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Abstract: Nitric oxide (NO) is synthesized in all kingdoms of life, where it plays a role in the
regulation of various physiological and developmental processes. In terms of endogenous NO
biology, fungi have been less well researched than mammals, plants, and bacteria. In this review, we
summarize and discuss the studies to date on intracellular NO biosynthesis and function in fungi.
Two mechanisms for NO biosynthesis, NO synthase (NOS)-mediated arginine oxidation and nitrate-
and nitrite-reductase-mediated nitrite reduction, are the most frequently reported. Furthermore, we
summarize the multifaceted functions of NO in fungi as well as its role as a signaling molecule in
fungal growth regulation, development, abiotic stress, virulence regulation, and metabolism. Finally,
we present potential directions for future research on fungal NO biology.
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1. Introduction

Nitric oxide (NO) is a diatomic gas synthesized by bacteria, fungi, plants, and mam-
mals. Although the mechanisms for NO biosynthesis vary among species, there is increas-
ing evidence demonstrating the conserved role of endogenous NO as a signaling molecule
that regulates numerous physiological and differential processes [1–3]. In mammals, NO is
produced by NO synthase (NOS), which plays a crucial role in vasodilation, neurotrans-
mission, and the immune response [4,5]. NO produced by endothelial cells located within
blood vessels induces vasodilation, increases blood flow, and regulates blood pressure [6].
In the nervous system, neuron-produced NO acts as a neurotransmitter, facilitates in synap-
tic transmission and plasticity, and ultimately affects learning and memory processes [7].
During immune responses, immune-cell-produced NO enhances the antimicrobial activity
of macrophages and regulates the expression of inflammatory factors and chemokines [8,9].

In plants, NO is an important signaling molecule that regulates plant growth, mat-
uration, and stress as well as seed germination, root formation, stomatal aperture, flow-
ering, and senescence [3,10–12]. During embryonic development, NO participates in
seed dormancy and germination by regulating protein tyrosine nitration and cysteine S-
nitrosylation [13]. The root cells at the root tip also generate NO, which is implicated in root
hair development and lateral root formation [14,15]. The stomatal opening and closing, gas
exchange, and water loss can be controlled by regulating the NO levels in guard cells [16].
NO interacts with plant hormones (auxins, abscisic acid, and gibberellins) to regulate plant
growth and development [13,15,16]. However, NO synthesis does not appear to follow
the same pathway in plant cells as in mammalian cells. Although studies have demon-
strated the existence of NOS-like enzyme activity in plants, there is low sequence homology
between plant and mammalian NOS [17,18]. The amino acid sequence of NOS in photosyn-
thetic green algae (Ostreococcus tauri) is 45% similar to that of human NOS [19]. The level of
NO increases after high-intensity light irradiation and the addition of L-arginine, indicating
the existence of arginine-dependent NO production in plant cells [19]. In addition, an

J. Fungi 2024, 10, 155. https://doi.org/10.3390/jof10020155 https://www.mdpi.com/journal/jof

https://doi.org/10.3390/jof10020155
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jof
https://www.mdpi.com
https://orcid.org/0000-0003-1592-3847
https://doi.org/10.3390/jof10020155
https://www.mdpi.com/journal/jof
https://www.mdpi.com/article/10.3390/jof10020155?type=check_update&version=2


J. Fungi 2024, 10, 155 2 of 16

NR (nitrate reductase)–NOFNiR (nitric-oxide-forming nitrite reductase)-dependent NO
synthesis pathway has been discovered in plants. In this process (NO3

− → NO2
− → NO),

NR mediates the transfer of electrons generated during the reduction of NO3
− to NO2

− to
the partner protein, mARC (mitochondrial amidoxime reducing component)/NOFNiR [20].
mARC/NOFNiR utilizes the electrons received from NR to reduce NO2

− to NO, and this
electron transfer is a key step in this NO synthesis pathway [20,21].

NO production has also been observed in prokaryotic bacterial cells [22,23]. Bacterial
NO is generated via nitrite (NO2

−) reduction by nitrite reductase during denitrification
and via ammonia (NH3) oxidation by hydroxylamine (NH2OH) oxidoreductase [24,25]. In
addition, regions homologous to mammalian NOS oxygenase domains have been found
in the genomes of many bacteria, and bacterial NOS can mediate arginine oxidation to
produce NO [26–29]. In bacterial cells, endogenous NO regulates pathogenicity, toxin
biosynthesis, and morphological differentiation [28,30].

Compared with other organisms, fungi have received less attention with respect to
endogenous NO production and function [2]. In recent years, there has been an increase in
experimental data demonstrating that fungi can produce endogenous NO, which may be
involved in fungal physiology, cell differentiation, and pathogenicity regulation [2,31,32].
NO appears to be a universal signaling molecule conserved in organisms of all kingdoms.
However, the biosynthetic pathways and functions of endogenous NO in fungal cells are
not fully understood [2,31]. Fungi exhibit species diversity and functional complexity,
which may lead to various aspects of NO production and function [33,34]. In this review,
we summarize the findings of studies on the functions and mechanisms of NO production
in various fungi. Endogenous NO is likely to be a universal signaling molecule that is well
conserved in all organisms. To understand the universal and conserved roles and fate of
NO in prokaryotic and eukaryotic cells, it is important to review the current literature.

2. Fungal Endogenous NO Generation and Removal

The details of NO biosynthesis within fungal cells have not yet been clearly elucidated.
In fungal genomes, gene sequences that are highly homologous to mammalian NOS are
rarely found. However, NOS-like activity has been observed in fungal cells through
measuring enzyme activity or using mammalian NOS enzyme inhibitors [2,32]. Like plants,
fungi are likely to have NOS-independent mechanisms for NO biosynthesis, such as nitrite
reduction by nitrite reductase during denitrification. However, the different molecular
structures of the putative NOS proteins and other NOS-independent mechanisms indicate
that further studies should be performed to better understand NO biosynthesis in fungi.

2.1. Arginine-Dependent NO Formation

L-Arginine can be oxidized to L-citrulline and NO via NOS [35]. NOS-mediated
NO synthesis is well characterized in mammalian cells [5]. Enzymes homologous to
mammalian NOS have been found in plant, bacterial, and fungal genomes; however,
they possess low sequence homology to mammalian NOS [18,22,32]. The involvement
of NOS in NO synthesis in fungi has been examined by measuring biochemical enzyme
activity and inhibiting enzyme activity (Table 1), where enzyme activity was assessed by
determining the L-arginine to L-citrulline rate of conversion [36–47]. NO synthase activity
can reach 500 pmol/mg/min in the fruiting bodies of Flammulina velutipes [37], whereas it
is only 3 and 18 pmol/mg/min in the mycelia of Phycomyces blakesleeanus and Neurospora
crassa, respectively [48]. Mammalian NOS inhibitors such as L-NAME (NG-nitro-L-arginine
methyl ester), L-NMMA (NG-methyl-L-arginine acetate salt), L-NNA (Nw-nitro-L-arginine),
and AG (aminoguanidine) reduce intracellular NO levels, indicating the involvement of
NOS in NO synthesis [36,38,42,45,48–54]. In several fungi, NOS-dependent NO production
only occurs under specific environmental conditions. For example, intracellular NO levels
in Pleurotus eryngii var. tuoliensis increase along with NOS activity under heat stress [53].
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Table 1. Mechanisms for NO synthesis in fungi.

Fungus Mechanism for NO Synthesis Experiments for Testing Mechanisms Reference

Aspergillus nidulans
NOS dependent NOS-like enzyme activity was measured. [45]

NO2
− dependent NR enzyme activity was measured. [55]

Blastocladiella emersonii NOS dependent NOS-like enzyme activity was measured. [40]

Blumeria graminis NOS dependent Enzyme activity was inhibited by NOS inhibitors. [51]

Colletotrichum coccodes NOS dependent Enzyme activity was inhibited by NOS inhibitors. [49]

Coniothyrium minitans NOS dependent NOS-like enzyme activity was measured. [41]

Enzyme activity was inhibited by NOS inhibitors. [50]

Cylindrocarpon tonkinense NO2
− dependent

Nitrite reductase was expressed and purified.
Enzyme activity (NO2

− reduction to NO)
was measured.

[56]

Flammulina velutipes NOS dependent
NOS protein was purified using column
chromatography, and activity of purified NOS
enzyme was measured.

[37]

Fusarium graminearum NO2
− dependent Identification of protein that may possibly induce

NR enzyme expression. [57]

Fusarium oxysporum NO2
− dependent

Nitrite reductase was expressed and purified.
Enzyme activity (NO2

− reduction to NO)
was measured.

[58]

Ganoderma lucidum NO2
− dependent NR gene was silenced, and activity of NR

was inhibited. [59]

Inonotus obliquus NOS dependent Enzyme activity was inhibited by NOS inhibitors. [52]

Inonotus obliquus co-cultured
with Phellinus morii NOS dependent

Enzyme activity was inhibited by NOS inhibitors
in I. obliquus.
Genes homologous to constitutive and inducible
mammalian NOS were identified, and inducible
NOS was expressed in I. obliquus during co-culture.
Cloned inducible NOS showed enzyme activity.

[42]

Macrophomina phaseolina NOS dependent
Enzyme activity was inhibited by NOS inhibitors,
and gene homologous to mammalian NOS
was identified.

[54]

Neurospora crassa
NOS dependent Enzyme activity was inhibited by NOS inhibitors. [48]

NOS dependent NOS-like enzyme activity was measured. [44]

Phycomyces blakesleeanus NOS dependent NOS-like enzyme activity was measured and
inhibited by NOS inhibitors. [38]

Pleurotus eryngii var. tuoliensis NOS dependent Enzyme activity was inhibited by NOS inhibitors. [53]

Preussia sp. BSL-10 NOS dependent
NO2

− dependent
Genes encoding NOS-like protein, nitrate
reductase, and nitrite reductase were expressed. [60]

Saccharomyces cerevisiae

NOS dependent NOS-like enzyme activity was measured. [39]

NOS dependent

Constitutive NOS-like protein was detected by
Western blot.
Activity of NOS was measured and inhibited by
NOS inhibitors.

[36]

NO2
− dependent Nitrite reduction to NO by mitochondrial

cytochrome c oxidase under hypoxia condition. [61]
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Table 1. Cont.

Fungus Mechanism for NO Synthesis Experiments for Testing Mechanisms Reference

Shiraia sp. Slf14 NOS dependent
NO2

− dependent

Genes homologous to constitutive and inducible
mammalian NOS were identified.
Cloned inducible NOS showed higher enzyme
activity and gene expression under heat stress.
Expression of inducible NOS and NR was elevated
under heat stress.

[62]

Transcription level and activity of NOS and NR
were elevated. [46]

Trichophyton rubrum NOS dependent NOS-like enzyme activity was measured. [43]

A fungal genome analysis has revealed that NOS-like genes with high sequence ho-
mology to mammalian NOS are rarely found in the fungal genome. However, in some
recent studies, NOS proteins were purified from F. velutipes and S. cerevisiae using affinity
chromatography [36,37], and NOS genes were identified in the genomes of Shiraia sp. Slf14,
M. phaseolina, and I. obliquus [42,54,62]. Fungal NOSs have a degree of homology or func-
tional similarity to mammalian NOS but may differ significantly in structure, regulation,
and substrate specificity [32,63]. In fungi, NOS-like enzymes are highly regulated and
influenced by various environmental factors, including changes in oxygen and cofactor
levels [32]. In Aspergillus nidulans, the addition of L-arginine to liquid culture media induces
a burst of intracellular NO, a process that is inseparable from the action of NOS [45]. NO
production was controlled by the level of the available L-arginine in the cell, which was
regulated by mobilization from the vacuole, not by the urea cycle [45].

2.2. Nitrite (NO2
−)-Dependent NO Formation

In eukaryotes such as plants, microalgae, and mammals, NO can be synthesized
via nitrite (NO2

−) reduction through catalysis of the mitochondrial amidoxime-reducing
component (mARC), also referred to as nitrite reductase [20,21,64,65]. All mARC enzymes
need a partner protein with reducing power, for which plant mARC uses nitrate reductase
(NR) [20,21]. In plants and microalgae, NO is produced during nitrate (NO3

−) assimilation;
NO3

− taken up into the cell is reduced to NO2
− by the action of nitrate reductase (NR),

a partner protein of mARC, and further reduced to NO through the catalysis of mARC,
also referred to as nitric-oxide-forming nitrite reductase (NOFNiR), finally converting
to ammonium [20,21]. In prokaryotic bacteria, NO is generated during denitrification
(NO3

− → NO2
− → NO → N2O → N2), an anaerobic respiration process in which electrons

from the mitochondrial respiratory chain are transferred to nitrogen oxides (the final
electron acceptors), leading to reduction of NO3

− and NO2
− ultimately to N2 [66]. During

this process, NO is generated from NO2
− reduction through catalysis of nitrite reductase

(NiR), which is homologous to mARC [66].
Similar to bacteria, fungi produce NO during the denitrification process [67–69].

Electrons from the respiratory electron transport chain are transferred from donor molecules
to NO3

− through NR catalysis, leading to the reduction to NO2
− (2NO3

− + 2H+ + 2e− →
2NO2

− + H2O) and then to NO2
− through NiR catalysis, leading to the reduction to NO

(2NO2
− + 2H+ + 2e− → 2NO + H2O) [58,69–74]. The involvement of NR in fungal NO

production has been experimentally demonstrated in several fungi (Table 1). F. graminearum
senses host signals and triggers NR-dependent NO production during the infection of
plant roots [57]. Meanwhile, the produced NO can also directly or indirectly regulate
the expression of genes related to fungal virulence and development by regulating the
transcriptome [57]. In A. nidulans, the NR gene, niaD, is essential for NO production from
the vegetative to early developmental stages [55]. G. lucidum can also produce NO via
NR with methyl jasmonate induction [59]. In the endophytic fungus Shiraia sp. Slf14, NR
activity and expression are enhanced by an increase in L-arginine levels, promoting NO
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production [46]. Nitrite reductase (NiR) genes, homologs of mARC, have been identified
in many fungi, including C. tonkinense (NirK) [68], F. oxysporum (NirK and Cu-NiR) [58,68],
Pisolithus sp.1 (NiR) [75], M. phaseolina (EKG10021.1) [64], and A. niger (CAK45930.1 and
SPB51236.1) [64]. Fungal NiR is associated with the mitochondrial respiratory electron chain
and structurally similar to copper-containing NirK (NiR) in bacteria [58]. The involvement
of fungal NiR in NO production has been demonstrated based on the upregulation of NiR
transcripts in the Preussia sp. BSL-10 [60] and purification of the enzyme and measurement
of its activity in C. tonkinense and F. oxysporum [56,58,68]. In S. cerevisiae, NO2

−-dependent
NO production occurs only under hypoxic conditions [61]. This may be because NR
and NiR expression and activity are upregulated during denitrification under hypoxic
conditions, as observed in F. oxysporum [76].

Although NO2
−-dependent NO generation is closely associated with respiratory pro-

cesses, non-respiratory NO formation has also been observed in fungi. When F. graminearum
infects a plant root, NO is generated within fungal cells during host recognition prior to
contact with the plant root, and host signals seem to trigger the expression of NR [57].

2.3. Other NO Formation Pathways and Regulation of NO Homeostasis in Fungi

Studies show that fungal NO can be produced through non-enzymatic processes. In
the rice blast fungus Magnaporthe oryzae, the deletion of NOS, NR, and NiR genes does
not affect NO production [77]. This indicates that other enzymatic or non-enzymatic NO
generation may be possibly present in fungi. Non-enzymatic nitrite (NO2

−) conversion
to NO can be promoted under an acidic environment (2 HNO2 ↔ NO + NO2 + H2O ↔
2NO + 2O2 + H2O) [78]. There is no evidence of non-enzymatic NO production by fungi
to date. However, non-enzymatic NO production has often been observed in the human
stomach, oral cavity, skin surface, urine, and plant cytoplasmic apoplasm [78–80]. This
may be because the pKa of nitrite is approximately 3.2, and the pH values in these areas
are <4.5, which is suitable for non-enzymatic NO formation [78,79].

NO, a radical, generates dual effects on a cell depending on its intracellular levels.
It can act as a signaling molecule at low concentrations and display cytotoxic effects at
high concentrations [2,81]. NO can be used as a defense tool for killing pathogens in
animal and plant cells and can also act beneficially as a signaling molecule in regulating
various cellular processes such as development, vasoconstriction, reproduction, and stress
regulation [82–85]. NO homeostasis is therefore important for maintaining the optimal
vitality in organisms, including fungi.

NO homeostasis can be accomplished by biosynthesis, and metabolism or removal
of NO. Fungi have developed effective mechanisms for NO detoxification and removal
toward reducing the cytotoxicity caused by an excessive accumulation of endogenous
NO. Regarding the fate of NO produced in fungal cells, there are three alternatives. First,
NO can be further reduced to N2O via catalysis of nitric oxide reductase (Nor), a type of
cytochrome P450, during the denitrification process [2,69,86]. This mechanism has been
demonstrated in the genera Fusarium, Trichoderma, and Guehomyces [31]. Secondly, NO
can be converted to less toxic NO3

− via catalysis of flavohemoglobin NO deoxygenases
(FLVs/FHBs) [2,87,88]. The ability of FHB to scavenge NO has been demonstrated in a
variety of fungi [2,89–91]. Finally, NO can be scavenged by reacting with a cysteine-rich
peptide together with S-nitrosoglutathione (GSNO) to generate an S-nitrosated peptide,
and the S-nitrosated peptide is denitrosated by S-nitrosoglutathione (GSNO) reductase to
be less toxic, as demonstrated in A. nidulans [2,69,92].

3. Function of Endogenous NO and NO Signaling in Fungi
3.1. Growth and Development Regulation

Cellularly produced NO is implicated in the regulation of various aspects of fun-
gal growth and development, such as hyphal extension, sporulation, and differentiation
(Table 2) [31,32]. Furthermore, it can act as a signaling molecule in developmental pro-
cesses [81,93]. In Pleurotus ostreatus (edible mushrooms), NO negatively regulates the rate
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of primordium formation by inhibiting the expression and enzymatic activity of mitochon-
drial aconitase, thereby reducing ATP production [94]. In A. nidulans, NO is produced
via NR, which is upregulated upon the induction of light-regulated conidiation, and also
catabolized by flavohemoglobins [55]. A balance between biosynthesis and catabolism of
NO results in NO homeostasis in fungal cells, and deviation from NO homeostasis can
serve as a cue for developmental processes [55]. Increases in NO levels reduce conidiation
and increase sexual development [55]. The balance between light-induced conidiation
(asexual reproduction) and sexual reproduction is influenced by intracellular NO levels
via regulating the expression of asexual and sexual developmental regulators [55,88]. A
light-dependent change in NOS activity (NO level) is not observed during the regulation
of photocarotenogenesis and photoconidiation, and use of NOS inhibitors enhances coni-
diation in N. crassa [44,48]. However, it was also reported in N. crassa that high levels of
intracellular NO are detected in conidiophores, and the transcription level of genes that
are highly expressed during conidiation is reduced upon intracellular NO scavenging [95].
Endogenous NO in N. crassa seems to promote hyphal growth, which may be related to
the elevated expression of mss-4 and gel-3, as demonstrated in recent studies [95,96]. Other
evidence of NO regulation during light-induced development has been demonstrated in
P. blakesleeanus [38]. In this fungus, light induces macrosporangiophore formation and
citrulline production from arginine, processes that are suppressed by NOS inhibitors. In C.
coccodes, NO was detected in germinating conidia and might regulate conidial germina-
tion [49].

Table 2. Endogenous NO function in fungi.

Category Fungus Function Reference

Growth and development

Aspergillus nidulans
Reduce conidiation and induce the formation
of cleistothecia [55]

Light regulation of conidiation [88]

Blastocladiella emersonii Controlling zoospore biogenesis [40]

Candida albicans Growth promotion and pathogenesis by
extracellular vesicles [97]

Colletotrichum coccodes Regulation of spore germination [49]

Coniothyrium minitans Nitric-oxide-mediated conidiation [41,50]

Neurospora crassa

Light-induced conidiation and carotenogenesis [44,48]
Regulate mycelial development and
conidia formation [95]

Impacting the growth and development of hyphae
(vegetative growth) [96]

Phycomyces blakesleeanus Light-induced development of sporangiophores [38]

Physarum polycephalum Sporulation [98]

Pleurotus ostreatus Primordia formation [94]

Puccinia striiformis f.sp. tritici Induce spore germination [99]

Response to stresses

Aspergillus fumigatus Effects of antifungal agent (farnesol) on germination [100]

Ganoderma lucidum Heat-stress-induced ganoderic acid levels [101]

Lentinula edodes and
Grifola frondosa

Tolerance to superoptimal pH and in
nitrogen limitation [102]

Pleurotus eryngii var. tuoliensis
Heat-stress-induced oxidative damage [53]
Heat-stress-induced trehalose accumulation [103]

Rhizophagus irregularis Enhanced host plant tolerance to low temperature
stress by regulating proline accumulation in plant [47]
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Table 2. Cont.

Category Fungus Function Reference

Saccharomyces cerevisiae

Cytoprotective effect from heat shock or high
hydrostatic pressure [104]

Hypoxia signaling [61,105]
H2O2-induced apoptosis [39]

Shiraia sp. Slf14(w) Heat-stress-enhanced perylenequinone biosynthesis [62]

Trichophyton rubrum Reduction in fungal viability by 420 nm intense
pulsed light [43]

Metabolism

Aspergillus nidulans Mycotoxin production [106]

Ganoderma lucidum Methyl-jasmonate-induced ganoderic
acid biosynthesis [59]

Inonotus obliquus Biosynthesis of antioxidant polyphenols,
accumulation of antioxidant phenolic constituents [52]

Inonotus obliquus and
Phellinus morii

Increase in level of styrylpyrone polyphenols in
fungal interspecific interaction [42]

Neurospora crassa
Cellulolytic enzyme production [107]
Carbohydrate and amino acid metabolism [96]

Preussia sp. BSL-10 Improve rice plant growth and related
gene expression [60]

Shiraia sp. S9 Hypocrellin A production [108,109]

Shiraia sp. Slf14(w) Production of secondary metabolite
perylenequinone [46,62]

Virulence and pathogenicity

Aspergillus nidulans Mycotoxin production [106]

Blumeria graminis Influences formation of the appressorium
infection structure [51]

Botrytis cinerea Saprophytic growth and plant infection [110]

Botrytis elliptica Induction of programmed cell death in lily [111]

Fusarium graminearum Host recognition and virulence [57]

Magnaporthe oryzae

Drives plant infection (delays germling
development and reduces disease lesion numbers) [77]

Conidial germination and appressorium formation
(infectious morphogenesis) [112]

Studies have also demonstrated an association between cyclic guanosine monophos-
phate (cGMP), a downstream molecule generated by NO in mammalian cells, and endoge-
nous NO in fungi. In the aquatic fungus B. emersonii, the intracellular NO levels increase
during sporulation and are reduced by the addition of an NOS inhibitor. Furthermore,
cGMP inhibition prevents zoospore generation [40]. In addition, calcium ions are required
for NOS activity [40]. This suggests that the Ca2

+–NO–cGMP signaling pathway, in which
NO is synthesized by the mediation of NOS and calcium ions, induces cGMP production,
eventually impacting the regulation of zoospore biogenesis. A close association between
NOS activity and cGMP levels has also been demonstrated in C. minitans, a sclerotial
parasite of the plant pathogenic fungus Sclerotinia sclerotiorum. In C. minitans, L-arginine
drives the formation of endogenous NO through NOS, and NO mediates conidia for-
mation [41,50]. In NO-mediated conidiation, cGMP functions as a secondary messenger
through the NO–sGC (guanylate cyclase)–cGMP signaling pathway [41]. The pathogenic
fungus C.albicans can promote its own growth by secreting extracellular vesicles (EVs),
finally enhancing pathogenesis [97]. L-Arginine is found to be a key factor in the EV
promotion of C.albicans growth, and EVs increase the NO level [97]. During the 5-day
starvation period needed to induce sporulation competence, NOS expression is strongly



J. Fungi 2024, 10, 155 8 of 16

upregulated in macroplasmodia of Physarum polycephalum, and sporulation competence
was inhibited by NOS inhibitors(l-N6–(1-iminoethyl)-lysine (NIL)), indicating the involve-
ment of endogenous NO in sporulation competence [98]. Furthermore, endogenous NO
can also regulate fungal growth and development by regulating reactive oxygen species
(ROS) levels. During development of a pre-infection state in Puccinia striiformis Westend
f.sp. tritici (Pst) (the wheat stripe rust pathogen), NO and ROS serve as key signaling
molecules to regulate the polar growth of germ tubes [99]. In C. albicans, EVs reduce the
intracellular ROS and cell apoptosis by upregulating the expression of the NO dioxygenase
gene YHB1 [97].

3.2. Response to Stressors

NO acts as a signaling molecule in the fungal response to stress by regulating stress-
related gene expression and contributing to cellular defense mechanisms against stress-
induced damage (Table 2). Under heat stress, endogenous NO can resist oxidative damage by
regulating trehalose accumulation, as has been observed in P. eryngii var. tuoliensis [53,103]. In
G. lucidum, the polyamine putrescine alleviates heat shock stress by modulating intracellular
NO accumulation, which influences cellular glutamine levels [101]. In addition, researchers
found that the expression of a newly discovered gene encoding an inducible NOS-like
protein (iNOSL) in Shiraia sp. Slf14(w) was significantly increased by heat stress treatment,
thereby producing more endogenous NO, and NO can promote the biosynthesis and release
of perylenequinones (PQs) [62]. Similarly, under heat shock, high hydrostatic pressure, and
hypoxia, there was significantly increased levels of endogenous NO, a response signaling
molecule, resulting in the protection of S. cerevisiae cells during stress [104,105]. The pH
value also has an impact on NO concentration. At pH 3.0, there is a decrease in NO content
in the culture media of L. edodes and G. frondosa [102]. At pH 10.0 (alkaline medium), the
NO content increases significantly [102], although it did not change under temperature
stress, carbon stress, and nitrogen stress [102]. This seems to imply that NO changes
differently under the influence of varied stress factors. In S. cerevisiae, NO2

− dependent NO
synthesis is induced by the catalysis of cytochrome c oxidase in mitochondria, regulating
the expression of hypoxia-related genes when cells are exposed to hypoxic conditions [61].
H2O2 (oxidative stress)-induced apoptotic S. cerevisiae cells synthesize NO through nitric
oxide synthase (NOS)-like activity, and NO mediates GAPDH S-nitrosation, leading to
cell death during the chronological lifespan [39]. After stimulation with 420 nm intense
pulsed light (IPL), the levels of nitric oxide synthase (NOS) and NO increase, while there
are decreases in the intracellular levels of asymmetric dimethylarginine (ADMA), a natural
compound structurally similar to L-arginine that acts as an inhibitor of NOS, along with
keratinase activity, and fungal growth in T. rubrum [43]. Upon exposure to antifungal
agents, A. fumigatus responds by increasing NO production in the exposed hyphae [100].
Interestingly, the arbuscular mycorrhizal fungus R. irregularis can enhance rice NR and NOS
activity, increase intracellular NO accumulation in symbionts, and improve the tolerance of
rice plants to low-temperature stress by regulating proline metabolism [47]. In conclusion,
the different responses triggered by NO in fungi may be related to the different nature of
the stress.

In contrast, exogenous NO addition increases the stress tolerance capacity of the
fungus. The addition of an NO-producing chemical (sodium nitroprusside, SNP) can
improve the resistance of P. eryngii var. tuoliensis and Ganoderma oregonense under high-
temperature stress [53,113]. Under metal stress (Cu2

+ or Cd2
+), the addition of exogenous

NO exerts a protective effect on S. cerevisiae and P. eryngii [114,115].

3.3. Metabolism Regulation

NO regulates multiple metabolic pathways in fungi, including energy, nitrogen, and
secondary metabolite production (Table 2). Many fungal secondary metabolites have
been used in medicine, agriculture, and industry, including penicillin (antibiotics from
Penicillium), cephalosporins (antibiotics from Acremonium and Cephalosporium), taxanes
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(anticancer compounds from endophytic fungi), and industrially useful enzymes, such
as cellulase, amylase, and flavor/aroma compounds [116]. In the endophytic fungus Shi-
raia sp. Slf14(w), endogenous NO derived from arginine serves as a signaling molecule
and can regulate the biosynthesis of secondary metabolite perylenequinones (antimicro-
bial, anticancer, and antiviral photodynamic therapy agents) via the NO–cGMP–protein
kinase G (PKG) signaling pathway [46,62]. In G. lucidum, NR-dependent endogenous
NO production increases methyl-jasmonate-induced biosynthesis of ganoderic acid, an
important secondary metabolite [59]. In extractive Shiraia fermentation, elevated levels
of endogenous NO significantly increase and regulate the expression of hypocrellin A, a
new photosensitizer for anticancer photodynamic therapy [108]. NO is involved in the
expression of biosynthetic genes, monooxygenase (Mono), polyketide synthase (PKS), and
O-methyltransferase (Omef), which are involved in hypocrellin A production, and upregu-
lates the expression of transporter genes, major facilitator superfamily (MFS) members, and
the ATP-binding cassette (ABC) for hypocrellin A exudation [108]. In addition, the addition
of an NO donor (sodium nitroprusside) increases hypocrellin A content in the mycelium
by increasing intracellular NO levels [109]. Similar results were found in A. nidulans, where
the addition of exogenous NO increases mycotoxin production [106]. Endogenous NO also
mediates the biosynthesis of antioxidant polyphenols, including inoscavins, phelligridins,
davallialactone, and methyldavallialactone [52]. These active substances can be used to
treat human diseases caused by oxidative stress, such as cancer, hypertension, neurodegen-
erative diseases, and autoimmune diseases [52,117]. In N. crassa, intracellular NO is actively
involved in cellulase production, and cAMP participates in this regulatory effect [107].
An N. crassa transcriptome analysis demonstrates that endogenous NO regulates carbo-
hydrate and amino acid metabolism, including pentose and glucuronate interconversion
as well as fructose, mannose, galactose, amino and nucleotide sugar, arginine, proline,
and tyrosine metabolism [96]. Preussia sp. BSL-10, an endophytic fungal strain that pro-
duces endogenous NO, indole-3-acetic acid (IAA), and gibberellins (GA4, GA7, GA15, and
GA53), promotes edge crop growth and yield [60]. NO biosynthesis has been validated
through RT-PCR based on the expression of ent-desaturase oxidase (P450-4), GA14 synthase
(P450-1), nitrite reductase (NIRK/NIRS), cytochrome P450 (P450nor), nitrate reductase
(NR), NOS-like (NOL) activity, and nitric oxide reductase (QNOR/CNOR) [60]. However,
it is unclear whether the production of plant hormones is related to the production of
NO [60]. In a co-culture of I. obliquus and P. morii, the biosynthesis of phenylpropanoids
that have antioxidant, anti-inflammatory, antidiabetic, antitumor, and antiviral properties
is enhanced, and endogenous NO participates in fungal interspecies interactions [42]. The
co-culture of the two fungi triggered the expression of a gene encoding inducible NOS-like
protein (iNOSL) in the genome of I. obliquus. iNOSL is more responsible for NO produc-
tion in I. obliquus and may serve as important regulators controlling phenylpropanoid
production during fungal interspecies interactions [42]. NO biosynthesis is enhanced in
two co-cultured fungi, with the subsequent expression of phenylalanine ammonia lyase
(PAL) and 4-coumaric-acid–CoA ligase (4CL) and upregulation of styrylpyrone polyphenol
biosynthesis in I. obliquus [42].

3.4. Virulence and Pathogenicity

Pathogenicity refers to the ability of a microorganism to cause disease in a host organ-
ism. Virulence is a measure of the severity or harmfulness of a pathogen in damaging a host.
In pathogenic microorganisms, NO seems to play a role in both pathogenicity and virulence.
In bacteria, endogenous NO is known to regulate toxin biosynthesis and host infection [22].
Some fungi that are pathogenic can cause direct damage to tissues by extending their
hyphae into host cells or secreting toxins, and NO plays a role in regulating virulence and
interactions with the host organisms [77]. In the hemibiotrophic fungal pathogen M. oryzae,
endogenous NO regulates spore germination and appressorium formation during the initial
stages of infection, and NO removal by using cPTIO (a NO scavenger; 2-(4-carboxyphenyl)-
4,4,5,5-tetramethylimidazolin-1-oxy-3-oxide) significantly reduces the formation of barley
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(Hordeum vulgare) lesions [77]. In addition, one study demonstrated that genes encoding
enzymes involved in the arginine biosynthetic pathway are essential for pathogenicity in
M. oryzae [118]. However, the researchers stated that this NO is not generated through an
arginine-dependent pathway [118]. In the interaction between the plant host and fungal
pathogen, NO appears to be an important mediator for both plant defense and pathogen
escape. Because plants produce NO in response to pathogen attacks, pathogens should
protect themselves against damage induced by plant-generated NO. Metabolizing NO may
be a way for pathogens to escape NO-generated damage. In M. oryzae, S-(hydroxymethyl)-
glutathione dehydrogenase is involved in metabolizing NO by catalyzing the reduction
of S-nitrosoglutathione (GSNO) in the plant [112]. A fungal mutant in which this enzyme
is deleted shows increase in sensitivity to exogenous NO in a formaldehyde-containing
medium and decrease in both the turgor pressure of spores and appressoria and the toxicity
to rice plants, indicating that S-(hydroxymethyl)-glutathione-dehydrogenase-mediated NO
metabolism is critical for the virulence of M. oryzae [112]. The soil fungus F. graminearum
recognizes the host before making contact with host plant roots probably by generating
intracellular NO [57]. In a phytopathogenic fungus, B. graminis f.sp. hordei, intracellular NO
is a determinant of powdery mildew disease in barley, as it controls fungal appressorium
structure formation, thereby affecting host infection [51]. Fungal-pathogen-produced NO
can penetrate plant cells, causing host cell death owing to allergic reactions, and this may
facilitate the fungal colonization in plant tissue. In the necrotrophic pathogen B. cinerea,
NO is produced inside the germinating spores and mycelium and in the surrounding
medium in vitro [110]. Intracellular NO can diffuse outside the fungal cells, stimulating
the fungal colonization of plant tissues [110]. The fungal pathogen B. ellipsoidum induces
programmed cell death in lilies, and intracellular NO accumulation is observed in both
fungal pathogens and plant cells during infection [111]. Fungal-pathogen-produced NO
can cause nitrooxidative damage to fungal cellular components. However, a fungus can
reduce this stress damage, and this results in maintaining redox balance in infected plant
cells, leading to avoiding plant defense stimulation [119].

Endogenous NO production can also influence A. nidulans virulence via the regulation
of mycotoxin biosynthesis [106]. Mycotoxins seriously threaten human health, and ingest-
ing food contaminated with mycotoxins can cause acute or chronic toxicity to humans and
animals. NO increases the ability of Aspergillus to produce mycotoxins, which means that
NO increases the virulence of this fungus [106].

Although NO has been found to play a crucial role in various aspects of fungal
biology, including growth, development, stress response, virulence, pathogenicity, and
metabolism, the detailed regulatory mechanisms and downstream targets of NO in fungi
are still poorly characterized. cAMP appears to be a putative downstream target of NO in
fungi [40,41,46,107]. Endogenous NO can actively promote conidia formation and the
production of secondary metabolites in various fungi through the second messenger
cAMP [40,41,46]. Studies demonstrate that NO signaling may participate in crosstalk with
other signaling pathways, including calcium signaling, ROS signaling, and the mitogen-
activated protein kinase (MAPK) cascade [40,120]. Under heat stress, crosstalk between NO
and calcium–calmodulin regulates ganoderic acid biosynthesis in Ganoderma lucidum [120].
The Ca2

+–NO–cGMP signaling pathway was also found to be involved in zoospore biogen-
esis in the aquatic fungus Blastocladiella emersonii [40]. In C. minitans, the MAPK cascade
functions upstream of the NO signaling pathway in the conidiation process [121]. In addi-
tion, complex crosstalk between NO and ROS signaling pathways also exists in fungi. Both
ROS and NO are generated during pre-infection development of a pathogenic fungus, P.
striiformis f.sp. tritici, and participate in inducing spore germination [99]. A study demon-
strates that ROS can induce NO generation [122]. In Aspergillus flavus, ROS is involved
in a fungicide-induced fungal spore death through triggering NO generation, and the
addition of exogenous NO can induce spore death in fungal cells in which ROS production
is blocked [122]. In a mushroom fungus, Pleurotus ostreatus, intracellular NO generated
under heat stress causes the reduction in ROS accumulation in the cell by inducing the
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expression of an oxygenase that slows down cellular respiration, and this eventually leads
to enhancing fungal tolerance to heat stress [123].

4. Conclusions and Future Perspectives

Limited data are available on NO production and its function in fungal cells. Regard-
less, an increasing number of studies have demonstrated that NO is synthesized in fungal
cells and acts as a highly reactive signaling molecule that plays crucial roles in fungal
growth and development, metabolic control, virulence enhancement, and environmental
adaptation (Figure 1). NO is a universal intracellular regulator of biological functions in all
kingdoms of life. However, its biosynthetic pathways do not appear to be well conserved
among kingdoms. Compared to the functional analysis of endogenous fungal NO, there is
more controversy regarding the biosynthetic mechanisms for fungal NO because NOS with
high sequence homology compared to those of mammals, plants, and bacteria has rarely
been found in fungal genomes, and nitrite reduction is another mechanism for NO synthe-
sis. NOS-independent synthesis has also been observed in both plants and bacteria. There
may be some general mechanisms for NO synthesis that are well conserved among species,
but differences in the lifestyle of the species and environmental conditions can result in
the generation of various mechanisms. NO can be generated as a byproduct of cellular
metabolic pathways, such as mitochondrial respiration and denitrification processes as
well as other non-enzymatic reactions. The NO of some plant species is produced via these
pathways. This can also be a future research subject for elucidating fungal NO biosynthesis
pathways. The production and function of endogenous NO remain poorly understood in
fungi, and future studies are required to establish the details of NO biology conservation in
all kingdoms of life.
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