
Citation: Chu, A.; Yao, Y.; Glibowicka,

M.; Deber, C.M.; Manolson, M.F. The

Human Mutation K237_V238del in a

Putative Lipid Binding Motif within

the V-ATPase a2 Isoform Suggests a

Molecular Mechanism Underlying

Cutis Laxa. Int. J. Mol. Sci. 2024, 25,

2170. https://doi.org/10.3390/

ijms25042170

Academic Editors: Ivo Crnolatac and

Andrzej Slominski

Received: 29 December 2023

Revised: 19 January 2024

Accepted: 1 February 2024

Published: 11 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

The Human Mutation K237_V238del in a Putative Lipid Binding
Motif within the V-ATPase a2 Isoform Suggests a Molecular
Mechanism Underlying Cutis Laxa
Anh Chu 1, Yeqi Yao 1, Miroslawa Glibowicka 2, Charles M. Deber 2,3 and Morris F. Manolson 1,3,*

1 Faculty of Dentistry, University of Toronto, Toronto M5G 1G6, ON, Canada;
anhnt.chu@mail.utoronto.ca (A.C.); yeqiyao@gmail.com (Y.Y.)

2 Division of Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto M5G 0A4, ON,
Canada; miragl@ymail.com (M.G.); deber@sickkids.ca (C.M.D.)

3 Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto M5S 1A8, ON, Canada
* Correspondence: m.manolson@utoronto.ca

Abstract: Vacuolar ATPases (V-ATPases), proton pumps composed of 16 subunits, are necessary for
a variety of cellular functions. Subunit “a” has four isoforms, a1–a4, each with a distinct cellular
location. We identified a phosphoinositide (PIP) interaction motif, KXnK(R)IK(R), conserved in all
four isoforms, and hypothesize that a/PIP interactions regulate V-ATPase recruitment/retention
to different organelles. Among the four isoforms, a2 is enriched on Golgi with a2 mutations in the
PIP motif resulting in cutis laxa. We hypothesize that the hydrophilic N-terminal (NT) domain of
a2 contains a lipid-binding domain, and mutations in this domain prevent interaction with Golgi-
enriched PIPs, resulting in cutis laxa. We recreated the cutis laxa-causing mutation K237_V238del,
and a double mutation in the PIP-binding motif, K237A/V238A. Circular dichroism confirmed
that there were no protein structure alterations. Pull-down assays with PIP-enriched liposomes
revealed that wildtype a2NT preferentially binds phosphatidylinositol 4-phosphate (PI(4)P), while
mutants decreased binding to PI(4)P. In HEK293 cells, wildtype a2NT was localized to Golgi and co-
purified with microsomal membranes. Mutants reduced Golgi localization and membrane association.
Rapamycin depletion of PI(4)P diminished a2NT-Golgi localization. We conclude that a2NT is
sufficient for Golgi retention, suggesting the lipid-binding motif is involved in V-ATPase targeting
and/or retention. Mutational analyses suggest a molecular mechanism underlying how a2 mutations
result in cutis laxa.

Keywords: V-ATPases; V-ATPase a2 isoforms; protein–lipid interaction; phosphoinositides; PI(4)P;
cutis laxa

1. Introduction

Vacuolar H+-ATPases (V-ATPases) are conserved ATP-dependent proton pumps re-
sponsible for the maintenance of organelle luminal pH in eukaryotic cells [1–5]. They are
multi-subunit complexes comprised of a cytosolic V1 sector responsible for ATP hydrolysis
coupled to proton translocation through a membrane-bound Vo sector [6]. Several subunits
have tissue- or organelle-specific isoforms thought to mediate V-ATPase localization to
their various functional cellular destinations [7,8]. In mammals, there are four isoforms of
the Vo-a subunit, a1–a4, which play key roles in V-ATPase localization [9–13]. The a1–a3
isoforms are expressed ubiquitously in different tissues, in which a1 and a2-containing
V-ATPases are mainly found on intracellular membranes [14–20], while a3 are found in both
intracellular compartments and the plasma membrane [21–23]. The a4 isoform is restricted
to the kidney [24,25], epididymis [26], and inner ear [27], where a4-containing V-ATPases
are targeted to the plasma membrane. Mutations in “a” subunit isoforms are linked to
various diseases. Mutations within a1 have been linked to epileptic encephalopathy [14,16].
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The autosomal recessive disease, cutis laxa, is characterized by a glycosylation malfunction
in the Golgi and is associated with mutations in the a2 isoform [28–31]. Mutations in
a3 and a4 are linked to osteopetrosis [32–35] and distal renal tubular acidosis [25,36,37],
respectively.

The 90kDa a-subunit contains a cytosolic N-terminal domain and a membrane-bound
C-terminal domain consisting of eight transmembrane helices (TMs) [10,38,39]. In Sac-
charomyces cerevisiae, the sorting signal for V-ATPases within the N-terminal half of the
a-subunit homolog, Stv1p, is well characterized [10,11]. The sorting information, W83KY,
present in the Stv1p isoform dictates the retention of Stv1p-containing V-ATPases within the
Golgi network [10]. However, little is known about the targeting signals for the mammalian
Golgi-specific a2 isoform. Evidence in yeast suggests the interaction of the a subunits with
membrane phosphoinositides can account for the membrane retention of the V-ATPases at
specific locations [40,41].

Phosphoinositides (PIPs) are generated by reversible phosphorylation of the precursor
phosphatidylinositol (PI) at the inositol headgroup, mediated by organelle-specific kinases
and phosphatases [42–44]. Organelle-specific distribution and composition of the seven
different PIPs play important roles in membrane protein trafficking [42,45]. Spatial or
temporal enrichment of PIPs at microdomains within organelle membranes is involved
in regulating the activity of membrane-bound ion channels and transporters [45,46]. The
cytosolic N-terminal domain of the yeast a isoform, Vph1p, was recruited to the vacuolar
membrane when the level of endosome/vacuole-specific PI(3,5)P2 was elevated [41]. In
contrast, Stv1p was shown to bind directly to a Golgi-specific PI(4)P, and the interaction
was attributed to its cytosolic N-terminal domain [40].

In previous work, we showed that the plasma membrane-specific a4 isoform preferen-
tially binds to PI(4,5)P2 and that the a4NT-PI(4,5)P2 interaction is responsible for membrane
retention [47]. We proposed a putative binding domain within the N-terminal half of the a
subunit, containing a conserved basic motif (K/R)X(K/R)(K/R). In the present study, we
found that the a2 isoform interacts in vitro with PI(4)P, a Golgi-enriched PIP, and show
that PI(4)P at the Golgi helps to retain the cytosolic N-terminal domain of a2 at the Golgi
membrane. Additionally, we show that the cutis laxa causing mutation K237_V238del
within the critical a2 isoform K237VKK240 binding motif not only reduced interactions with
PI(4)P but also disrupted protein membrane retention, suggesting the molecular mechanism
underlying the disease.

2. Results
2.1. Mutations within the Putative Binding Motif reduced Interaction of a2 with PI(4)P-Enriched
Liposomes In Vitro

In our previous work, we proposed a putative lipid binding domain located at the
distal lobe of the N-terminal half of a4. We further suggested that a conserved basic
motif, (K/R)X(K/R)(K/R), is critical for the interaction with the acidic headgroup of
PIPs [47]. In a2, we propose this critical lipid binding motif is K237VKK240 (Figure 1). Using
mutagenesis to verify the basic motif, we generated two mutations in the a2 N-terminal
domain (a2NT), K237A/V238A and K237_V238del, both within the putative binding motif.
The K237_V238del is a mutation found within humans that results in cutis laxa [48].

We first assessed whether either mutation affected protein folding using circular
dichroism (CD) spectroscopy. WT a2NT contains a mainly helical structure, exhibited by
two negative minima at 222 nm and 208 nm. The CD spectra of the mutants and WT, all
in aqueous buffer, overlap at the characteristic wavelengths, indicating that the mutations
did not alter protein structure (Figure 2A). To mimic the membrane environment and
determine whether the presence of micelles enhances the helicity of the proteins, we added
detergent with an SDS-to-peptide ratio of 370:1. The spectra of WT and mutants behaved
similarly in the presence of SDS micelles with increased negative ellipticity at 208 nm and
222 nm, suggesting the membrane-bound behavior of the proteins (Figure 2B). Variation
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in the signal of the positive peak at 190–200 nm is likely due to different trace amounts of
imidazole in the buffer.
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Figure 2. Mutations K237A/V238A and K237_V238del do not affect protein folding. (A) Circular
dichroism spectra of a2NT wild-type (red), mutant K237A/V238A (black), and mutant K237_V238.del
(blue) in 50 mM Tris pH8.0 in the absence and (B) in the presence of 10mM SDS.

We tested in vitro PIP interactions of wildtype and mutants with PIP-enriched lipo-
somes using a liposome pull-down assay. Wildtype and mutants were incubated with
PolyPIPosome liposomes enriched with different PIPs, including the Golgi-specific PI(4)P,
and its derivatives PI(3,4)P2,PI(4,5)P2 and PI(3,4,5)P3 (labelled as PIP3). The protein–
liposome complexes are collected via high-speed centrifugation and resolved by Western
blot. WT a2NT showed significantly higher binding to PI(4)P compared to PI(3,4)P2 and
PIP3 (Figure ??A,B). While both mutations visually appear to reduce association with all
polyPIPosome liposomes (Figure ??B left panel), only the liposomes enriched with PI(4)P
resulted in a significant reduction (Figure ??B right panel). The binding differences be-
tween WT and mutants to I(3,4)P2, PI(4,5)P2, and PIP3 were not statistically significant
(Figure ??C). This result is consistent with the fact that the a2 isoform is localized in Golgi
and that PI(4)P is primarily found in Golgi.



Int. J. Mol. Sci. 2024, 25, 2170 4 of 13

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 4 of 14 
 

 

Figure 2. Mutations K237A/V238A and K237_V238del do not affect protein folding. (A) Circular 
dichroism spectra of a2NT wild-type (red), mutant K237A/V238A (black), and mutant 
K237_V238.del (blue) in 50 mM Tris pH8.0 in the absence and (B) in the presence of 10mM SDS. 

We tested in vitro PIP interactions of wildtype and mutants with PIP-enriched lipo-
somes using a liposome pull-down assay. Wildtype and mutants were incubated with 
PolyPIPosome liposomes enriched with different PIPs, including the Golgi-specific PI(4)P, 
and its derivatives PI(3,4)P2,PI(4,5)P2 and PI(3,4,5)P3 (labelled as PIP3). The protein–lipo-
some complexes are collected via high-speed centrifugation and resolved by Western blot. 
WT a2NT showed significantly higher binding to PI(4)P compared to PI(3,4)P2 and PIP3 
(Figure 3A,B). While both mutations visually appear to reduce association with all poly-
PIPosome liposomes (Figure 3B left panel), only the liposomes enriched with PI(4)P re-
sulted in a significant reduction (Figure 3B right panel). The binding differences between 
WT and mutants to I(3,4)P2, PI(4,5)P2, and PIP3 were not statistically significant (Figure 
3C). This result is consistent with the fact that the a2 isoform is localized in Golgi and that 
PI(4)P is primarily found in Golgi. 

These data suggest that the basic motif K237VKK240 in a2 is required for PI(4)P inter-
action, and mutations within this motif negatively impact the interaction. This further 
suggests that disruption of the a2-PI(4)P interaction could be the molecular mechanism 
underlying the disease-causing mutation, K237_V238del. 

 
(A) 

 
(B) 

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 5 of 14 
 

 

 
(C) 

Figure 3. Mutations within the putative K237VKK240 binding motif reduced interaction of a2NT with 
PI(4)P-enriched liposomes in vitro. (A) Liposome pull-down assay with PolyPIPosomes (Echelon) 
enriched with the indicated PIPs and HIS-tagged a2WT. In total, 20 µg of protein was incubated for 
1 h at room temperature with 20 µL of 1 mM PolyPIPosomes containing 5% of the indicated PIPs in 
binding buffer (50 mM Tris, pH 7.5, 150 mM NaCl, 0.05% Nonidet P-40). Additionally, 5 µg of puri-
fied HIS-tagged a2WT was used as the input for loading control. (Right) Quantification was per-
formed by measuring the intensity ratio of protein pulled down with the liposomes relative to input 
(n = 3). (B) Liposome pull-down assay of WT and mutant proteins with PolyPIPosomes (Echelon) 
enriched with indicated PIPs (PI(4)P, PI(4,5)P2, PI(3,4)P2, and PIP3. (Right) Quantification by inten-
sity ratio of WT and mutants pulled down with PI(4)P-enriched liposomes with respect to input. (C) 
Quantification by intensity ratio of WT and mutants pulled down with liposomes enriched with 
PI(4,5)P2, PI(3,4)P2, and PIP3 with respect to input. n = 3 for all figures. Error bars indicate ± S.D. 
Statistical significance was analyzed by one-way ANOVA with Dunnett’s multiple comparisons test 
comparing mutants to WT. * indicates p < 0.05. ** indicates p < 0.01, *** indicates p < 0.001. 

2.2. Mutations K237A/V238A and K237_V238del Reduce a2NT Golgi Localization 
To assess cytosolic a2NT membrane association, we expressed FLAG-tagged 

wildtype a2NT and mutants a2NT K237A/V238A and K237_V238del in HEK293 cells and 
performed subcellular fractionation. Although the a2NT.FLAG lacks a transmembrane 
domain, it was still detected in microsomal fractions, suggesting that the membrane-
bound C-terminal domain is not essential for membrane retention and that the N-terminal 
domain is sufficient to bring the protein to the membrane (Figure 4A). There was a signif-
icant decrease in the amount of both mutants in the microsomal fraction compared to the 
wildtype (Figure 4B). These results indicate that both mutations disrupt PI(4)P binding in 
vitro and reduce membrane retention in vivo. 

Figure 3. Mutations within the putative K237VKK240 binding motif reduced interaction of a2NT with
PI(4)P-enriched liposomes in vitro. (A) Liposome pull-down assay with PolyPIPosomes (Echelon)
enriched with the indicated PIPs and HIS-tagged a2WT. In total, 20 µg of protein was incubated for
1 h at room temperature with 20 µL of 1 mM PolyPIPosomes containing 5% of the indicated PIPs in
binding buffer (50 mM Tris, pH 7.5, 150 mM NaCl, 0.05% Nonidet P-40). Additionally, 5 µg of purified
HIS-tagged a2WT was used as the input for loading control. (Right) Quantification was performed
by measuring the intensity ratio of protein pulled down with the liposomes relative to input (n = 3).
(B) Liposome pull-down assay of WT and mutant proteins with PolyPIPosomes (Echelon) enriched
with indicated PIPs (PI(4)P, PI(4,5)P2, PI(3,4)P2, and PIP3. (Right) Quantification
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by intensity ratio of WT and mutants pulled down with PI(4)P-enriched liposomes with respect to
input. (C) Quantification by intensity ratio of WT and mutants pulled down with liposomes enriched
with PI(4,5)P2, PI(3,4)P2, and PIP3 with respect to input. n = 3 for all figures. Error bars indicate ± S.D.
Statistical significance was analyzed by one-way ANOVA with Dunnett’s multiple comparisons test
comparing mutants to WT. * indicates p < 0.05. ** indicates p < 0.01, *** indicates p < 0.001.

These data suggest that the basic motif K237VKK240 in a2 is required for PI(4)P inter-
action, and mutations within this motif negatively impact the interaction. This further
suggests that disruption of the a2-PI(4)P interaction could be the molecular mechanism
underlying the disease-causing mutation, K237_V238del.

2.2. Mutations K237A/V238A and K237_V238del Reduce a2NT Golgi Localization

To assess cytosolic a2NT membrane association, we expressed FLAG-tagged wildtype
a2NT and mutants a2NT K237A/V238A and K237_V238del in HEK293 cells and performed
subcellular fractionation. Although the a2NT.FLAG lacks a transmembrane domain, it was
still detected in microsomal fractions, suggesting that the membrane-bound C-terminal
domain is not essential for membrane retention and that the N-terminal domain is sufficient
to bring the protein to the membrane (Figure 4A). There was a significant decrease in the
amount of both mutants in the microsomal fraction compared to the wildtype (Figure 4B).
These results indicate that both mutations disrupt PI(4)P binding in vitro and reduce
membrane retention in vivo.
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Figure 4. a2NT-WT co-purified with microsomal membranes, and mutants a2NT-K237A/V238A
and K237_V238.del reduced membrane retention. (A) Plasmids containing a2NT wildtype (WT) and
mutants K237A/V238A, K237_V238.del were transfected into HEK293 cells. Cellular fractionation
performed to obtain cytosolic (cytosol) and microsomal fractions (microsomal). (B) Quantification was
assessed by comparing the relative pixel intensity of microsomal fraction to whole cell extracts. (n = 3).
Statistical significance was analyzed by one-way ANOVA with Dunnett’s multiple comparisons test
comparing mutants to WT. * indicates p < 0.05, ** indicates p < 0.01.

Immunofluorescence microscopy was used to visualize the localization of wildtype
and mutant a2NT in the HEK293 cells. Wildtype a2NT.FLAG (red) were enriched at the
Golgi, visualized with the Golgi specific marker, Tgn38-CFP (Figure 5A, top row). As a2NT
was recruited to the Golgi in the absence of a membrane-bound C-terminal domain, this
suggests that Golgi sorting information lies within the cytosolic N-terminal half. In contrast,
there was a significant reduction in the Golgi localization of a2.K237A/V238A (Figure 5A,
middle row) and a2.K237_V238del (Figure 5A, bottom row) (Figure 5B). This result aligns
with the diminished membrane retention of the two mutants in microsomal fractions,
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supporting the hypothesis that the PI(4)P binding motif in a2 is, in part, responsible for
Golgi membrane targeting/retention.
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Figure 5. Mutations affect a2NT recruitment to Golgi. White arrows indicate the presence of a2NT at
the Golgi. (A) Plasmids containing FLAG-tagged a2NT wildtype (WT), mutants K237A/V238A and
K237_V238del were co-transfected with Tgn38-CFP in HEK293 cells. Cells were fixed, permeabilized,
and stained for FLAG-tagged proteins (red) and DAPI (blue). (B) Quantification. A minimum of
30 cells from each cell line were measured for the intensity of the red signal at the vicinity of the
Golgi membrane (green). Data represent mean value ± SEM from three independent experiments.
Statistical significance was analyzed by one-way ANOVA with Dunnett’s multiple comparisons test
comparing mutants to WT. **** indicates p < 0.0001, scare bar = 10 µm.
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2.3. Depletion of Golgi PI(4)P Impairs a2NT Recruitment to Golgi

We next tested whether the depletion of Golgi PI(4)P impairs a2NT Golgi recruitment.
Sac1 is a PI(4)P phosphatase converting PI(4)P to PI [49,50]. We recruited Sac1 phosphatase
to Golgi using the rapamycin-induced dimerization method [51–53]. Sac1 phosphatase
coupled to FK506 binding protein FKBP (Sac1-FKBP) and Golgi membrane anchor Tgn38
coupled to FKBP-rapamycin binding domain FRB (Tgn38-FRB-CFP) were dimerized by the
addition of rapamycin (Figure 6A). Sac1-PJ phosphatase is recruited to the Golgi (Figure 6B),
where it converts PI(4)P to PI, resulting in the depletion of the Golgi pool of PI(4)P.
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HEK293 cells were co-transfected with plasmids containing a2NT.FLAG, Sac1-PJ-
FKBP, and Tgn38-FRB-CFP. a2NT co-localized with Tgn38-CFP, indicating recruitment to 
the Golgi (Figure 7A, top row). Additionally, 100 nM rapamycin decreased the a2NT 

Figure 6. Rapamycin recruits Sac1-FKBP to the Golgi in the presence Tgn38-FRB. (A) Schematic
illustration of rapamycin-induced dimerization. Sac1 phosphatase coupled to FK506 binding protein
FKBP (Sac1-FKBP) and Golgi membrane anchor Tgn38 coupled to FKBP-rapamycin binding domain
FRB (Tgn38-FRB-CFP) were dimerized by the addition of rapamycin. (B) Sac1-FKBP (magenta)
recruitment to Golgi (white arrow), labeled by Tgn38 (green), upon treatment with 100 nM of
rapamycin for 15 min at room temperature before fixing. Quantification: A minimum of 30 cells from
each cell line. Data represent mean value SEM from three independent experiments. A paired t-test
was run to analyze the significance in mean difference. * indicates p < 0.05, scare bar = 10 µm.

HEK293 cells were co-transfected with plasmids containing a2NT.FLAG, Sac1-PJ-FKBP,
and Tgn38-FRB-CFP. a2NT co-localized with Tgn38-CFP, indicating recruitment to the Golgi
(Figure 7A, top row). Additionally, 100 nM rapamycin decreased the a2NT intensity at the
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Golgi (Figure 7A, bottom row), suggesting that depletion of Golgi PI(4)P impairs a2NT’s
localization/retention at the Golgi.
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The cytosolic N-terminal domain of the a subunit serves as a connector for V1 and Vo 

assembly [54] and is an important target for multiple V-ATPase regulators [15,17,20,21]. 
Experiments with chimeras of the two yeast orthologs, Vph1p and Stv1p, showed that the 
aNT contains information for both the localization and regulation of V-ATPase by reversi-
ble assembly [13]. Phosphoinositides regulate transmembrane channels and transporters 
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Figure 7. Depletion of Golgi PI(4)P impairs a2NT recruitment to Golgi. White arrows indicate
the localization of a2NT at Golgi (A) Plasmids containing FLAG-tagged a2NT wildtype (WT) were
co-transfected with Tgn38-FRB-CFP (green) and Sac1-FKBP in HEK293 cells. Cells were treated with
100 nM of rapamycin for 15 min at 30 h post-transfection. Cells were then fixed, permeabilized, and
stained for FLAG-tagged proteins (red) and DAPI (blue). (B) Quantification was performed with a
minimum of 30 cells from each cell line measured for the intensity of the red signal in the vicinity of
Golgi (green). Data represent mean value SEM from three independent experiments. A paired t-test
was run to analyze the significance in mean difference. *** indicates p < 0.001. scare bar = 10 µm.

3. Discussion

The cytosolic N-terminal domain of the a subunit serves as a connector for V1 and Vo assem-
bly [54] and is an important target for multiple V-ATPase regulators [15,17,20,21]. Experi-
ments with chimeras of the two yeast orthologs, Vph1p and Stv1p, showed that the aNT con-
tains information for both the localization and regulation of V-ATPase by reversible assem-
bly [13]. Phosphoinositides regulate transmembrane channels and transporters [42,45,46].
Interactions between a subunit isoforms and different PIPs may impact both functional
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regulation and localization, which, in turn, could account for the differences in functional
destinations among a subunit isoforms.

Previously, we proposed a putative lipid binding domain in the a subunit and the
possible involvement of this domain in V-ATPase regulation [47]. Sequence alignment of
the four mammalian V-ATPase a subunit isoforms with the two yeast orthologs revealed a
conserved basic motif KXnK(R)IK(R) required for the PIP’s interaction in the N-terminal
domain of a4. Here, we provide evidence that the Golgi-specific a2 isoform directly in-
teracts with PI(4)P, a Golgi-enriched PIP. Our results with a2 mutations, K237A/V238A
and K237_V238del, indicate that mutations within the binding motif (K237VKK240) com-
promised the membrane association and Golgi localization, further suggesting that this
basic motif is essential for PI(4)P binding. The depletion of Golgi PI(4)P with rapamycin
had similar effects on a2 localization, indicating that a2-PI(4)P interaction is important
for the Golgi localization of a2-containing V-ATPases. A recent study identified another
PI(4)P interaction sequence K221WY within the vicinity of the putative binding domain,
and the mutation of the K221 residue compromised PI(4)P binding [55]. PIPs are expressed
as lipid rafts within the membrane [56,57] so that multiple basic residues are exposed to
the membrane, which would strengthen protein–lipid interactions. We hypothesize that
the K221WY sequence could help to strengthen the PIP/protein interaction or potentially
define the PIP’s specificity of the a2 isoform.

PIP binding is often associated with protein conformational changes [58–61]. Struc-
tural analyses of yeast V-ATPases suggest that there are conformational changes between
Vph1pNT in holoenzyme V1-Vo and in free Vo, as well as movement of the N-terminal
domain in different states of the active enzyme [6,62]. Our putative lipid binding motif is
within the distal lobe of the aNT, which rotates between the different V-TPase active states.
Similar to the stabilization of K+ channel Kir2.2 upon binding to PI(4,5)P2 [59], it is possible
that binding to the Golgi PI(4)P traps the a2 isoform at the Golgi membrane as well as in a
conformational state that promotes V-ATPase assembly and/or activity. Studies in yeast
indicate that mutations resulting in the loss of PI(4)P binding compromise Stv1p-containing
V-ATPases’ function, resulting in growth defects at alkaline pH [40]. Structural studies of
conformational changes induced by PIP binding can provide mechanistic insights for the
functional role of this interaction. Nevertheless, aNT is the target of multiple V-ATPase
regulators [15,17,20,41,63], and PIP interaction is only one mode of V-ATPase regulation at
specific membranes.

The a2 K237_V238del mutation has been identified in patients with cutis laxa [48].
Here, we show that this mutation disrupted PI(4)P interaction and compromised Golgi
localization. The characterization of conserved residues implicated in diseases has been
successfully used to determine functional domains and has informed the discovery of novel
therapeutic targets [64–66]. Understanding a-PIP interactions and their impact on V-ATPase
localization and regulation could similarly inform the development of a therapeutic control
of V-ATPase subpopulations, enabling the inhibition, specifically, of V-ATPases involved in
osteoporosis [7,21], and metastatic cancer [67,68].

4. Materials and Methods
4.1. Expression and Purification of Human a2NT Wildtype and Mutants K237A/V238A,
K237_V238.del from E. coli

pET32a+ :: human V-ATPase a2NT (MM1115). N-terminal domain of human a2
from ATG to T400 was obtained by PCR with primers MO501: 5′-ACGTGGTACCA
TGGGCTCCATGTTCCGGAG and MO502: 5′-ACGTGAATTCACAGATCTCCGCCGGTGT
AGGGAGCGGGGTTGAC. The PCR product was cloned into pET32a(+) plasmids between
KpnI and EcoRV sites, resulting in MM1111. pcDNA3 :: human V-ATPase a2NT (MM1127)
KpnI and EcoRV insert of a2NT in MM1115 was moved into pcDNA3.1+; the new construct
was named MM1127. pET32a+ :: human V-ATPase a2NT K237A/V238A (MM1121) Q5 Site-
Directed Mutagenesis Kit (NEB E0554S) was used on MM1115 to make human V-ATPase
a2NT.K237A/V238A mutant with primers MO523: 5′-GCAACATCGACGTCACCCAGCAG
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and MO524: 5′-ACGTGAATTCTTAGGTGTAGGGGGCTGGGTTTATC, sequencing veri-
fied. pcDNA3 :: human V-ATPase a2NT K237A/V238A (MM1128) KpnI and EcoRV frag-
ment of MM1121 was ligated into pcDNA3.1+, and the new construct was named MM1128.
pET32a+ :: human V-ATPase a2NT K237_V238.del (MM1122) Q5 Site-Directed Mutagenesis
Kit (NEB E0554S) was used on MM1115 to make human V-ATPase a2NT.K238_V238.del
mutant. pcDNA3 :: human V-ATPase a2NT K237_V238.del (MM1129) The KpnI and EcoRV
insert of MM1122 was ligated into pcDNA3.1+; the new construct was named MM1129.

The N-terminal domain of human a2 (amino acid 1–400) with a 6X His tag at the
carboxyl end was expressed in E.coli Rosetta (DE3) via pET32a plasmid and purified as
described in a previous study [47].

4.2. PolyPIPosome Pull-Down Assay

In total, 20 µg of purified proteins, a2NT wildtype, K237A/V238A, and K237_V238.del,
was incubated with 20 µL 1 mM PolyPIPosomes (Echelon, US) and 200 µL of binding
buffer (50 mM Tris pH8.0, 150 mM NaCl, and 0.05% Nonidet P-40). Pull-down assay
was performed as in [47] as well as a Western blot with mouse anti-His antibody (Sigma
SAB1305538) and goat anti-mouse IgG secondary antibody (Invitrogen 31430).

4.3. HEK293 Transfection and Cellular Fractionation

HEK293 cells (ATCC, US) were cultured on 10 cm culture dishes in Dulbecco’s modi-
fied Eagle’s medium (DMEM) (Gibco, US) containing 10% fetal bovine serum (FBS) and 0.5%
antibiotics, and grown in a 95% air, 5% CO2 humidified environment at 37 ◦C. pcDNA3
plasmids of human a2 N-terminal domain (amino acid 1–400) wildtype and mutants
K237A/V238A, K237_V238.del, 5 µg of plasmid/dish, were transfected into HEK293 cells
using PolyJet Reagent (SignaGen, US) in accordance with the procedure recommended
by the manufacturer. Cellular fractionation was as described in [47]. The fractions were
analyzed by Western blot with anti-atp6v0a2 (Abcam, UK ab96803).

4.4. Immunofluorescence

In the rapamycin treatment experiment, cells were treated with 100 nM of rapamycin
for 15 min at room temperature before fixing. Images were acquired with a confocal
microscope (Leica Confocal SP8, Germany) using a 63x oil objective. Colocalizations were
measured with Mander’s coefficient M1 [69]. Antibodies used were as follows: mouse
anti-DDDDK tag (Abcam ab18230), goat anti-mouse IgG Alexa Fluor TM 647 (Invitrogen
A21235), and DAPI stain (Invitrogen D1306).

4.5. Statistical Analysis

GraphPad Prism 9.4.1 software was used for statistical analysis and statistical graph
production. One-way ANOVA followed by Dunnett’s multiple comparison test or Student’s
t-test were used as indicated in figure legends. In figures, asterisks are used as follows:
* indicates p < 0.05, ** indicates p < 0.01, and *** indicates p < 0.001. The experimental results
are expressed as the mean ± SEM.
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