetheless,
the elimination of the membrane-anchoring segment of APP is anticipated to result in
the loss of its physiological functions. In a recent investigation, a CRISPR–Cas9 DNA-
excision approach based on NHEJ was employed to introduce PTCs in the last exon (exon
18) of APP. This resulted in the truncation of the last approximately 36 amino acids and
the removal of a pentapeptide YENPTY endocytic motif that initiates the amyloidogenic
pathway [383]. Regulatory mechanisms in transcription render the last exon impervious
to NMD. Consequently, the presence of PTCs in this region does not lead to mRNA
degradation; instead, it causes protein truncations. This method carries the additional
benefit of preserving the integrity of the amino terminus and transmembrane domains of
APP, which are thought to contribute to axonal and synaptic physiology. As a result, there
is no observable impact on physiological functions [383].
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7. Gene Therapy for PD
7.1. Modulating Neuronal Signaling

Enhancing dopaminergic signaling in Parkinson’s disease (PD) has been achieved
through gene therapies utilizing adeno-associated viruses (AAVs). The regulation of the
dopamine synthesis pathway involves three key enzymes—GTP cyclohydrolase 1 (GCH1),
tyrosine hydroxylase (TH), and aromatic amino acid DOPA decarboxylase (AADC). Clinical
trials involving AAV2–AADC have shown safe, sustained expression over a period of up
to 4 years, and a modest amelioration of symptoms [384]. A more precise administration
of AAV2–AADC in non-human primates (NHPs) through real-time MRI guidance demon-
strated safety and good tolerability, as evidenced by the trial results (NCT03065192) [385].
Furthermore, a gene therapy utilizing lentivirus, known as ProSavin, was designed to
deliver all three rate-limiting enzymes (TH, AADC, and GCH1). The therapy demonstrated
positive tolerability during Phase 1/2 trials, and subsequent examinations indicated mod-
erate improvements in motor function [386]. The decline in dopaminergic tonus within the
striatum in PD results in an overactive glutamatergic subthalamic nucleus (STN). Preclinical
studies demonstrated that enhancing GABA activation via the subthalamic overexpression
of glutamate acid decarboxylase (GAD), an enzyme involved in GABA synthesis, effec-
tively alleviated PD-like symptoms [387]. In Phase 1/2 clinical trials, the administration
of AAV2–GAD into the STN demonstrated both good tolerability and improvement in
symptoms associated with PD that persisted for a year [388].

7.2. Targeting Disease Genes—SNCA, GBA, and LRRK2

In rodent models of PD, the use of short hairpin RNA (shRNA) or antisense oligonu-
cleotides (ASOs) to knockdown α-synuclein has proven effective in preventing neurodegen-
eration [389,390]. Additionally, CRISPR-mediated gene silencing of α-synuclein boosted
the cell viability in dopaminergic neurons derived from human-induced pluripotent stem
cells (iPSCs) sourced from a patient with PD [391]. However, unresolved concerns have
been noted in some in vivo studies regarding physiological phenotypes following the
knockdown of α-synuclein [392].

Administering AAV–GBA1 directly into the brain resulted in a reduction in α-synuclein
levels and pathology in rodent models [393]. When GBA1 was diffusely delivered to the
brain through intravenous injections of AAV-PHP.B–GBA1 in an A53T α-synuclein mouse
model, it not only alleviated α-synuclein pathology but also contributed to substantial
behavioral recovery and an extension of lifespan [394]. A recent Phase 1/2 clinical trial
(NCT04127578) is underway to treat individuals with PD. The approach involves the
intracisternal injection of AAV9–GBA1 directly into the cerebrospinal fluid.

The expression of LRRK2 in the lungs, kidneys, and spleen implies that a general inhi-
bition of LRRK2 may give rise to pathological modifications in these specific tissues [395].
Hence, in this context, gene therapy proves beneficial by selectively inhibiting LRRK2 in
the brain. The successful attenuation of mRNA and protein levels through the intracerebral
injection of LRRK2 ASOs was achieved without noticeable phenotypic alterations in the
kidneys or lungs [396]. Intrathecal injections of BIIB094, an ASO targeting LRRK2 devel-
oped by Ionis Pharmaceuticals, is currently in a Phase 1 clinical trial for individuals with
PD (NCT03976349).

8. Gene Therapy for ALS
Targeting SOD1

Administering ASO–SOD1 into the cerebrospinal fluid (CSF) effectively diminished
SOD1 levels and significantly prolonged survival in a transgenic rat model expressing
mutated human SOD1 [397]. Furthermore, the intrathecal administration of ASO–SOD1
has been well-tolerated among patients with ALS exhibiting SOD1 mutations [398]. A
follow-up Phase 1/2 study demonstrated that the administration of ASO–SOD1 resulted in
a reduction in SOD1 protein levels in CSF [399] and a Phase 3 trial is currently underway
(Tofersen). Additionally, RNA interference (RNAi) and CRISPR technology have been
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employed to downregulate mutant SOD1; a one-time intrathecal or intravenous injection
of AAV-SOD1-sgRNA results in reduction in SOD1 levels, enhanced motor function, and
significantly extended the lifespan of mice having mutant SOD1 [400]. Recently, a proof-
of-concept investigation demonstrated the feasibility of intrathecally delivering AAVs
expressing microRNAs against SOD1 in two patients with SOD1-related ALS. Postmortem
analysis in one patient revealed the effective suppression of SOD1 in the spinal cord,
affirming the potential success of this approach [401]. The intracerebroventricular injection
of ASO–C9orf72 resulted in a reduction in C9orf72 mRNA foci and cognitive improvement
in a transgenic mouse model with 450 G4C2 repeats in the C9orf72 gene [402]. An ongoing
Phase 1 clinical trial is investigating the intrathecal administration of ASO–C9orf72 in
patients diagnosed with C9orf72-linked ALS.

9. Conclusions and Future Perspectives

The discussion so far has concluded that the neurodegenerative diseases discussed in
this review, including AD, PD, and ALS, share several epidemiologic and genetic features.
First, they all have an etiologic dichotomy, with more common late-onset forms and less
common familial forms. It is possible (and likely) that a significant proportion of cases that
were previously thought to be sporadic and nonfamilial will ultimately be found to result
from disease-causing mutations or genetic risk factors (like APOE-ε4 in AD). Second, in
some instances, identical mutations and polymorphisms have been linked to and associated
with a variety of clinically and neuropathologically distinct disease entities. GWASs have
played a significant role in this effort because they have enabled the discovery of novel
genetic associations that are not based on prior knowledge. Unfortunately, GWAS findings,
so far, have explained only a small proportion of the heritability of complex diseases,
making genetic risk prediction tests for these diseases currently unfeasible. Overcoming the
constraints of GWAS, NGS platforms like WGS and WES have revealed a plethora of rare
variants that are pivotal in understanding complex neurological diseases and Mendelian
neurological conditions.

In the past, tackling the pervasive pathology of neurodegenerative diseases through
gene therapy was deemed challenging. However, breakthroughs in vector technologies
now enable the broad delivery of genes into the CNS. Coupled with modern genome-
manipulation tools, gene-based therapies hold the potential to revolutionize the clini-
cal management of both inherited and sporadic neurodegenerative diseases—conditions
marked by their devastating impact and a current lack of effective disease-modifying treat-
ments. Nevertheless, numerous challenges persist, and the pivotal transition into a new era
requires systematic advancements in gene-delivery vector development, comprehensive
safety assessments of contemporary gene manipulation tools, and transparent collaboration
among various stakeholders.
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72. Berdyński, M.; Miszta, P.; Safranow, K.; Andersen, P.M.; Morita, M.; Filipek, S.; Żekanowski, C.; Kuźma-Kozakiewicz, M.
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