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Abstract: Objectives: This study aimed to create a three-dimensional histological reconstruction
through the Al-assisted classification of tissues and the alignment of serial sections. The secondary
aim was to evaluate if the novel technique for histological reconstruction accurately replicated
the trabecular microarchitecture of bone. This was performed by conducting micromorphometric
measurements on the reconstruction and comparing the results obtained with those of microCT
reconstructions. Methods: A bone biopsy sample was harvested upon re-entry following sinus
floor augmentation. Following microCT scanning and histological processing, a modified version of
the U-Net architecture was trained to categorize tissues on the sections. Detector-free local feature
matching with transformers was used to create the histological reconstruction. The micromorpho-
metric parameters were calculated using Bruker’s CTAn software (version 1.18.8.0, Bruker, Kontich,
Belgium) for both histological and microCT datasets. Results: Correlation coefficients calculated
between the micromorphometric parameters measured on the microCT and histological reconstruc-
tion suggest a strong linear relationship between the two with p-values of 0.777, 0.717, 0.705, 0.666,
and 0.687 for BV/TV, BS/TV, Tb.Pf Tb.Th, and Tb.Sp, respectively. Bland—-Altman and mountain
plots suggest good agreement between BV /TV measurements on the two reconstruction methods.
Conclusions: This novel method for three-dimensional histological reconstruction provides re-
searchers with a tool that enables the assessment of accurate trabecular microarchitecture and
histological information simultaneously.

Keywords: artificial intelligence (AI); microCT; histomorphometry; three-dimensional histological
reconstruction; bone augmentation; dental implant

J. Clin. Med. 2024, 13, 1106. https://doi.org/10.3390/jcm13041106

https:/ /www.mdpi.com/journal /jem


https://doi.org/10.3390/jcm13041106
https://doi.org/10.3390/jcm13041106
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jcm
https://www.mdpi.com
https://orcid.org/0000-0002-2841-3021
https://orcid.org/0000-0002-8098-1392
https://orcid.org/0000-0001-6706-6221
https://orcid.org/0000-0003-0648-9778
https://orcid.org/0000-0001-9530-7926
https://orcid.org/0000-0002-0512-1157
https://orcid.org/0000-0002-1661-7529
https://orcid.org/0000-0003-0728-7027
https://doi.org/10.3390/jcm13041106
https://www.mdpi.com/journal/jcm
https://www.mdpi.com/article/10.3390/jcm13041106?type=check_update&version=4

J. Clin. Med. 2024, 13, 1106

2 of 15

1. Introduction

Implant-borne prostheses are a safe and predictable option in oral rehabilitation [1].
Several bone microarchitectural factors have been associated with the failure of osseointe-
gration, such as low bone quality, thin cortical bone, and sparse trabecular bone [2,3].

It has been established that poor recipient bone quality is an important risk factor
in early implant failure [4-6]. Bone quality assessment prior to or at the time of implant
placement influences the clinician’s decision-making regarding the choice between sub-
merged or non-submerged implant placement and determines the protocol for prosthetic
loading [7-9]. Therefore, predicting bone quality at dental implant recipient sites prior to
surgery is essential for the clinician. Postoperatively, microarchitectural evaluation of den-
tal implant recipient bone through histological and microcomputed tomography (microCT)
analysis of bone core biopsy samples allows the researcher to determine the risk factors
involved in implant failure and evaluate the clinical performance of bone graft materials.
Histological examination of bone core biopsy samples harvested during dental implant
placement may help identify underlying pathologies in cases of implant failure [10,11].

There is no consensus in the literature regarding the exact definition of bone qual-
ity [12]. The term bone quality incorporates the degree of mineralization, cortical bone thick-
ness [13], and trabecular bone morphology [14,15]. Hounsfield unit (HU) measurements
on computed tomography (CT) reconstructions, insertion torque resistance, and resonance
frequency analysis (RFA) are the most prevalent methods to evaluate bone quality before
and during implant placement [7,8,16-19]. Cone beam computed tomography (CBCT) has
become the standard imaging method in the dento-maxillofacial region for the preoperative
assessment of dental implant recipient bone anatomy and quantity. However, gray-level
measurements performed on CBCT reconstructions are not reliable for the assessment of
bone quality [20,21]. MicroCT analysis has been successfully applied to assess the microar-
chitecture of bone core biopsy samples obtained from the implant bed to evaluate the bone
quality of dental implant recipient bone following surgery [6,10,13,16,22-26]. Studies show
that the results of micromorphometric analysis conducted with microCT correlate highly
with histomorphometric measurements, with it being considered as the gold standard for
the structural analysis of trabecular bone and implant osseointegration [25-28]. However,
microCT analysis may be more reliable in cases where micromorphometric parameters are
to be calculated to assess the true three-dimensional microarchitecture [22-24,29]. Conven-
tional histomorphometry provides information on tissues and cellularity [30]. Nevertheless,
histomorphometry is usually carried out on representative slices and provides little infor-
mation on three-dimensional structures [22]. MicroCT is a non-destructive modality to
evaluate the three-dimensional structure of trabecular bone in high resolution [31,32]. How-
ever, microCT reconstruction is based on the radiodensity of structures and provides no
information on cellularity. Manual or semiautomatic thresholding is the most widespread
method to differentiate between bone and soft tissue.

Recently, artificial intelligence (AlI) has been applied for pathological and medical
image analysis with adequate sensitivity and specificity [33,34]. In dentistry, Al has been
successfully applied for caries diagnostics, the detection of apical periodontitis and odon-
togenic cysts, orthodontic diagnosis and treatment planning, the identification of the
inferior alveolar nerve, the segmentation of teeth and jaw bones, airway modeling, sinus
mucosa thickening, dental implant type recognition, and degenerative changes in the
temporomandibular joint [35-37]. The use of Al in image annotation enables fast and
reliable differentiation between tissues in large quantities on pathologic images, decreasing
the risk of fatigue-related errors [38,39]. However, oversight of a professional may be
desirable [40,41].

Various methods have been introduced for the three-dimensional reconstruction of
serial sections [42—44]. Following the three-dimensional reconstruction of the serial sections,
micromorphometric parameters—such as in the case of microCT reconstructions—may be
calculated. In this case, distinguishing between different types of tissues is more reliable
than radiological thresholding [45]. However, the three-dimensional reconstruction of
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serial sections c [43]. A three-dimensional histological reconstruction that represents the
true trabecular bone microarchitecture would allow for a more comprehensive analysis of
implant recipient bone. Such an assay may be utilized in clinical research on bone graft
materials and the clinical pathology of implant failure as well.

To the best of our knowledge, there have been no studies conducted to validate micro-
morphometric measurements carried out on three-dimensional histological reconstructions
using microCT analysis.

The aim of this study was to create a three-dimensional histological reconstruction
through the Al-assisted classification of tissues and alignment of the serial sections. The
secondary purpose of this study was to assess whether the novel, Al-assisted method for three-
dimensional histological reconstruction reproduces the true trabecular microarchitecture of
bone by performing micromorphometric measurements on the three-dimensional histological
reconstructions and comparing their results to those carried out on microCT reconstructions.

2. Materials and Methods

The study was approved by the Medical Research Council Committee of Science and
Research Ethics (ETT TUKEB BM/18442-1/2023), and it was conducted in accordance
with the Declaration of Helsinki. The interventions carried out during this study were
thoroughly explained to the patient enrolled. The patient signed the necessary informed
consent documents.

2.1. Surgical Procedures

A 50-year-old female patient presented to our Department of Community Dentistry
with a chief complaint of the missing upper left first molar. An implant-borne crown
was planned to substitute the missing tooth. The patient did not report uncontrolled
medical disorders, systemic diseases, or medication that would alter bone metabolism. The
preoperative CBCT scan revealed a fully healed site with a residual bone height of 3.2 mm
below the maxillary sinus and an alveolar ridge of 7.5 mm in width. Sinus floor elevation
(SFE) was proposed to restore the sufficient vertical dimensions of the recipient bone.

The patient rinsed with a 0.2% chlorhexidine solution before surgery. Under local
anesthesia, a full-thickness flap was elevated from a crestal incision with a mesial and
distal releasing incision. Lateral window osteotomies were carried out using a piezoelectric
surgery device (NSK Variosurg3 Ultrasonic Bone Surgery System, NSK Europe GmbH,
Eschborn, Germany) and the Schneiderian membrane was carefully elevated. A bovine
xenograft (Cerabone Granulate S, Botiss biomaterials GmbH, Zossen, Germany) was packed
in the base of the sinus with light force. The lateral window was sealed using a collagen
membrane (Jason membrane, Botiss biomaterials GmbH, Zossen, Germany). The flap
was mobilized using a periosteal incision to achieve tension-free primary closure. The
flap was closed with single interrupted sutures. Suture removal took place after 10 days.
The patient received 1 g of amoxicillin—clavulanate (Aktil Duo 875 mg/125 mg, Sandoz
Hungéria Kft., Budapest, Hungary) twice per day, starting on the day of the surgery. A
non-steroid anti-inflammatory drug, diclofenac (Cataflam 50 mg, Novartis Hungaria Kft.,
Budapest, Hungary), 3 times a day for 3 days was prescribed to manage postoperative pain.
The patient used a 0.2% chlorhexidine mouth rinse (Corsodyl, GlaxoSmithKline Consumer
Healthcare GmbH & Co. KG, Miinchen, Germany), twice a day for 2 weeks. The patient did
not wear a temporary prosthesis during the healing period, which lasted 6 months. During
surgical re-entry, implant bed preparation was carried out with a trephine drill with an
external diameter of 3.5 mm and an internal diameter of 2.5 mm (330 205 486 001 025 Hager
& Meisinger GmbH, Neuss, Germany) at 800 rpm to collect a bone core biopsy sample from
the augmented bone for histologic and microCT analysis. The implant bed was finalized
according to the instructions of the implant manufacturer. A dental implant (Denti Root
Form, Denti System Ltd., Szentes, Hungary) was inserted non-submerged in the augmented
bone. The healing period was 3 months before the implant prosthetic procedure.
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The bone core biopsy sample was placed in 4% formaldehyde solution in 0.1 M
phosphate-buffered saline (PBS), pH 7.3, and was stored at 4 °C.

2.2. MicroCT Imaging

The bone core biopsy sample was scanned using a SkyScan 1272 microCT scanner
(Bruker, Kontich, Belgium) with a voxel size of 11 um at 60 kV, 66 mA. A 0.25 mm aluminum
filter was used to decrease image noise, and a rotation step of 0.5° was set prior to image
acquisition. After scanning, reconstruction of raw images was performed using SkyScan
NRecon software (version 2.0, Bruker, Kontich, Belgium).

2.3. Histological Processing and Scanning

The biopsy sample was decalcified for 4 days and then embedded in paraffin (FFPE).
The horizontal embedding orientation was obtained by laying the biopsy between tissue
foam pads. Approximately 5 pm thick serial sections were cut. Sections picked up on
standard glass slides were routinely stained with hematoxylin and eosin (H&E) then
covered and scanned using a 3Dhistech Panoramic 1000 Digital Slide Scanner (3Dhistech,
Budapest, Hungary).

2.4. Three-Dimensional Histological Reconstruction

To establish a structural ground truth for the histology reconstruction, the correspond-
ing microCT volume was sliced in silico in the same plane as the real sample. To ensure
the convergence of the histological reconstruction process, torn, damaged, or otherwise
visually distorted slides were discarded. The reconstruction process has two main steps:
pre-alignment using data from the histology reconstruction and fine alignment with the
help of the microCT volume.

The MIRAX slide scanning process produces high-resolution images with variable
dimensions, typically measuring 100,000 x 200,000 pixels with a pixel ratio of 0.121267 um.
To prepare these slides for further analysis, a pre-processing step was performed using the
OpensSlide [46] and OpenCV [47] software libraries.

The pre-processing pipeline involves the detection of the region of interest (ROI), which
is critical for possible downstream morphometry analysis. The pipeline starts with gray-
scale conversion and Canny edge detection, with the parameters ‘threshold1 = 100" and
‘threshold2 = 255". An adaptive thresholding algorithm with the parameters ‘maxValue = 255,
adaptiveMethod = 1, thresholdType = 1, blockSize = 11, and C =2’ is then applied. The
resulting binary image is subjected to 15 iterations of dilation and erosion to reduce noise
and ensure smoother contours. Contour detection is then used to identify the boundaries
of the ROI The bounding rectangle for each contour is calculated, and the largest of these
is considered to contain the contour of the biopsy. The biopsy’s contour is then fitted with
the minimum area (“rotated”) rectangle, as well as a concave polygon to determine the ROI
for morphometric analysis.

ROI detection is performed on the highest zoom level (lowest resolution) to achieve
optimal performance. The rotated rectangle and concave polygons obtained at this stage are
then scaled to the desired zoom level using bicubic scaling followed by simple thresholding
(“threshold = 128’) to remove artifacts and produce binary images. The angle of the rotated
rectangle is used to calculate the rotation required for coarse pre-alignment.

The resulting images are exported at a resolution of 3000 x 7000, which corresponds
to an 8.0x downsample from the lowest zoom level of the original slide, with a pixel
ratio of 0.970136 pm. The downsampling factor can be decreased or eliminated, but this
would result in a significant increase in computation time for downstream tasks. Each
slice is fitted with a minimal area covering the rectangle, which when rotated upright is
responsible for the coarse alignment of the slice rotations. This is followed by a stepwise
affine transformation described by Nagara et al. [48]. The process begins at one end of the
stack of slices and iteratively transforms the entire stack to match the other end of the slices.
Within this iterative transformation, the reference slices were chosen based on the number
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of keypoints detected by the deep feature matching algorithm, detector-free local feature
matching with transformers (LoFTR) [44]. LoFIR uses a convolutional neural network
(CNN) backbone to compute feature descriptors for the images, which are then probed
for matches using a transformer model. Once the reference slice is identified, the optimal
affine transformation, which minimizes the cross-entropy between the images is calculated
by first finding the optimal translation, followed by the optimal rotation and then finally
the optimal scaling. By separating the different elements of the affine transformation, a
more stable result can be achieved, and false optima can be avoided.

The final alignment matches each histology slide with one of the in-silico microCT
slices. The reference slices within the microCT volume are found by calculating the number
of matching LoFTR keypoints for each in-silico microCT slice for a given histology slide.
We found that the number of matching keypoints for the corresponding slides shows a peak
that is an order of magnitude higher than the background. To properly identify the location
of this peak, a bell curve is fitted, and its mean is used to determine the maximum; this
process helps reduce the effects of noise within the keypoint distribution. Once the match is
identified, the calculation of the optimal affine transformation follows the same procedure
as in the pre-alignment step. The matching process is presented in Figures 1 and 2.
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Figure 1. Example of the matching process within the final alignment. The number of matching
keypoints for each in-silico microCT slice is represented by a blue dot. Notice that the slice that
corresponds to the histological slide used in this example has an order of magnitude more matching
keypoints then the rest of the microCT slices. This peak in the keypoint curve was approximated
using a bell curve, represented by the orange line, the mean of which corresponds to the in-silico
microCT slice matching the histology slice.

The beneficial side-effect of using microCT as a structural ground truth is that the
resulting 3D histology is already registered to the microCT volume, which enables down-
stream comparisons.
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uCT Histology

Figure 2. Visualization of the matched LoFTR keypoints between the two imaging modalities: an
in silico microCT slice and the histology; this specific match corresponds to the peak of the curve
presented in Figure 1. Notice that there are only parallel lines connecting the keypoints; crossing lines
would indicate false matches.

2.5. Tissue Segmentation

Ground truth annotations were created for seven slides using QuPath software (version
0.1.2, Queen’s University Belfast, Northern Ireland, UK) to differentiate between three
histological categories: bone tissue, residual bone graft material, and non-mineralized
tissue [49]. The three categories were separated based on their distinct morphological
features. To address the imbalanced nature of the segmentation problem, class weights
were calculated based on the ground truth of the training set.

These maps were split into tiles of 512 x 512 pixels in size with a 64-pixel overlap
in each direction and then divided into a five-fold cross-validation setup, meaning that,
within each fold, the model was trained on 80% of the data and validated on 20%. U-Net
architecture [45] was trained for the semantic segmentation task, modified from the original
to include batch normalization in the 3 x 3 2D convolution blocks and dropout after
the concatenations, to combat overfitting and improve the generalizability with limited
training data, which was confirmed by the resulting validation accuracies being 0.9548,
0.9565, 0.9304, 0.9608, 0.9607 for the five folds, respectively. The exact architecture is
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depicted in Figure 3. The model was compiled using the Adam optimizer, categorical
cross-entropy loss function, a batch size of 16, and a 5% dropout rate and trained for
200 epochs with a learning rate schedule that started from 1 x 1073 and decreased by a
factor of 10 down to 1 x 10~° if the validation loss did not improve for 30 epochs on a single
NVIDA V100 32 GB GPU. The segmentation maps were then obtained by ensembling the
five models trained on the five folds, producing a three-component vector for each pixel
on the input image, where each component corresponded to a probability for one of the
classes. The results were reconstructed by averaging the overlaps and were then subjected
to bilateral filtering with a filter size of 32 pixels and standard deviation in both color and
a pixel space of 64 to remove neural network artifacts. It is advantageous to use bilateral
filtering instead of Gaussian filtering for noise elimination, since the latter blurs the sharp
edges, while the former does not due to it also applying a filter in the “color space” as
well as in the “real space”. The segmentation maps were thresholded so that each pixel
belonged to a single, most probable class. An example from the segmentation process is
presented in Figure 4.
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Figure 3. U-Net architecture used in tissue segmentation. Since each 2 x 2 MaxPooling layer halves
the resolution of the feature map, the resolution of the bottleneck layer is 32 x 32 pixels. The
blue boxes correspond to multi-channel feature maps with the number of channels noted either
above or below the boxes. The white boxes represent the concatenation between the upsampled
(Conv2DTransposed) feature map from the expanding part and the copied feature map from the
contracting path.

The three-dimensional structure of the bone tissue and bone graft material was re-
covered by applying the same transformations calculated in the 3D reconstruction step
described in Section 2.4.

2.6. Measurement Pre-Processing

To obtain a reasonably large statistic for comparison, both the microCT and the three-
dimensional histological reconstruction were tiled into 512 x 512 x 230 micron sized
matching rectangular prisms, resulting in 47 non-overlapping samples.

2.7. Micromorphometric Analysis of the MicroCT and Three-Dimensional
Histological Reconstructions

The micromorphometric parameters were calculated using CTAn software (version
1.18.8.0, Bruker, Kontich, Belgium) for both histological and microCT datasets by apply-
ing the ROI mask and semi-automatic binary selection and choosing 3D analysis in the
morphometry view. In addition to basic parameters (tissue volume (TV), bone volume
(BV), percent bone volume, tissue surface (TS), bone surface (BS), BS/BV ratio, bone surface
density (BS/TV), and centroid and moments of inertia), all additional values were also
calculated: structure model index (SMI), trabecular pattern factor (Tb.Pf), trabecular thick-
ness (Tb.Th), trabecular number (Tb.N), trabecular separation (Tb.Sp), degree of anisotropy
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(DA), fractal dimension (FD), number of objects (Obj.N), number of closed pores (Po.N(cl)),
porosity (Po), and Euler number (EuN).

Original Mask Mask Pradicted Mask Predicted smoothed & thresholded

; v — bone tissue

— bone graft mat.
e

Criginal Mask Mask Predicted Mask Pradicted smoothed & thresholded
T —

8% — bone tissue
—— bone graft mat.

Mask Mask Predicted Mask Predicted smoothed & thresholded

Criginal Mask Mask Predicted Mask Pradicted smoothed & thresholded
f = ¥ — torctimc |

— bone graft mat. ||

Figure 4. Side-by-side examples showing the inputs and outputs for the tissue segmentation model.
The first column, named “Original”, depicts the tile from the histology, overlayed with the handmade
annotations (bone outlined with red and bone graft material outlined with green). The second
column, named “Mask”, shows the annotations as segmentation masks. These masks delineate
three histological categories—bone tissue (highlighted in red), bone graft material (in green), and
non-mineralized tissue (in blue). The third column, named “Mask Predicted”, depicts examples of the
U-Net model’s outputs, with paler colors indicating smaller probabilities for a given class. The fourth
column, named “Mask Predicted smoothed & thresholded”, depicts the final annotation following
the post-processing consisting of bilateral filtering ("smoothing”) and thresholding, which makes
each pixel belong to the single most probable class only.

2.8. Statistical Analysis
2.8.1. Spearman’s Rank Correlation Coefficient

To compare the results of the micromorphometric measurements, Spearman’s rank
correlation coefficient (p) was used, as implemented by SciPy [50]. The correlation coeffi-
cient measures the monotonic relationship between two variables and takes values between
—1 and 1, with the extremes meaning that one variable is a perfectly monotonic function
of the other, with the p-value corresponding to the hypothesis that the two variables are
linearly uncorrelated. Values of p < 0.05 were considered significant.
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2.8.2. Bland—-Altman and Mountain Plots

To visualize the agreement between the micromorphometric measurements on the
two reconstruction methods for a given parameter, the Bland-Altman and mountain plots
were calculated.

The Bland—-Altman plot was constructed by assigning the mean of measurement for
the x value and the difference to the y value [51]. Then, the bias was obtained from the
mean of differences, and the 95% limits of agreement were obtained by multiplying the
standard deviation of the differences with £ 1.96, given that the differences are normally
distributed. It was also suggested by Altman and Bland that a one-sample ¢-test for zero
bias and linear regression between the means and differences should be performed to test
for zero slope.

Mountain plots were obtained by calculating the cumulative density function of the
differences and folding them at the median, by taking 1-p, if p > 0.5, and they were used to
complement the difference plots [52].

3. Results

Correlation coefficients calculated between the micromorphometric parameters mea-
sured on the microCT image tiles and the tiled 3D reconstruction suggested a strong linear
relationship between the two with p-values of 0.777, 0.717, 0.705, 0.666, and 0.687 for BV /TV,
BS/TV, Tb.Pf Tb.Th, and Tb.Sp, respectively, and an average p-value across all measured
values of 0.605. This was further supported by consistently small (~1 x 10~8) p-values,
suggesting that the high Spearman correlation was not due to random chance.

The Bland—Altman and mountain plots in Figure 5 were only constructed for the five
previously mentioned parameters.

The statistical tests for normally distributed differences yielded results that cannot
reject this hypothesis. The t-tests for zero bias were significant for percent bone volume. A
linear regression was performed on the means and differences, also suggesting zero slope
for percent bone volume. Statistical tests and their results are presented in Table 1.

Table 1. Statistical tests were performed to compare five micromorphometric parameters: BV/TYV,
BS/TV, Tb.Pf, Tb.Th, and Tb.Sp., measured using microCT and 3D histological reconstruction. The
normality test assesses the null hypothesis that the differences follow a normal distribution; the
obtained results are not significant. The one-sample t-test evaluates whether the bias is zero. For
BV/TV, the test is inconclusive, but for the rest of the parameters, this hypothesis must be discarded.
Linear regression was used to test for a zero slope between the differences and means, which only
holds for BV/TV. Spearman’s rank correlation coefficient quantifies whether there is a strong linear
relationship between the values. This is true for all micromorphometric parameters, with small
accompanying p-values indicating statistical significance.

Normality Test One Sample t-Test Linear Regression Spearman Correlation
. .. Correlation

Statistic p Statistic p Slope Intercept 4 Coefficient 4
BV/TV  2.160 0.340 1.313 0.196 —0.033 £ 0.091 2.691 + 3.556 0.721 0.777 1.389 x 10710
BS/TV 22399  1.000 —11.977 9971 x 10~®  —0.839£0.095 —0.006 £ 0.009 2.291 x 10~ 0.717 1.441 x 1078
Tb.Pf  31.800 1.000 —3.824 3.933 x 10~% —0.800 £+ 0.116 0.010 4+ 0.003 1.436 x 1078 0.705 3.187 x 1078
Tb.Th  5.364 0.068 13.423 1.608 x 10717 0.441 +0.122 11.889 +£9.635  7.118 x 107* 0.666 3272 x 1077
Tb.Sp 3.483 0.175 11.118 1257 x 107 —0.247 £0.102  57.799 + 10.844 0.019 0.687 9.561 x 10~8




J. Clin. Med. 2024, 13, 1106

10 of 15

Percent bone volume Percent bone volume
N +1.96 SD: 16 i

z
R H
& . . 2

8 8 - mean giff:. B
5 o pe ey, &

B . 02

-10 = . ¢ 2o

-1.96 SD: -14
-20 * L |
10 20 30 40 50 60 -20 -10 0 10 20
Mean [%] Difference [%]

Bone surface / volume ratio Bone surface / volume ratio
+1.96 SD: 0.0069 05 H

o
o
8

T - z
E 1 ;
= .,
o005 ok meandift. 8 °°
g 006 S
3 g o2
& -0.10 = 3
a8 . e [
3 -1.96 SD::0:13
0.15 5 0 ; }
0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 -0200 -0.175 -0.150 -0.125 -0.100 -0.075 -0.050 -0.025
Mean [1/um] Difference [1/um]
Trabecular pattern factor Trabecular pattern factor
+1.96SD: 0.019 05 !
002
T Zos
2 3
= 8
PR mean diff. B °°
2 . 001 &
3 . Ge S g2
3 -0.02 - . g
£ . g
a e ey LL 04
5 -1.96 SD: -0.034
0.04 - : \
0.01 0.02 0.03 0.04 0.05 -0.06 -005 -0.04 -003 -002 -001 0.00 001
Mean [1/um] Difference [1/um]

Trabecular thickness Trabecular thickness
#968D:90 05 |

= 2z
B . £
3 60 . IR
S 03
8 medn diff: S
S 40 = 2518 - 2
£y =¥ e 8
8 2 £
0
-1.96 SD: 0.44
-20 L2 i
40 60 80 100 120 £ 4 0 100
Mean [um] Difference [um]
Trabecular separation Trabecular separation
80 +196SD: 71 05 :
= 60 ¢ '; Y 3
€ Z i
=Y S 05 !
g 40 mean diff. 8 !
E ettt 234 &
B ete et Mt
£ . R
S o s e o Lon
-1.96 SD: -6.3
-20 00
60 80 100 120 140 160 0 o 10 20 3 4 0 & 70
Mean [um] Difference [um]

Figure 5. Bland-Altman (BA) plots on the left and mountain plots on the right comparing the microCT
tiles and the 3D histological reconstruction tiles for the measured micromorphometrical parameters
percent bone volume, bone surface/bone volume ratio, trabecular pattern factor, trabecular thickness,
and trabecular separation. On the BA plots, the mean difference is indicated by a solid line, the 95%
limits of agreements are indicated by dashed lines, and the fitted linear regression is indicated by
a dotted line along with its 95% confidence band. Each parameter has close to zero bias (the slope
of the mean—difference curve), but further statistical tests showed that this hypothesis cannot be
rejected only for the percent bone volume; for the other parameters, the difference from zero bias is
significant. On the mountain plots, the median difference is marked with a solid line and the 95%
confidence interval is marked with dashed lines. The median difference indicates the bias between
the two imaging methods; the closer it is to zero, the smaller the bias. Only the trabecular thickness
measurements show a larger bias; however, all distributions show fairly long tails.

4. Discussion

According to the results of the present study, a strong and statistically significant
linear correlation was observed between the micromorphometric variables calculated
from the three-dimensional histological reconstruction and microCT datasets. The Bland-
Altman and mountain plots show sufficient agreement between BV/TV calculated from the
microCT and three-dimensional histological reconstruction datasets. BV/TV is considered
the most important outcome measure among the micromorphometric parameters as it
corresponds with the percent bone area calculated in the histomorphometric analysis [10].
However, the results of Bland—-Altman and mountain plots are less ideal when evaluating
the agreement between the micromorphometric parameters related to surface measures
(BS/BV, Tb.Pf, Tb.Th, and Tb.Sp) between the two three-dimensional datasets. In this
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study, the microCT reconstructions consisted of isotropic voxels, whereas the voxels of
the three-dimensional histological reconstruction were anisotropic. The thickness of the
slides was set at 5 pm, while the resolution of the mask following the classification of
different tissues was higher. This may have led to disagreement in the surface-related
micromorphometric parameters between the microCT and three-dimensional histological
reconstruction datasets.

In clinical practice, it is essential to predict bone quality before implant placement to
assess the risk of implant failure and to determine the time of prosthetic loading [7-9]. CBCT
has become a standard for three-dimensional imaging modalities in the dento-maxillofacial
region prior to implant placement and bone augmentation because of its low radiation dose
compared to CT and its high spatial resolution [20,53,54]. However, unlike Hounsfield
units (HUs) measured on CT reconstructions, gray-level measurements on CBCT are
unreliable and should be avoided [20,21]. Micromorphometric parameters calculated
from CBCT reconstructions may be reliable indicators of bone quality, as the literature
suggests that these measurements correlate well with those, calculated from microCT
reconstructions of bone core biopsy samples harvested from the ROI [11,55-61]. However,
a correlation between the two variables does not infer a valid method for measurement.
Because of these difficulties in predicting bone quality, it is increasingly important to
research recipient bone microarchitecture following bone augmentation procedures to
determine whether factors such as healing time, bone graft materials used, defect volume,
the characteristics of the local anatomy, and systemic diseases or medication influence the
quality of augmented bone.

Assessment of trabecular bone microarchitecture is pivotal in bone augmentation
and dental implant-related research. Histomorphometry is considered the gold standard
of bone quality assessment [12,30,62]. The examiner calculates the percentage of newly
formed bone, bone marrow, and residual graft material from representative sections, which
are widely accepted as short-term outcome measures for the integration of biomaterials
in the augmented area. However, histomorphometry only allows for assessment in two
dimensions, which is considered a significant limitation [22]. The results of histologi-
cal measurements depend on the slice thickness and cutting direction of the histological
sections [23,24,29]. Three-dimensional analysis of trabecular bone microarchitecture is
important for the comprehensive assessment of bone quality. Serial sectioning, digitization
of the sections, segmentation of the tissue types identified within the biopsy sample, and
three-dimensional reconstruction of the sections enable analysis of trabecular microarchi-
tecture. Convolutional neural networks enable quick and reliable classification of different
tissue types on histological sections and assist three-dimensional reconstruction of serial
sections [33,41]. However, artifacts may cause bias in such a three-dimensional reconstruc-
tion [43]. Therefore, validation of the method presented is necessary with a modality that
enables direct analysis of trabecular microarchitecture.

MicroCT enables direct assessment of the three-dimensional trabecular structure in
high resolution based on the radiodensity of the different tissues found in the biopsy sam-
ples. It is non-destructive and allows for further processing of the bone core biopsy sample
for histology or biomechanical assays. A lack of information on tissues and cellularity
is a limitation of microCT analysis [10,12,28]. Nevertheless, microarchitectural analysis
of three-dimensional reconstructions of serial sections may combine the advantages of
histomorphometric and microCT analysis, providing micromorphometric data as well as
information on tissues and cellularity. Such a three-dimensional histological reconstruction
can be used in clinical and preclinical biomaterial research for the postoperative evaluation
of augmented bone. For the clinician, a comprehensive microarchitectural and histological
assessment of implant recipient bone following dental implant placement may identify
potential causes of implant failure.

Because of the time-consuming demineralization, serial sectioning, and staining in-
volved, the three-dimensional histological reconstruction method described in our study
is not applicable as an intraoperative method to assess bone quality. Therefore, it may
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be used primarily in research. Another limitation of the method is its destructive nature,
which precludes further testing of the biopsy specimen. A further limitation of the present
study is that it was carried out in a single biopsy specimen and only three tissues (newly
formed bone, residual graft material, and non-mineralized tissues) were differentiated
within the histological sections. Further studies conducted with the three-dimensional
histological reconstruction method described in our study to assess vascular structures
and bone remodeling markers may be of interest. Another avenue of research may be
the feasibility of the novel method of three-dimensional histological reconstruction in the
assessment of soft tissues.

5. Conclusions

In this study, a three-dimensional histological reconstruction through the Al-assisted
classification of tissues and alignment of the serial sections was described. According
to the results of the present study, a strong and statistically significant correlation was
observed between the micromorphometric variables calculated from the three-dimensional
histological reconstruction and microCT datasets.

Thus, the novel method for the three-dimensional reconstruction of histological sec-
tions described in our study provides researchers with a tool that enables the accurate
assessment of three-dimensional trabecular microarchitecture and histological information
simultaneously.
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