Skip to main content
. 2024 Feb 8;13(4):990. doi: 10.3390/jcm13040990

Table 4.

Performance comparison of machine learning algorithms in each dataset of CNUH data.

Model Measure Dataset
Lab ISNCSCI Lab + ISNCSCI
GNN-GCN Sensitivity 0.180 ± 0.195 0.426 ± 0.218 0.362 ± 0.200
Specificity 0.923 ± 0.036 0.947 ± 0.035 0.945 ± 0.037
Accuracy 0.877 ± 0.034 0.914 ± 0.034 0.908 ± 0.033
AUC 0.551 ± 0.096 0.686 ± 0.107 0.653 ± 0.097
F1-score 0.538 ± 0.078 0.666 ± 0.092 0.635 ± 0.087
DNN Sensitivity 0.108 ± 0.134 0.398 ± 0.214 0.388 ± 0.194
Specificity 0.944 ± 0.031 0.947 ± 0.036 0.949 ± 0.033
Accuracy 0.892 ± 0.031 0.913 ± 0.035 0.914 ± 0.028
AUC 0.526 ± 0.068 0.672 ± 0.105 0.669 ± 0.092
F1-score 0.523 ± 0.066 0.654 ± 0.099 0.654 ± 0.077
SVM_linear Sensitivity 0.124 ± 0.132 0.416 ± 0.204 0.418 ± 0.181
Specificity 0.961 ± 0.035 0.950 ± 0.027 0.925 ± 0.038
Accuracy 0.909 ± 0.035 0.889 ± 0.032 0.894 ± 0.036
AUC 0.543 ± 0.069 0.643 ± 0.072 0.672 ± 0.089
F1-score 0.547 ± 0.084 0.614 ± 0.065 0.636 ± 0.081
SVM_RBF Sensitivity 0.140 ± 0.173 0.362 ± 0.153 0.420 ± 0.214
Specificity 0.944 ± 0.028 0.924 ± 0.035 0.957 ± 0.028
Accuracy 0.894 ± 0.028 0.917 ± 0.025 0.924 ± 0.025
AUC 0.542 ± 0.086 0.683 ± 0.098 0.689 ± 0.103
F1-score 0.537 ± 0.083 0.661 ± 0.086 0.676 ± 0.085
KNN Sensitivity 0.340 ± 0.175 0.562 ± 0.236 0.538 ± 0.223
Specificity 0.875 ± 0.040 0.913 ± 0.030 0.910 ± 0.029
Accuracy 0.842 ± 0.037 0.891 ± 0.027 0.887 ± 0.028
AUC 0.607 ± 0.085 0.737 ± 0.114 0.724 ± 0.109
F1-score 0.559 ± 0.053 0.661 ± 0.068 0.651 ± 0.069
Random Forest Sensitivity 0.066 ± 0.114 0.386 ± 0.191 0.378 ± 0.194
Specificity 0.996 ± 0.008 0.943 ± 0.031 0.945 ± 0.033
Accuracy 0.938 ± 0.010 0.909 ± 0.028 0.910 ± 0.033
AUC 0.531 ± 0.056 0.665 ± 0.093 0.662 ± 0.101
F1-score 0.533 ± 0.083 0.646 ± 0.080 0.649 ± 0.093
Logistic Regression Sensitivity 0.148 ± 0.160 0.408 ± 0.184 0.442 ± 0.191
Specificity 0.941 ± 0.035 0.926 ± 0.033 0.928 ± 0.033
Accuracy 0.892 ± 0.032 0.895 ± 0.032 0.898 ± 0.032
AUC 0.545 ± 0.078 0.667 ± 0.093 0.685 ± 0.094
F1-score 0.538 ± 0.070 0.636 ± 0.083 0.648 ± 0.082

The KNN model trained with the “ISNCSCI” dataset from CNUH demonstrated the highest performance, with an AUC of 0.737. Abbreviations: Lab = laboratory data; ISNCSCI = International Standards for Neurological Classification of Spinal Cord Injury.