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Abstract: Metastasis is one of the leading causes of cancer-related deaths. A comprehensive com-
parison of the differences between primary and metastatic cancers within the same organ can aid in
understanding the growth mechanisms of cancer cells at metastatic sites, thereby helping to develop
more effective targeted treatment strategies. Primary liver cancer is one of the most common types of
cancer, and the liver is also one of the main metastatic sites. In this paper, we utilize single-cell RNA-
Seq data to compare primary liver cancer and colorectal liver metastases from multiple perspectives,
including cell types and proportions, activity of various cell types, cell–cell communication, mRNA
expression differences within the same types of cells, key factors associated with cell proliferation, etc.
Our analysis results show the following: (i) Compared to primary tissue, metastatic tissue contains
more cytotoxic T cells and exhausted T cells, and it retains some specific characteristics of the primary
site. (ii) Cells of the same type exhibit functional differences between primary and metastatic cancers,
with metastatic cancer cells showing lower metabolism levels and immune cells exhibiting stronger
immune activity. (iii) Interactions between monocytes and hepato-associated cells are strong in
primary cancer, while depleted T cells frequently communicate with hepatocytes in metastatic cancer.
(iv) Proliferation-related genes in primary and metastatic cancers are mainly involved in cell energy
supply and basic metabolism activity, respectively.

Keywords: metastatic liver cancer; single-cell RNA-Seq; cell proliferation; comprehensive comparison

1. Introduction

Metastatic cancer is cancer that has spread from where it started to another distant
organ(s), where cancer cells grow uncontrollably, and this is the primary cause of death
for 90% of patients with cancer [1,2]. Despite metastasis being the key cause of the failure
of cancer therapy, and of mortality, its relevant mechanisms remain poorly understood.
It is obvious that there are fundamental differences in the tumor microenvironment and
growth drivers between metastatic cancer and primary cancer [3,4]. Therefore, through
comprehensive comparative analysis, we can understand their differences and progression
mechanisms at the molecular level, which is conducive to assisting in the treatment of
metastatic cancer by halting cancer cell growth [5].

Uncontrolled cell proliferation is one of the most prominent characteristics of cancers.
Existing studies have suggested differences between primary and metastatic cancers in
the drivers promoting cell proliferation and their mechanisms [6]. Primary cancer grows
at the site where the tumor first occurs, while metastatic cancer forms after cancer cells
migrate from the primary tumor site to other tissues or organs. This means that metastatic
cancer needs to adapt to a new growth environment, including different cell types, matrices,
and growth factors [7,8]. Compared to primary cancer, metastatic cancer cells usually
have a stronger invasiveness and migration ability. This enables them to penetrate the
basement membrane, enter blood vessels or the lymphatic system, and form new tumors
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at sites distant from the primary tumor [9,10]. Moreover, metastatic cancer cells may
be more prone to developing drug resistance than primary cancer cells. This may be
due to the selection pressure experienced by metastatic cancer cells in the new growth
environment, leading them to develop resistance to treatment [11]. Regarding intratumoral
heterogeneity, there are significant differences between primary and metastatic cancers,
which means that they have different biological characteristics, affecting the choice and
effectiveness of treatment strategies [12,13]. Although existing clinical observations and
computational experiments have demonstrated that there are differences in the tumor
microenvironment between metastatic and primary cancers, most of them have focused on
the differences in a specific protein or molecular component, or compared one tumor at
its primary and metastatic sites. For example, Bernardo Cacho-Díaz compared the tumor
microenvironment between primary lung and breast cancers and their brain metastases,
obtaining results on the establishment of tumor cells in neuronal ecological niches, the
upregulation of the expression of several proteins and miRNAs, mutations, and specific
epigenetic changes [14]. Mariya Rozenblit et al. conducted a comparison of the PD-
L1 protein between primary tumors and metastatic lesions of breast cancer, indicating
differences in the immune microenvironment at the metastatic site [15]. In sum, primary and
metastatic cancers may be fundamentally driven by different biological and environmental
stresses. Primary cancer may be influenced by the local tissue environment, while metastatic
cancer needs to cope with challenges in the new growth environment, such as the immune
system, hypoxia, and nutrient supply [16,17]. Therefore, we planned to compare primary
and metastatic cancers occurring in the liver to clarify the biological differences between
the two.

Compared to bulk omics data, single-cell high-throughput sequencing technologies
provide a more detailed and nuanced view of biology, allowing researchers to explore
the complexity of life at the level of individual cells [18]. This provides a much higher
resolution of cellular differences and a better understanding of the function of an individual
cell in the context of its microenvironment, allowing for the study of heterogeneity within a
cell population and the identification of new cell types in cancer tissues [19,20]. Moreover,
single-cell analysis can help us to understand how cells interact with one another, which
is important in many biological processes, including development, homeostasis, and
disease [21].

In this study, considering that primary liver cancer is one of the most common types
of cancer, and that the liver is also one of the main metastatic sites, we collected scRNA-
Seq data for four sets of metastatic liver cancer from the colon and four sets of primary
liver cancer to comprehensively compare the differences between primary and metastatic
cancers. We first compared the differences in cell composition between metastatic cancer
and primary cancer, which were determined by single-cell clustering and annotation. On
this basis, we conducted a comparative analysis of the communication between various
types of cells in metastatic and primary cancers, especially between liver cells and various
immune cells, which is helpful to reveal the mechanisms of tumor immunosuppression
and immune escape, and to assist with targeted immunotherapy. Furthermore, at a fine-
grained level, we analyzed the gene expression differences of the same cell types in primary
and metastatic cancer tissues to explore their substantial changes in cell state in different
microenvironments. Considering batch effects among different datasets, we developed
a rank-based differential expression analysis method to make the gene expression of
different samples comparable. Furthermore, uncontrolled cell proliferation is an important
characteristic of cancer for both primary and metastatic cancers, but, due to differences in
the microenvironment, we suspect that the driving forces of cell proliferation are different.
Hence, we separately selected and then compared the genes that were highly correlated
with the cell proliferation level in each group to infer the drivers promoting cell proliferation.
Overall, we made an extensive comparison between metastatic and primary cancers from
multiple scales and perspectives and analyzed their differences, which helped us to better
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understand the mechanism of cell proliferation of metastatic cancer and provided new
insights into more effective treatments for both primary and metastatic cancers.

2. Materials and Methods
2.1. Overview

In this study, we planned to investigate primary and metastatic liver cancer from four
aspects: cellular composition, cellular communication, cellular function, and cellular prolif-
eration drive, as shown in Figure 1A. We hoped to obtain the differences in cell composition
and content between primary and metastatic cancers through the integrated analysis of cell
annotation tools such as Gene Set Enrichment Analysis(GSEA) [22], the activity of these
regulons is quantified via an enrichment score for the regulon’s target genes( AUCell) [23],
and single cell Cluster-based Annotation Toolkit for Cellular Heterogeneity(scCATCH) [24],
as shown in Figure 1B. Following this, we planned to use CellPhoneDB to distribute the
communication of each part of the cells as in Figure 1C. We also paid attention to cell
proliferation genes in tumor tissues. Gene set variation analysis (GSVA) was used to
calculate the enrichment scores of each cell in the “KEGG_DNA_REPLICATION” and
“KEGG_CELL_CYCLE” pathways, and Pearson correlation coefficients were used to select
the highly relevant genes as shown in Figure 1D. In the two types of tumors, although the
same type of cells are bound to have differences in specific functions, we planned to obtain
differential genes through rank-based differential analysis., as in Figure 1E. Analysis based
on a single gene made it difficult to reflect biological characteristics. To explore the function
of feature genes, we conducted Gene Ontology Biological Process(GO:BP) [25] and Kyoto
Encyclopedia of Genes and Genomes(KEGG) [26] enrichment analysis for proliferation-
related genes and differential genes of various parts to obtain the specific functions of these
feature genes, as shown in Figure 1F. The specific processes and tools are shown in Figure 1.

2.2. Data Collection and Processing

We collected scRNA-Seq data for four sets of metastatic liver cancer from the colon and
four sets of primary liver cancer from the Gene Expression Omnibus (GEO) [27] database,
respectively. This provides a total of 44 samples and 133,129 cells (as shown in Table 1).

Table 1. Summary of scRNA-Seq data for metastatic and primary liver cancer.

GSE Number of Samples Number of Cells

Metastatic

GSE178318 6 40,170
GSE225857 2 8482
GSE158692 6 4587
GSE164522 17 34,995

Primary

GSE149614 9 20,762
GSE166635 2 13,696
GSE188289 1 1410
GSE210679 1 9027

Total 8 44 133,129

To obtain high-quality gene expression data for downstream analyses, we first re-
moved the following genes and cells: (i) genes that express in less than 3 cells and (ii) cells
that have less than 200 genes. According to the distribution of each group of datasets,
cells containing an excess of mitochondrial genomes, ribosomal genomes, or red blood cell
genes were excluded. For datasets containing multiple GEO Samples(GSM), we used the
harmony [28] algorithm to avoid the batch effect by correcting and integrating multiple
sets of data.
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Figure 1. Overview of our study. (A): We mainly carry out four studies on metastatic liver cancer 
and primary liver cancer: cell type and content, cell communication, cell function, and cell prolifer-
ation. (B): Cell annotation is completed using GSEA, AUCell, and scCATCH paired with a priori 
gene sets included in scCatch. (C): CellPhoneDB is used to calculate the communication strength of 
various types of cells. (D): GSVA calculates the enrichment of genes in the tissue in proliferation-
related pathways and then we select genes with high Pearson correlation coefficients. (E): Differen-
tial analysis of similar cells in two tumor types uses a rank-based approach. (F): The proliferation-
related genes and cell differential genes selected in Figures (D,E) are enriched in the GO:BP and 
KEGG databases. PL: primary liver cancer. ML: metastatic liver cancer. 
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Figure 1. Overview of our study. (A): We mainly carry out four studies on metastatic liver cancer and
primary liver cancer: cell type and content, cell communication, cell function, and cell proliferation.
(B): Cell annotation is completed using GSEA, AUCell, and scCATCH paired with a priori gene sets
included in scCatch. (C): CellPhoneDB is used to calculate the communication strength of various
types of cells. (D): GSVA calculates the enrichment of genes in the tissue in proliferation-related
pathways and then we select genes with high Pearson correlation coefficients. (E): Differential analysis
of similar cells in two tumor types uses a rank-based approach. (F): The proliferation-related genes
and cell differential genes selected in Figures (D,E) are enriched in the GO:BP and KEGG databases.
PL: primary liver cancer. ML: metastatic liver cancer.

In addition, “NormalizeData” was employed for normalizing the data to make ex-
pression of the same gene comparable among different samples. “FindVariableFeatures”
in Seurat (v4) [29] was used to identify highly variable genes, and then the “ScaleData”
function was applied to standardize the data.

2.3. Dimension Reduction and Cell Type Annotation

Based on normalized and standardized data, we further used principal component
analysis (PCA) [30] on the top 2000 highly variable genes to reduce the dimensions for
better clustering and visualization. The ‘FindNeighbors’ and ‘FindClusters’ functions were
used for automatic clustering analysis.

To determine the cell type of each cluster more accurately and robustly, we proposed to
perform an ensemble analysis by simultaneously using the GSEA, scCATCH, and AUCell
methods. GSEA and scCATCH were used as the main methods for predicting cell types.
Due to that the basic principles of these two cell annotation approaches being different, their
cell annotation results may inevitably be inconsistent. For the cell cluster with conflicting
results, AUCell was utilized to calculate the activity level of the signature gene set in the
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two cell types, and the cell type with the higher activity of the signature gene set was taken
as the final annotation result of the cluster.

ScCATCH contains 20,792 marker genes from 2097 references, including 184 tissue
types, 353 cell types, and 686 cell subtypes. In our study, we employed 49 cell types
from human liver and colorectal cancer tissues in scCATCH as prior information for cell
annotation. The “findcelltype” function within the scCATCH package was used to assign
cell types to each cell cluster. In GSEA analysis, the “fgsea” function in the fgsea package
was utilized to perform bioprocess enrichment analysis on the set of marker genes in
each cell cluster relative to the individual cell type in the a priori set of genes. The cell
type with the highest NES (normalized enrichment score) was selected as the annotation
result for the cell cluster. When using AUCell for final annotation decision row selection,
the “AUCell_buildRankings” function in the AUCell package was first used to rank gene
expression, and then the “AUCell_calcAUC” function was applied to score the cells based
on the a priori gene sets of genes to determine the cell type.

2.4. Rank-Based Differential Expression Analysis

To capture the molecular difference between primary and metastatic cancers at the
cell level, we undertook hypothesis testing analysis to identify the significantly differential
gene expression for each cell type. Due to the data used in this study coming from different
laboratories, the batch effect was a challenging problem.

Although some existing methods are able to eliminate the batch effects of single-cell
data, they inevitably eliminate some real differences in biology or mistake batch effects as
biological differences. Therefore, traditional hypothesis-testing methods based on gene
expression distribution are not applicable. In response to this situation, Wang H et al.
proposed the RankComp method [31], which assumed the rank of gene expression in each
sample was stable and converted the expression value of each gene into ranking in each
sample and identified gene pairs with relatively stable expression in the data. Inspired by
this idea, we also used the rank of gene expression instead of expression values and used
the degree of change in rankings as a criterion to test the differences.

We first calculated the top 5000 genes with average expression values in the same cell
type for each dataset. For each cell type, we merged the expression of each dataset into an
m × n matrix, where m represents the union length of the expressed genes in each set, and n
represents the number of cells after merging. In each column of data, that is, in each cell, we
sorted the gene expression values in descending order and ranked the highest expression
value as 1. As single-cell data are usually sparse with a large number of 0 expression values,
in the rank matrix, we unified the rank of genes whose expression value was 0 to m. We
performed a fold-change and t-test analysis on the rank matrix between the metastasis
cancer group and the primary cancer group. The formulas are as follows:

FC =
mean(Xi)

mean(Yi)
(1)

t =
mean(Xi)− mean(Yi)

si

√
( 1

nx
+ 1

ny
)

(2)

where mean(Xi) and mean(Yi) are the average rank of gene i in the metastatic cancer data
and primary cancer data, respectively. And si is the standard deviation of gene i across
all samples, nx and ny are the number of cells of metastatic cancer and primary cancer,
respectively.

2.5. Enrichment Analysis

To explore the functions of differentially expressed genes, the “Clusterprofiler” [32]
package was used for both gene ontology (GO) and the Kyoto Encyclopedia of Genes
and Genomes (KEGG) enrichment analysis of upregulated and downregulated genes,
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respectively. We chose appropriate significance thresholds and presented the results by the
ggplot2 package [33].

2.6. Cell Crosstalk Analysis

We performed a comparative analysis of the communication activity between cells
in primary and metastatic cancers. CellPhoneDB [34] is a database containing receptor–
ligand pairs, which facilitates comprehensive and systematical analyses of communication
between cells, and the construction of communication networks between different cell
types. We used the “statistical_analysis” method in CellPhoneDB for analysis.

2.7. GSVA Enrichment and Correlation Calculation

To quantify the proliferation level of each cell and then compare the proliferation
level difference between metastatic cancer and primary cancer, we first calculated the
enrichment score of tumor-associated cells on the “KEGG_DNA_REPLICATION” and
“KEGG_CELL_CYCLE” pathways, which strongly represent the proliferative capacity of
cells, by using the “gsva” function in the GSVA [35] package. Then, we inferred the driver
promoting cell proliferation by calculating the Pearson correlation coefficient between
individual genes and the proliferation enrichment scores for each cell type and selected
genes with both p-values less than 0.05 and correlation coefficients greater than 0.3 for
subsequent analysis.

3. Results
3.1. Comparison of Cell Components between Primary and Metastatic Liver Carcinoma

Through conducting a systematic analysis of metastatic liver cancer and primary liver
cancer tissues, we predicted individual cell types by unsupervised clustering which was
performed with Seurat v4. Through integrating GSEA, scCATCH, and AUCell with the
cell-type marker genes in the scCATCH database to annotate these cell clusters, 27 cell types
were identified across these eight sets of data as shown in Figure 2A,B. It was found that
the metastatic liver tissues mainly included 20 types of cells such as cytotoxic T cells, liver
progenitor cells, exhausted T cells, colorectal cancer stem cells, and mucosal-associated
invariant T (MAIT) cells. On the other hand, primary liver cancer tissues mainly included
23 types of cells such as monocytes, T cells, hepatocytes, and Kupffer cells, among others.

To further analyze the content difference of various cells in the two types of liver cancer
tissue, we calculated and compared the proportion of each cell type, as shown in Figure 2C.
Compared with primary liver cancer, the content of cytotoxic T cells, liver progenitor cells,
and exhausted T cells in metastatic liver tissue of colorectal cancer is significantly higher
but significantly lower in hepatocytes, T cells, and monocytes. Since the metastatic cancer
cells here are derived from colorectal tissue, colorectal cancer stem cells and immune cells
with colorectal characteristics are present in the metastatic tissues. In primary liver cancer,
the cancer cells come from the liver tissue themselves, and liver characteristics in it are
more obvious. Cytotoxic T cells, as an important subtype of T cells, are the main force
against cancer cells. Exhausted T cells originate from a special differentiation state that
cytotoxic T cells enter after long-term exposure to antigens, and they are also one of the
main obstacles to anti-tumor immunity during tumor development [36].

Based on the content difference, we speculated that in response to emerging metastases,
the immune system mobilizes more cytotoxic T cells in an attempt to destroy the cancer
cells. However, it fails to completely inhibit cancer cell proliferation, and a large number of
T cells that are involved in tumor immune activity but fail to eliminate cancerous tissues
enter a state of exhaustion. There is growing evidence that exhausted T cells can undergo
metabolic dysfunction, accompanied by alterations in the signaling cascade and epigenetic
background that inhibit immunity [37] and lead to a vicious cycle.
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Figure 2. Cell composition of primary and metastatic cancers. (A): Cell annotated images of four sets
of colorectal cancer liver metastasis data, in order: GSE158692, GSE164522, GSE178318, GSE225857;
(B): Annotated images of cell types for four sets of primary liver cancer data, in order: GSE149614,
GSE166635, GSE188289, GSE210679. (C): Comparison of the percentage content of each cell type
in primary and metastatic cancers. HE_T cell:Hepatocellular Cancer_Exhausted_T Cell; HM_T
cell: Hepatocellular Cancer_Mucosal-Associated Invariant_T Cell; HC_Stem cell:Hepatocellular
Cancer_Stem Cell; HR_T cell: Hepatocellular Cancer_Regulatory_T Cell.
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3.2. Different Functions of the Same Cell Type in Primary and Metastatic Liver Cancer

Due to the different growth drivers and microenvironments between primary and
metastatic cancers, in addition to comparing cell types and proportions in tissues, we
further analyzed the significant differences at the molecular level between cells of the
same type in primary and metastatic cancers. According to the annotation results, a
total of 17 cell types, including B cells, exhausted T cells, hepatocytes, and others, are
common to both metastatic and primary cancers. We conducted rank-based differential
analyses on these 17 cell types as shown in Figure 3A. Hepatocellular cancer stem cells,
a subset of hepatocellular carcinoma cells with stem cell properties, drive the growth of
primary liver cancer due to their unique stem-cell-like self-renewal and differentiation
ability [38]. Mucosal-associated invariant T (MAIT) cells are innate-like T cells and have
been demonstrated to promote tumor initiation, growth, and metastasis by inhibiting T
and/or NK cells [39].

To explore the functions of these differentially expressed genes, we performed KEGG
and GO biological processes enrichment analyses on genes of each cell type (Figure 3B,C)
and detailed results of enrichment analysis were shown in Supplementary materials
Tables S1 and S2. Through KEGG pathway enrichment analysis, we observed the up-
regulated genes in hepatocytes within metastatic liver cancer were associated with tight
junctions (p-value = 1.47 × 10−3) and proteoglycans (p-value = 4.72 × 10−8), while the
downregulated genes in metastatic cancer were mainly enriched in various metabolic path-
ways, including glutathione metabolism (p-value = 4.29 × 10−7) and fatty acid metabolism
(p-value = 1.73 × 10−8) in liver bud hepatic cells, arginine and proline metabolism (p-value
= 4.19 × 10−5) as well as the citrate cycle (p-value = 5.75 × 10−5) in hepatocytes. In addition,
we observed that metastatic cancers retain some characteristics of their primary location.
For example, in colorectal cancer liver metastases, some genes in the key pathways related
to colorectal cancer are significantly expressed in hepatocytes (p-value = 8.10 × 10−4) and
liver progenitor cells (p-value = 3.60 × 10−4).

The GO biological process (BP) enrichment results showed that compared with pri-
mary cancer, upregulated genes in metastatic cancer mainly regulated the activity of
immune cells such as B cells (p-value = 1.63 × 10−10), as well as the homotypic cell ad-
hesion (p-value = 1.57 × 10−5) and wound-healing processes (p-value = 3.69 × 10−11)
of hepatocytes. Similarly, the results of GO enrichment showed that the downregulated
genes of metastatic cancer were mainly enriched in metabolic activities such as ATP syn-
thesis (p-value = 3.89 × 10−49) and oxidative phosphorylation (p-value = 3.07 × 10−45) in
exhausted T cells and aerobic electron transport chains (p-value = 2.29 × 10−43) in liver bud
hepatic cells. Compared with normal tissues, malignant tumors are loose inside, and some
cells can easily escape and penetrate the blood circulation to metastasize to other organs
or even throughout the body [40]. In our analyses, we observed proteins that respond
to cell adhesion, such as tight junctions and homotypic cell adhesion, were significantly
upregulated in metastatic cancer. Combined with this result, we speculate that the aggrega-
tion of cancer cells free in the bloodstream to form distal solid tumors requires stronger
cell adhesion than the primary cancer tissue possesses. Compared to primary cancer, the
microenvironment of metastatic cancer cells changes greatly, which leads to metabolic
reprogramming. On the other hand, it is important for metastatic cancer cells to escape the
supervision of the immune system, achieve coordination with the new environment by
adjusting its metabolic state, and finally achieve remote colonization [41].
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Figure 3. Functional difference analysis of the same cell type in two types of tumors. (A): The
number of up- and downregulated genes in each cell type, the figure above is downregulated and
the one below is upregulated. (B): The GO BP enrichment results of differential genes between
primary and metastatic cancers, the figure above is upregulated and the one below is downregulated.
(C): The results of KEGG enrichment of differentiated genes in primary and metastatic cancers.
HE_T cell:Hepatocellular Cancer_Exhausted_T Cell; HM_T cell: Hepatocellular Cancer_Mucosal-
Associated Invariant_T Cell; HC_Stem cell:Hepatocellular Cancer_Stem Cell; HR_T cell: Hepatocellu-
lar Cancer_Regulatory_T Cell.

3.3. Diverse Cell–Cell Communications in Primary and Metastatic Liver Cancer

We analyzed cell communication in metastatic and primary cancer tissues separately
by using CellPhoneDB, which measures the activity degree of cell-type-specific receptor
and ligands in each set of data, and the results are shown in Figures 4A and 4B, respectively.
The experimental results showed that there was no significant difference in the overall
number of receptors and ligands between metastatic cancer and primary cancer tissue cells,
but the number of receptor–ligand pairs contained in each cell type varied considerably,
as illustrated in Figure 4C. In primary liver cancer tissues, hepatocytes are the cell type
containing the most receptor–ligand pairs, followed by monocytes and liver progenitor
cells, while in metastatic liver cancer originating from colorectal cancer, myofibroblasts
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become the members containing the most receptor–ligand pairs, followed by liver bud
hepatic cells and exhausted T cells.
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Figure 4. Cell communication intensity. (A): Chords diagram of cell interaction intensity for four
primary liver tumors, in order: GSE149614, GSE166635, GSE188289, GSE210679. (B): Chords dia-
gram of cell interaction intensity for four groups of colorectal cancer liver metastasis data, in order:
GSE158692, GSE164522, GSE178318, GSE225857. (C): Comparison of the communication intensity of
the same cell types in primary and metastatic cancers, with the horizontal coordinate representing
the percentage of the number of communication paths for the current cell type in the total number of
communication paths in the data.

We observed that communication between monocytes and liver-associated cells was
more pronounced in primary hepatocellular carcinoma tissues, which was consistent with
previous studies that hepatocellular carcinoma cells were able to deliver signaling molecules
to monocytes in the form of microvesicles, and this significantly enhanced the activity of
monocytes and accelerated their differentiation [42]. According to subsequent analysis,
we found that a greater proportion of T cells in the metastatic tissues were exhausted, the
effector functions of exhausted T cells were lost, and the transcriptional profiles as well
as the metabolic profile shifted [43], which may promote intensive interaction between
exhausted T cells and liver bud hepatic cells. We also observed a large amount of crosstalk
between myofibroblasts and hepato-associated cells in primary cancer, which is consistent
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with previous studies reporting that hepatocellular carcinoma is closely related to liver
fibrosis and myofibroblasts are an important component of liver fibrosis [44].

3.4. Biological Processes Related to Cell Proliferation in Primary and Metastatic Liver Cancer

In primary tumors, cancer cells proliferate at their own location, whereas metastatic
cancer cells originate from one site and colonize a new location by invading lymph vessels
and blood vessels and undergoing a series of complex processes. The different sources
and microenvironments of cancer cells may indicate different proliferation abilities and
driving forces. Clearly understanding the proliferation mechanisms of different cancer cells
contributes to exploring more effective interventions and treatments.

To answer this question, we used GSVA to calculate the enrichment scores of two
cell-proliferation-related pathways, DNA replication, and the cell cycle in liver-associated
cells. To obtain the driver elements that may regulate cell proliferation in individual cells,
we first calculated the Pearson correlation of each gene with these two pathways in tumor
cells in metastasis and primary cancer, respectively. And then we separately selected the
genes with both p-values less than 0.05 and correlation coefficients greater than 0.3, and the
number of related genes in each dataset is shown in Table 2.

Table 2. Summary of proliferation-related genes for metastatic and primary liver cancer.

GSE Number of Genes

Metastasis

GSE178318 121
GSE225857 2849
GSE158692 1642
GSE164522 21

Primary

GSE149614 1909
GSE166635 1699
GSE188289 1641
GSE210679 2911

We found that across four sets of primary cancer data, there were no genes significantly
negatively correlated with the two proliferation pathways. The same phenomenon has
been observed in most metastatic cancer datasets, whicI notice that the GSE in Figure 5 is
italicized, please confirm that you are invited to change it to italicized. Please note that
this should be consistent throughout the texth is in line with the reality of the infinite
proliferative properties of cancer cells [45]. Therefore, we conducted functional enrichment
analysis for genes positively related to cell proliferation in the two tumors, and the results
are shown in Figure 5A and 5B. In primary liver cancer, the genes highly associated with
cell proliferation mainly participate in biological processes such as amide biosynthetic
process (p-value = 1 ×10−94), oxidative phosphorylation (p-value = 1.78 × 10−51), and aerobic
respiration (p-value = 3.16 × 10−49), while genes in metastatic cancer mainly regulate rRNA
metabolic processes (p-value = 1 × 10−27) and ribosome biogenesis (p-value = 3.16 × 10−42).

Overall, we found that, unlike the proliferation genes of primary cancer cells, which
mainly supply energy to cells, the proliferation genes of metastatic cancer cells were
significantly involved in promoting the synthesis of metastatic substances, which was
consistent with previous studies. For epithelial tumors, tumor cells need to undergo
epithelial-to-mesenchymal transition (EMT) to gain metastatic capability. It has been found
that synthesizing new ribosomes can drive EMT, as it helps to synthesize the proteins
needed for cellular functions, while inhibiting ribosome biogenesis can prevent EMT [46].
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4. Discussion

The mortality rate of metastatic cancer remains high mainly due to the lack of a
comprehensive understanding of metastatic cancer. As primary liver cancer is one of the
most common types of cancer and the liver is also one of the main metastatic sites, in this
study, we focused on the comparison of metastatic and primary liver cancer from different
scales and perspectives.

Regarding cell composition, we observed that compared to primary liver cancer,
the liver metastasis tissue of colorectal cancer not only retained some characteristics of
colorectal cancer stem cells but also displayed differences in the types and contents of
immune cells. Through analyzing the expression level of specific genes, we observed that
the activity of immune cells was higher in metastatic cancer. As tumors progress to the
metastatic stage, the interplay and competition between cancer cells and immune cells
become increasingly complex, and ultimately makes the immune system powerless against
cancer cells [36].

From the perspective of differential gene expression, our analysis results suggested
that metastatic cancer cells were less active in some metabolic pathways. In the process
of distal organ colonization by cancer cells, the coordination of cancer cell metabolism
and organ environment contributes to their colonization [47]. Therefore, tumor cells
may independently choose the most suitable energy supply for their growth based on
the concentration and content of nutrients in the microenvironment in which they live,
affecting the ability to synthesize fatty acids, glutathione, and other organisms [48]. The
adaptability of metastatic cancer cells in different environments may depend on the origin
of the tumor and the site of metastasis, and further research on the influence of both is
very valuable.

Cell proliferation is an important hallmark of both primary and metastatic cancer, and
one of the key strategies for cancer therapy is to inhibit the uncontrolled proliferation of
tumor cells. Hence it is important to identify the key elements that drive cell proliferation for
understanding the cancer mechanism and determining drug targets. Through conducting
quantification of cell proliferation level and correlation analysis in primary cancer cells
and metastatic cancer cells, we observed that the genes associated with cell proliferation
in metastatic cancer mainly participated in various metabolism reactions of RNA, while
producing energy in primary cancer. This was highly consistent with our assumptions
that the driving forces of cell proliferation in primary cancer and metastatic cancer were
different. In further studies, causal inference or molecular biology experiments are needed
for validation. In addition, in future work, we will also collect more data for analysis, such
as single-cell RNA-seq data on liver metastases of both bowel and other primary organs, to
obtain more robust results. As more sequencing data are available, we can also analyze
data from other metastases to construct the landscape of metastatic cancer.

In summary, using single-cell transcriptome data, our study described the differences
between primary and metastatic liver cancer under multi-scale and multi-level approaches
and analyzed the differences in cell proliferation drivers and their respective functions; we
believe this was helpful for better understanding tumor mechanisms, as well as the effects
of receiving specific cancer therapy.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo14020090/s1. Table S1: Comprehensive analysis of dif-
ferentially expressed genes by KEGG. Table S2: Comprehensive analysis of differentially expressed
genes by GO:BP.

Author Contributions: S.H. and H.S. conceived the idea of single-cell studies of metastatic cancer.
S.H. and W.D. collected the single-cell data. S.H. conducted the data analyses and performed the
experiments. H.S. supervised the study and provided the resources. H.S., L.C. and W.D. helped to
review and edit the manuscript. S.H. wrote the manuscript. All authors have read and agreed to the
published version of the manuscript.

https://www.mdpi.com/article/10.3390/metabo14020090/s1
https://www.mdpi.com/article/10.3390/metabo14020090/s1


Metabolites 2024, 14, 90 14 of 15

Funding: The authors thank the funding support from the National Natural Science Foundation of
China (No. 62372210) and Jilin University organized scientific research project (No. 45123031J004).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets used and analyzed during the current study are available
from the GEO database at https://www.ncbi.nlm.nih.gov/geo/ accessed on 10 July 2023 (Accession
GSE210679, GSE149614, GSE188289, GSE158692, GSE164522, GSE178318, GSE225857).

Acknowledgments: The authors are grateful to Ying Xu from Southern University of Science and Tech-
nology for his suggestions. We would like to thank the anonymous reviewers for their helpful remarks.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Massagué, J.; Ganesh, K. Metastasis-Initiating Cells and Ecosystems. Cancer Discov. 2021, 11, 971–994. [CrossRef] [PubMed]
2. Liu, M.; Yang, J.; Xu, B.; Zhang, X. Tumor metastasis: Mechanistic insights and therapeutic interventions. MedComm (2020) 2021,

2, 587–617. [CrossRef] [PubMed]
3. Neophytou, C.M.; Panagi, M.; Stylianopoulos, T.; Papageorgis, P. The Role of Tumor Microenvironment in Cancer Metastasis:

Molecular Mechanisms and Therapeutic Opportunities. Cancers 2021, 13, 2053. [CrossRef] [PubMed]
4. Liu, Y.; Zhang, Q.; Xing, B.; Luo, N.; Gao, R.; Yu, K.; Hu, X.; Bu, Z.; Peng, J.; Ren, X.; et al. Immune phenotypic linkage between

colorectal cancer and liver metastasis. Cancer Cell 2022, 40, 424–437.e5. [CrossRef] [PubMed]
5. Dawkins, J.; Webster, R.M. The hepatocellular carcinoma market. Nat. Rev. Drug Discov. 2019, 18, 13–14. [CrossRef] [PubMed]
6. Zhong, L.; Zhao, Z.; Zhang, X. Genetic differences between primary and metastatic cancer: A pan-cancer whole-genome

comparison study. Signal Transduct. Target. Ther. 2023, 8, 363. [CrossRef] [PubMed]
7. Steeg, P.S. Targeting metastasis. Nat. Rev. Cancer. 2016, 16, 201–218. [CrossRef] [PubMed]
8. Turajlic, S.; Swanton, C. Metastasis as an evolutionary process. Science 2016, 352, 169–175. [CrossRef]
9. Gerstberger, S.; Jiang, Q.; Ganesh, K. Metastasis. Cell 2023, 186, 1564–1579. [CrossRef]
10. Fares, J.; Fares, M.Y.; Khachfe, H.H.; Salhab, H.A.; Fares, Y. Molecular principles of metastasis: A hallmark of cancer revisited.

Signal Transduct. Target. Ther. 2020, 5, 28. [CrossRef]
11. Stoletov, K.; Beatty, P.H.; Lewis, J.D. Novel therapeutic targets for cancer metastasis. Expert Rev. Anticancer Ther. 2020, 20, 97–109.

[CrossRef]
12. Hu, Z.; Li, Z.; Ma, Z.; Curtis, C. Multi-cancer analysis of clonality and the timing of systemic spread in paired primary tumors

and metastases. Nat. Genet. 2020, 52, 701–708. [CrossRef] [PubMed]
13. Vitale, I.; Shema, E.; Loi, S.; Galluzzi, L. Intratumoral heterogeneity in cancer progression and response to immunotherapy. Nat.

Med. 2021, 27, 212–224. [CrossRef] [PubMed]
14. Cacho-Díaz, B.; García-Botello, D.R.; Wegman-Ostrosky, T.; Reyes-Soto, G.; Ortiz-Sánchez, E.; Herrera-Montalvo, L.A. Tumor

microenvironment differences between primary tumor and brain metastases. J. Transl. Med. 2020, 18, 1. [CrossRef] [PubMed]
15. Rozenblit, M.; Huang, R.; Danziger, N.; Hegde, P.; Alexander, B.; Ramkissoon, S.; Blenman, K.; Ross, J.S.; Rimm, D.L.; Pusztai, L.

Comparison of PD-L1 protein expression between primary tumors and metastatic lesions in triple negative breast cancers. J.
Immunother. Cancer 2020, 8, e001558. [CrossRef] [PubMed]

16. de Visser, K.E.; Joyce, J.A. The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer Cell
2023, 41, 374–403. [CrossRef]

17. Turajlic, S.; Sottoriva, A.; Graham, T.; Swanton, C. Author Correction: Resolving genetic heterogeneity in cancer. Nat. Rev. Genet.
2020, 21, 65. [CrossRef] [PubMed]

18. Li, X.; Wang, C.Y. From bulk, single-cell to spatial RNA sequencing. Int. J. Oral Sci. 2021, 13, 36. [CrossRef]
19. Gohil, S.H.; Iorgulescu, J.B.; Braun, D.A.; Keskin, D.B.; Livak, K.J. Applying high-dimensional single-cell technologies to the

analysis of cancer immunotherapy. Nat. Rev. Clin. Oncol. 2021, 18, 244–256. [CrossRef]
20. Zeng, Q.; Mousa, M.; Nadukkandy, A.S.; Franssens, L.; Alnaqbi, H.; Alshamsi, F.Y.; Al Safar, H.; Carmeliet, P. Understanding

tumour endothelial cell heterogeneity and function from single-cell omics. Nat. Rev. Cancer 2023, 23, 544–564. [CrossRef]
21. Polychronidou, M.; Hou, J.; Babu, M.M.; Liberali, P.; Amit, I.; Deplancke, B.; Lahav, G.; Itzkovitz, S.; Mann, M.; Saez-Rodriguez, J.;

et al. Single-cell biology: What does the future hold? Mol. Syst. Biol. 2023, 19, e11799. [CrossRef] [PubMed]
22. Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.;

Lander, E.S.; et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles.
Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [CrossRef] [PubMed]

23. Shao, X.; Liao, J.; Lu, X.; Xue, R.; Ai, N.; Fan, X. scCATCH: Automatic Annotation on Cell Types of Clusters from Single-Cell RNA
Sequencing Data. iScience 2020, 23, 100882. [CrossRef] [PubMed]

https://www.ncbi.nlm.nih.gov/geo/
https://doi.org/10.1158/2159-8290.CD-21-0010
https://www.ncbi.nlm.nih.gov/pubmed/33811127
https://doi.org/10.1002/mco2.100
https://www.ncbi.nlm.nih.gov/pubmed/34977870
https://doi.org/10.3390/cancers13092053
https://www.ncbi.nlm.nih.gov/pubmed/33922795
https://doi.org/10.1016/j.ccell.2022.02.013
https://www.ncbi.nlm.nih.gov/pubmed/35303421
https://doi.org/10.1038/nrd.2018.146
https://www.ncbi.nlm.nih.gov/pubmed/30168534
https://doi.org/10.1038/s41392-023-01596-0
https://www.ncbi.nlm.nih.gov/pubmed/37770470
https://doi.org/10.1038/nrc.2016.25
https://www.ncbi.nlm.nih.gov/pubmed/27009393
https://doi.org/10.1126/science.aaf2784
https://doi.org/10.1016/j.cell.2023.03.003
https://doi.org/10.1038/s41392-020-0134-x
https://doi.org/10.1080/14737140.2020.1718496
https://doi.org/10.1038/s41588-020-0628-z
https://www.ncbi.nlm.nih.gov/pubmed/32424352
https://doi.org/10.1038/s41591-021-01233-9
https://www.ncbi.nlm.nih.gov/pubmed/33574607
https://doi.org/10.1186/s12967-019-02189-8
https://www.ncbi.nlm.nih.gov/pubmed/31900168
https://doi.org/10.1136/jitc-2020-001558
https://www.ncbi.nlm.nih.gov/pubmed/33239417
https://doi.org/10.1016/j.ccell.2023.02.016
https://doi.org/10.1038/s41576-019-0188-1
https://www.ncbi.nlm.nih.gov/pubmed/31659302
https://doi.org/10.1038/s41368-021-00146-0
https://doi.org/10.1038/s41571-020-00449-x
https://doi.org/10.1038/s41568-023-00591-5
https://doi.org/10.15252/msb.202311799
https://www.ncbi.nlm.nih.gov/pubmed/37318792
https://doi.org/10.1073/pnas.0506580102
https://www.ncbi.nlm.nih.gov/pubmed/16199517
https://doi.org/10.1016/j.isci.2020.100882
https://www.ncbi.nlm.nih.gov/pubmed/32062421


Metabolites 2024, 14, 90 15 of 15

24. Van de Sande, B.; Flerin, C.; Davie, K.; De Waegeneer, M.; Hulselmans, G.; Aibar, S.; Seurinck, R.; Saelens, W.; Cannoodt, R.;
Rouchon, Q.; et al. A scalable SCENIC workflow for single-cell gene regulatory network analysis. Nat. Protoc. 2020, 15, 2247–2276.
[CrossRef] [PubMed]

25. Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.;
et al. Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 2000, 25, 25–29. [CrossRef]
[PubMed]

26. Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [CrossRef] [PubMed]
27. Edgar, R.; Domrachev, M.; Lash, A.E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository.

Nucleic Acids Res. 2002, 30, 207–210. [CrossRef] [PubMed]
28. Korsunsky, I.; Millard, N.; Fan, J.; Slowikowski, K.; Zhang, F.; Wei, K.; Baglaenko, Y.; Brenner, M.; Loh, P.-R.; Raychaudhuri, S.

Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 2019, 16, 1289–1296. [CrossRef]
29. Hao, Y.; Hao, S.; Andersen-Nissen, E.; Mauck, W.M.; Zheng, S.; Butler, A.; Lee, M.J.; Wilk, A.J.; Darby, C.; Zager, M.; et al.

Integrated analysis of multimodal single-cell data. Cell 2021, 184, 3573–3587.e29. [CrossRef]
30. David, C.C.; Jacobs, D.J. Principal component analysis: A method for determining the essential dynamics of proteins. Methods

Mol. Biol. 2014, 1084, 193–226.
31. Wang, H.; Sun, Q.; Zhao, W.; Qi, L.; Gu, Y.; Li, P.; Zhang, M.; Li, Y.; Liu, S.-L.; Guo, Z. Individual-level analysis of differential

expression of genes and pathways for personalized medicine. Bioinformatics 2015, 31, 62–68. [CrossRef]
32. Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS

2012, 16, 284–287. [CrossRef]
33. Hein, D.M.; Deng, W.; Bleile, M.; Kazmi, S.A.; Rhead, B.; De La Vega, F.M.; Jones, A.L.; Kainthla, R.; Jiang, W.; Cantarel, B.; et al.

Racial and Ethnic Differences in Genomic Profiling of Early Onset Colorectal Cancer. J. Natl. Cancer Inst. 2022, 114, 775–778.
[CrossRef] [PubMed]

34. Efremova, M.; Vento-Tormo, M.; Teichmann, S.A.; Vento-Tormo, R. CellPhoneDB: Inferring cell-cell communication from
combined expression of multi-subunit ligand-receptor complexes. Nat. Protoc. 2020, 15, 1484–1506. [CrossRef] [PubMed]

35. Hänzelmann, S.; Castelo, R.; Guinney, J. GSVA: Gene set variation analysis for microarray and RNA-seq data. BMC Bioinform.
2013, 14, 7. [CrossRef] [PubMed]

36. Li, S.; Hao, L.; Zhang, J.; Deng, J.; Hu, X. Focus on T cell exhaustion: New advances in traditional Chinese medicine in infection
and cancer. Chin. Med. 2023, 18, 76. [CrossRef]

37. Franco, F.; Jaccard, A.; Romero, P.; Yu, Y.R.; Ho, P.C. Metabolic and epigenetic regulation of T-cell exhaustion. Nat. Metab. 2020, 2,
1001–1012. [CrossRef]

38. Zhang, N.; Bai, S.; Zhang, F.; Shi, M.; Wang, L.; Wang, L.; Xu, L.; Yang, Z.; Yu, C. Molecular markers and mechanisms for stemness
maintenance of liver cancer stem cells: A review. Sheng Wu Gong Cheng Xue Bao 2021, 37, 2719–2736. [PubMed]

39. Yan, J.; Allen, S.; McDonald, E.; Das, I.; Mak, J.Y.W.; Liu, L.; Fairlie, D.P.; Meehan, B.S.; Chen, Z.; Corbett, A.J.; et al. MAIT Cells
Promote Tumor Initiation, Growth, and Metastases via Tumor MR1. Cancer Discov. 2020, 10, 124–141. [CrossRef] [PubMed]

40. Lee, J.; Abdeen, A.A.; Wycislo, K.L.; Fan, T.M.; Kilian, K.A. Interfacial geometry dictates cancer cell tumorigenicity. Nat. Mater.
2016, 15, 856–862. [CrossRef]

41. Bergers, G.; Fendt, S.M. The metabolism of cancer cells during metastasis. Nat. Rev. Cancer 2021, 21, 162–180. [CrossRef]
42. Hou, P.-P.; Luo, L.-J.; Chen, H.-Z.; Chen, Q.-T.; Bian, X.-L.; Wu, S.-F.; Zhou, J.-X.; Zhao, W.-X.; Liu, J.-M.; Wang, X.-M.; et al.

Ectosomal PKM2 Promotes HCC by Inducing Macrophage Differentiation and Remodeling the Tumor Microenvironment. Mol.
Cell 2020, 78, 1192–1206.e10. [CrossRef]

43. Wherry, E.J. T cell exhaustion. Nat. Immunol. 2011, 12, 492–499. [CrossRef] [PubMed]
44. Wei, S.C.; Duffy, C.R.; Allison, J.P. Fundamental Mechanisms of Immune Checkpoint Blockade Therapy. Cancer Discov. 2018, 8,

1069–1086. [CrossRef] [PubMed]
45. Menssen, A.; Hydbring, P.; Kapelle, K.; Vervoorts, J.; Diebold, J.; Lüscher, B.; Larsson, L.-G.; Hermeking, H. The c-MYC

oncoprotein, the NAMPT enzyme, the SIRT1-inhibitor DBC1, and the SIRT1 deacetylase form a positive feedback loop. Proc. Natl.
Acad. Sci. USA 2012, 109, E187–E196. [CrossRef]

46. Prakash, V.; Carson, B.B.; Feenstra, J.M.; Dass, R.A.; Sekyrova, P.; Hoshino, A.; Petersen, J.; Guo, Y.; Parks, M.M.; Kurylo, C.M.;
et al. Ribosome biogenesis during cell cycle arrest fuels EMT in development and disease. Nat. Commun. 2019, 10, 2110. [CrossRef]
[PubMed]

47. Faubert, B.; Solmonson, A.; DeBerardinis, R.J. Metabolic reprogramming and cancer progression. Science 2020, 368, eaaw5473.
[CrossRef] [PubMed]

48. Martínez-Reyes, I.; Chandel, N.S. Cancer metabolism: Looking forward. Nat. Rev. Cancer 2021, 21, 669–680. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1038/s41596-020-0336-2
https://www.ncbi.nlm.nih.gov/pubmed/32561888
https://doi.org/10.1038/75556
https://www.ncbi.nlm.nih.gov/pubmed/10802651
https://doi.org/10.1093/nar/28.1.27
https://www.ncbi.nlm.nih.gov/pubmed/10592173
https://doi.org/10.1093/nar/30.1.207
https://www.ncbi.nlm.nih.gov/pubmed/11752295
https://doi.org/10.1038/s41592-019-0619-0
https://doi.org/10.1016/j.cell.2021.04.048
https://doi.org/10.1093/bioinformatics/btu522
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1093/jnci/djac014
https://www.ncbi.nlm.nih.gov/pubmed/35134211
https://doi.org/10.1038/s41596-020-0292-x
https://www.ncbi.nlm.nih.gov/pubmed/32103204
https://doi.org/10.1186/1471-2105-14-7
https://www.ncbi.nlm.nih.gov/pubmed/23323831
https://doi.org/10.1186/s13020-023-00785-x
https://doi.org/10.1038/s42255-020-00280-9
https://www.ncbi.nlm.nih.gov/pubmed/34472291
https://doi.org/10.1158/2159-8290.CD-19-0569
https://www.ncbi.nlm.nih.gov/pubmed/31826876
https://doi.org/10.1038/nmat4610
https://doi.org/10.1038/s41568-020-00320-2
https://doi.org/10.1016/j.molcel.2020.05.004
https://doi.org/10.1038/ni.2035
https://www.ncbi.nlm.nih.gov/pubmed/21739672
https://doi.org/10.1158/2159-8290.CD-18-0367
https://www.ncbi.nlm.nih.gov/pubmed/30115704
https://doi.org/10.1073/pnas.1105304109
https://doi.org/10.1038/s41467-019-10100-8
https://www.ncbi.nlm.nih.gov/pubmed/31068593
https://doi.org/10.1126/science.aaw5473
https://www.ncbi.nlm.nih.gov/pubmed/32273439
https://doi.org/10.1038/s41568-021-00378-6

	Introduction 
	Materials and Methods 
	Overview 
	Data Collection and Processing 
	Dimension Reduction and Cell Type Annotation 
	Rank-Based Differential Expression Analysis 
	Enrichment Analysis 
	Cell Crosstalk Analysis 
	GSVA Enrichment and Correlation Calculation 

	Results 
	Comparison of Cell Components between Primary and Metastatic Liver Carcinoma 
	Different Functions of the Same Cell Type in Primary and Metastatic Liver Cancer 
	Diverse Cell–Cell Communications in Primary and Metastatic Liver Cancer 
	Biological Processes Related to Cell Proliferation in Primary and Metastatic Liver Cancer 

	Discussion 
	References

