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Abstract: Mn-oxidizing microorganisms oxidize environmental Mn(II), producing Mn(IV) oxides.
Pseudomonas putida MnB1 is a widely studied organism for the oxidation of manganese(II) to man-
ganese(IV) by a multi-copper oxidase. The biogenic manganese oxides (BMOs) produced by MnB1
and similar organisms have unique properties compared to non-biological manganese oxides. Along
with an amorphous, poorly crystalline structure, previous studies have indicated that BMOs have
high surface areas and high reactivities. It is also known that abiotic Mn oxides promote oxidation
of organics and have been studied for their water oxidation catalytic function. MnB1 was grown
and maintained and subsequently transferred to culturing media containing manganese(II) salts to
observe the oxidation of manganese(II) to manganese(IV). The structures and compositions of these
manganese(IV) oxides were characterized using scanning electron microscopy, energy dispersive
X-ray spectroscopy, inductively coupled plasma optical emission spectroscopy, and powder X-ray
diffraction, and their properties were assessed regarding catalytic functionality towards water ox-
idation in comparison to abiotic acid birnessite. Water oxidation was accomplished through the
whole-cell catalysis of MnB1, the results for which compare favorably to the water-oxidizing ability
of abiotic Mn(IV) oxides.

Keywords: Mn(II)-oxidizing bacteria; water oxidation; whole-cell catalysis; multi-copper oxidase;
biogenic manganese oxides; BMO; MnB1; acid birnessite

1. Introduction

Manganese oxides (MnOx) are among the strongest oxidants found in the environ-
ment [1–3]. Manganese (Mn) is a ubiquitous transition-metal element in the surface layer
of the Earth and is most often found in its Mn(II), Mn(III), and Mn(IV) oxidation states [3].
The process of converting soluble Mn(II) to insoluble Mn(IV) occurs in many elemental
cycles [1,3–5]. Although the process of Mn(II)-to-Mn(IV) oxidation is thermodynamically
favorable, it is a very slow process without the presence of a catalyst [3]; it has been sug-
gested that the environmental process of Mn oxidation occurs most often in microorganisms
such as bacteria and fungi [5]. Some commonly studied organisms for Mn(II) oxidation
include Bacillus sp. strain SG-14, Lepothrix discophora strains SP-1 and SS-64, Pseudomonas
putida strain GB-1, Aurantimonas manganoxydans SI85-9A1 [3,6], Pseudomonas putida NRRL
B-148787, and Pseudomonas putida MnB1 (MnB1) [2,4,7–15]. Previous studies have placed
the enzymes responsible for biotic Mn(II) oxidation into two broad categories: multi-copper
oxidases [1,2,7–10,16–18] and animal heme peroxidases [1,3,11].

Pseudomonas putida MnB1 is the manganese-oxidizing organism analyzed in this study.
It has been suggested that this organism oxidizes Mn(II) using a multi-copper oxidase
enzyme; however, there is no corresponding single-crystal X-ray diffraction structure avail-
able [2,7–10,15,18]. The biogenic manganese oxides (BMOs) formed by MnB1 deposit on
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the surface of a bacterial cell [8,11]. Although BMOs adopt a layered birnessite-like crystal
structure, which is similar to that of abiotic δ-MnO2 [4,7,9,10,12–14,19,20], they are struc-
turally different from abiotic MnO2. The structural differences between BMOs and abiotic
MnO2 have been investigated using scanning electron microscope (SEM) imaging [2,4,7,13],
X-ray diffraction (XRD) spectroscopy [4,10,12,15], energy-dispersive X-ray (EDX) spec-
troscopy [2,7], and X-ray near-edge absorption spectroscopy (XANES) [9,10,12–16]. Com-
pared to abiotic manganese oxides, BMOs have poor crystallinity [4,7,9,10,12–15], and
owing to their higher surface area, BMOs have been shown to be a more reactive oxi-
dant [4].

Previous studies have investigated the role of MnB1 and its BMOs in the context of soil
and water remediation based on the evidence of MnO2 acting as a strong oxidizing agent.
The high surface areas associated with BMOs suggest they have higher catalytic activity
than abiotic MnO2; this was the premise of a recent 17α-ethinylestradiol degradation
study. The authors of the cited study found that the presence of the manganese-oxidizing
bacterium MnB1 degrades 17α-ethinylestradiol 15 times faster than BMO alone [2].

Furthermore, manganese oxides have been of interest for catalytic water oxidation
(Equation (1)) and its broader connections to the oxygen evolving complex (OEC) in Pho-
tosystem II [17,21–34]. The OEC is the only natural system capable of water oxidation,
occurring as part of the photosynthetic process [17,35]. If an OEC-like system was devel-
oped on a large scale, it could be a significant source of renewable energy [36]. Based
on the idea of manganese oxides being ubiquitous in soil and water, Hocking et al. pro-
posed that a tetranuclear manganese cluster resembling the OEC could be used in water
oxidation catalysis [17]. They also suggested that an effective water oxidant would need
to have high surface area and high catalytic activity and that the manganese redox cycle
resembles biogeochemical manganese cycling [17,37]. A study by Menezes et al. suggested
that amorphous MnOx and Mn2O3 showed a “tremendous enhancement” in photocat-
alytic oxygen evolution when compared to minerals such as hausmannite (Mn3O4) and
manganosite (MnO) [38]. The amorphous MnOx also had higher catalytic activity than
calcium/manganese oxides [38]. The authors suggested that water oxidation activity may
have been enhanced by µ-oxo bridges between the Mn centers [38]. Alternatively, Taguchi
et al. (2014) theorized that the OEC could be approximated by a Mn complex in the presence
of Ca2+ ions [39]. The Ca-OH bond on this complex may have also been a facilitator of
oxidation by the OEC [39]. Furthermore, the coordination sphere on the OEC-like com-
plex’s “dangling” Mn could be connected to the Ca2+ ion through bridging oxo or hydroxo
ligands [39].

Water oxidation half reaction: 2 H2O → 4 H+ + 4 e− + O2 (1)

Using nature as an inspiration, biogenic manganese oxides have been prepared by
utilizing MnB1 as a source organism. Previous studies have shown different aspects of BMO
formation, and yet there is a need to understand the structure and catalytic functionality of
biogenic manganese oxides that grant these particles the potential to act as robust oxidation
catalysts. In this study, biogenic manganese oxides formed by MnB1 and deposited on
the bacterial cell surface were investigated. Specifically, the cell material with BMO on
the surface was used without further purification, providing a convenient route to an
amorphous material that is an active water oxidation electrocatalyst, presumably due to its
high surface area [40,41].

2. Materials and Methods
2.1. MnB1 Preparation

Cultures of Pseudomonas putida (Trevisan) Migula MnB1 supplied by American Type
Culture Collection (ATCC #23483) were prepared and grown at room temperature or 30 ◦C
for 3 days. Liquid growth media was prepared according to Jiang et al. [4]. Cultures were
added to the liquid growth media and incubated at 24 ◦C while shaking for four days.
Dark-brown or black precipitates formed, indicating the formation of BMOs. Cell material
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was collected through centrifugation at 3000 rpm for 10 min. Particles were washed with
ethanol, and cell material was either freeze-dried or dried in a 60 ◦C oven overnight.

2.2. Material Preparation

Acid birnessite was prepared according to McKenzie using the procedure described
by Remucal and coworkers [42,43]. A 10 mL volume of a 0.67 M solution of KMnO4 was
boiled, and 1.5 mL of 6 M HCl was added dropwise. The solution was boiled for 1 h, cooled
to room temperature, and then heated to 60 ◦C with stirring for ~12 h. The dark-brown
solid was collected on a 0.22 µm nylon filter, washed with deionized water, dried under
vacuum, and stored in the dark.

2.3. Powder X-ray Diffraction

Powder X-ray diffraction (XRD) data of acid birnessite and whole-cell MnB1 samples
were collected at room temperature via a Rigaku SmartLab SE diffractometer using a copper
anode (with Kα1 = 1.54056 Å and Kα2 = 1.54439 Å) fitted with a nickel Kβ filter. Samples
were placed on a zero-background sample holder and analyzed between 2θ 5 and 80◦ with
a step size of 0.01 degrees and scan speed of 1 degree/min.

2.4. Scanning Electron Microscopy

Scanning electron microscopy (SEM) with complementary energy-dispersive X-ray
spectroscopy data were collected using a JEOL JCM 7000 scanning electron microscope
(JEOL Ltd., Tokyo, Japan). Samples for analysis were deposited on atomically flat silica
wafers and precoated using 10 nm Au nanoparticles to reduce charging.

2.5. Surface Area Analysis

Nitrogen adsorption isotherms were obtained at 77 K using a Quantachrome NO-
VAtouch LX Surface Area and Pore Size Analyzer (Quantachrome Instruments, Boynton
Beach, FL, USA). Samples were prepared by degassing 100 mg acid birnessite for 18 h at
25 ◦C. Surface area measurements were acquired using the Brunauer–Emmett–Teller (BET)
method, and average surface area was obtained.

2.6. Determination of Metal Content via ICP-OES

Inductively coupled plasma optical emission spectroscopy was performed with a
Perkin Elmer Optima 8000 instrument. To prepare the samples, around 10 mg of acid
birnessite or whole-cell MnB1 was dissolved by stirring it in ~5 mL of concentrated HCl for
1 h. The whole-cell MnB1 sample was filtered through a syringe filter, and both solutions
were diluted to 10.0 mL in volumetric flasks. These solutions were then subjected to 10-
fold and 100-fold dilutions, and all samples (undiluted, 10× diluted, and 100× diluted)
were analyzed for Mn, Ca, K, Fe, Cu, and Zn. Calibration standards with concentrations
between 1 ppm and 100 ppm were prepared by diluting a 100 ppm multi-element standard
(Instrument Calibration Standard 2, SPEX CertiPrep, Metuchen, NJ, USA).

2.7. Electrochemical Water Oxidation Studies

Electrochemical water oxidation experiments performed were modified from the
procedure described by Stahl et al. [21]. Catalyst inks were prepared by combining 5 mg
of catalyst (acid birnessite or whole-cell MnB1), 5 mg of carbon black acetylene (Thermo
Scientific Chemicals), 45 mL of 5% wt% Nafion (Thermo Scientific Chemicals), and 350 mL
of ethanol. The ink was sonicated for 10 min. Glassy carbon electrodes (3 mm, BASi) were
polished with an alumina slurry on a felt pad and rinsed with water and ethanol prior to
the deposition of 5 mL of the catalyst ink. The electrode was dried at room temperature
for 10 min, followed by 70 ◦C for 10 min. The electrodes were allowed to cool to room
temperature and wetted with a few drops of water before electrochemical analysis.

Electrochemical experiments were performed with a CH Instruments 620E Electro-
chemical Analyzer using a standard three-electrode cell. An Ag/AgCl reference electrode
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and platinum wire counter electrode were used in addition to the glassy carbon working
electrode with the ink. Linear sweep voltammetry (LSV) was performed in a stirred aque-
ous 0.1 M NaOH solution at a scan rate of 5 mV/s. Scans were performed by scanning
from 0 mV to 1200 mV vs. Ag/AgCl. For each electrode, two scans were performed, and
in all cases, data from the second scan were used. Reported LSV data are the average of
three electrodes.

3. Results

MnOx is a strong oxidant and has been shown to have applications in catalysis, envi-
ronmental remediation, and water oxidation [42,44,45]. For example, Guot et al. recently
reported the growth of manganese oxides on an electrode in order to construct a fuel
cell [46]. Using nature as an inspiration for catalysis, we utilized biogenic manganese
oxides from Pseudomonas putida strain MnB1 as a Mn(II)-oxidizing organism.

The putative Mn(II)-oxidizing enzyme in MnB1 resembles a multi-copper oxidase due
to its sequence homology with respect to other well-known multi-copper oxidases such as
laccase. The structure of the MnB1 Mn(II)-oxidizing enzyme has not been experimentally
determined, but its sequence has been identified, CumA, which shows a high degree of
sequence homology to other multi-copper oxidases. CumA is not a membrane-bound
protein, and it is localized internally. The BMO material accumulates on the cell surface
and can then be secreted into the environment.

Utilizing AlphaFold as a structural guide, a structure can be predicted with a high
degree of certainty [47,48]. AlphaFold, developed by DeepMind and EMBL-EBI, is an
artificial intelligence algorithm that is continually adding proteins to a protein structure
database. This technology is based on an artificial intelligence system developed through
a partnership between DeepMind and EMBL’s European Bioinformatics Institute. The
database currently contains 3D structures of 200 million proteins, integrating itself into
Uniprot, the standard repository of protein sequences and annotations. AlphaFold is a
validated neural-network-based model that demonstrates high accuracy in identifying a
structural prediction that correlates well to experimental structures and outperforms other
methods of structural prediction. Figure 1 depicts a sequence and structural comparison
between the Mn(II)-oxidizing enzyme from MnB1 (CumA) and other known multi-copper
oxidases [47,49–51]. The theoretical structure of the MnB1-derived enzyme is shown in
Figure 1, where it is overlaid with laccase, depicting their structural similarities. Figure 1D
shows the sequence alignment of the Mn(II)-oxidizing enzyme from MnB1, CueO, a known
multi-copper oxidase from Escherichia coli strain K12, and laccase from Bacillus subtilis,
where the active site residues are highlighted, indicating that the active site structure and
therefore reactivities are similar. All highly conserved residues are denoted with an asterisk.
HWHG, WHPH, HPIHLH, and HCH are among the sequence regions that appear in all
the examples of multi-copper oxidases, and these sequences are both catalytically and
structurally relevant to multi-copper oxidases. Based on this analysis, the Mn(II)-oxidizing
enzyme from MnB1 was presumed to be a multi-copper oxidase.

To prepare the biogenic manganese oxide samples, Pseudomonas putida MnB1 cultures
were incubated with liquid growth media, and dark-brown or black BMO precipitates
formed. After 4 days, the cultures showed the maximum amount of BMO formation. Cell
material was collected, washed, and freeze-dried, and this material (whole-cell BMO) was
used without further workup or purification. Whole-cell BMO from MnB1 was analyzed
via powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy
dispersive X-ray spectroscopy (EDX) mapping, along with inductively coupled plasma
optical emission spectroscopy (ICP-OES). Therefore, the size, morphology, and composition
of the BMOs in the whole-cell material were thoroughly investigated in this study. The
BMO material was compared to the abiotic MnO2 acid birnessite, which is a layered
manganese oxide with the formula MnO2 that has been theorized to have a similar structure
to BMO. There are several terms used, often interchangeably, to name synthetic layered
MnOx materials, including δ-MnO2, birnessite, and acid birnessite, and they are often
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differentiated by the synthetic route used to prepare them [52]. The material used in this
study is usually referred to as acid birnessite, which was prepared from KMnO4 via the
method described by McKenzie [42,43].
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Figure 1. Comparison of the theoretical structure of CumA from Pseudomonas putida and other well-
studied multi-copper oxidases [18]. (A) Proposed structure of CumA determined in AlphaFold [47,48];
(B) overlay of the calculated structure of CumA and Laccase from Bacillus subtilis; (C) active site of
Laccase; (D) protein sequence alignments of CumA (unknown structure). CueO a Mn(II)-oxidizing
multi-copper oxidase from Escherichia coli strain K12 and Laccase. (*) indicates conserved amino
acids, (:) indicates semi-conserved residues, (.) indicates an evolutionary divergence of residues.
Letter colors indicate the type of amino acid: green (polar), red (nonpolar), blue (acidic), and pink
(basic). Red boxes highlight the active sites that bind copper ions and are conserved in all multi-
copper oxidases.

The elemental composition of the whole-cell BMO and acid birnessite samples are
interesting with respect to determining the amount of Mn as well as the presence of other
metal ions. ICP-OES analyses were performed to determine their metal compositions,
and the samples were tested for seven metals: Mn, Ca, K, Mg, Fe, Cu, and Zn. The
results of the ICP-OES analyses are shown in Table 1. Whole-cell BMO was shown to
contain 7.0% manganese and 0.6% calcium, with no significant amounts of other metals.
The remainder of the mass is presumed to be primarily organic cell material. The acid
birnessite sample is 44.6% manganese and 5.0% potassium by mass. The incorporation of
a significant amount of potassium is consistent with the synthesis of this material from a
potassium permanganate solution. These results were compared with images generated by
EDX mapping.
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Table 1. Composition of whole-cell BMO from MnB1 and acid birnessite via ICP-OES. Samples were
dissolved in concentrated HCl and tested for manganese, calcium, potassium, magnesium, iron,
copper, and zinc.

Mass Percent of Element in Sample

Mn Ca K Mg Fe Cu Zn

Whole-cell BMO 7.0% 0.6% 0.3% 0.3% 0.1% 0.2% 0%
Acid birnessite 44.6% 0% 5.0% 0% 0% 0.1% 0%

SEM is a surface technique that allows for the visualization of the structures of particles
and, with the addition of the complementary technique EDX, the mapping of elements on
the surface. An array of elements was analyzed, but only Mg, Ca, Mn, Al, and K showed
significant contributions. Other than manganese, potassium is most abundant in the acid
birnessite, and calcium is most abundant in the BMO material. SEM images of whole-cell
BMO and acid birnessite are shown in Figure 2. The top image represents the values
obtained from the EDX measurements of the surfaces of whole-cell BMO from MnB1 and
acid birnessite. The SEM images reveal amorphous materials for both acid birnessite and
whole-cell BMO. These materials were also analyzed using XRD, showing that there is
indeed a slight degree of crystallinity in these materials (vide infra).
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Whole-cell BMO images are displayed in Figure 2a–c, and acid birnessite images are
displayed in Figure 2d–f. Elemental mapping of manganese is shown for both samples, and
mapping of calcium in whole-cell BMO from MnB1 and potassium in acid birnessite is also
presented. The scale bars indicate the relative sizes of the amorphous materials. As also
shown from the ICP-OES measurements, the EDX maps reveal that calcium was the highest-
concentrated 2+ ion in whole-cell BMO, with Mg2+ being the second highest and four times
less concentrated than calcium. The EDX values differ from the ICP measurements of the
whole-cell BMO because they were analyzed as oxides on the surface of the material while
the ICP measurements represent the mass percent of the whole sample. In addition, the
whole-cell BMO image contains a substantial amount of organic material since the image
was produced without the removal of organics. These images reveal the relative size and
amorphous structure of both the biogenic and abiotic MnO2 materials.

The structures of the whole-cell BMO from the MnB1 sample and acid birnessite
were investigated using powder X-ray diffraction, and the diffraction patterns are shown
in Figure 3. As indicated by the lack of defined diffraction peaks, the whole-cell BMO
material is quite amorphous. The acid birnessite sample is also fairly amorphous, but peaks
that are consistent with layered Mn oxide structures are observable. The surface area of
the acid birnessite sample was measured using the Brunauer–Emmett–Teller method and
determined to be 20.3 m2/g. While the surface area of the whole-cell BMO material was
not measured via BET because the presence of cell material would limit its usefulness in
assessing the BMO, the SEM and XRD data indicate that the BMO produced by MnB1 likely
has a large surface area.
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The suitability of using whole-cell BMO as an electrocatalyst for the water oxidation
half reaction was studied using linear sweep voltammetry (LSV), and the activity of this ma-
terial was compared to that of the abiotic acid birnessite. LSV experiments were conducted
under basic conditions in 0.1 M NaOH solutions at a scan rate of 5 mV/s. The LSV results
for acid birnessite in this study are very similar to those reported for other layered MnO2
materials, such as δ-MnO2 [21]. Under these conditions, the current densities reached by the
whole-cell BMO were similar, and slightly higher, than those of acid birnessite (Figure 4A).
This result is particularly interesting because while the same mass of sample was tested for
each material, the whole-cell BMO contained much less Mn (7%) than the acid birnessite
sample (45%). To highlight this result, the currents in the linear sweep voltammograms
were normalized based on the amount of Mn in each sample as determined via ICP-OES
measurements. Figure 4B shows the LSV data, with currents reported in milliamps per
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milligram of Mn, and the current normalized to mass of Mn is nearly 10 times higher
for whole-cell BMO than that of acid birnessite at 1200 mV vs. Ag/AgCl (68 mA/mg vs.
7 mA/mg). This indicates that the whole-cell BMO is a more potent catalyst.
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BMO and acid birnessite catalyst inks. (A) Current density normalized to the geometric surface area
of the glassy carbon working electrode. (B) Current normalized to the mass of Mn on the electrode as
determined via ICP-OES.

4. Conclusions

In this study, biogenic manganese oxides were produced by the Mn(II)-oxidizing
organism Pseudomonas putida MnB1, and the whole-cell material comprising the BMO and
the cell material were characterized using XRD, SEM-EDX, and ICP-OES. These analyses
indicated the formation of an amorphous MnOx material that included a significant amount
of calcium. The BMO cell material also showed activity towards water oxidation. These
data were compared to the abiotic manganese oxide acid birnessite due to studies showing
that these manganese oxides might have similar structural characteristics.

The appearance of calcium as a metal that has a substantial composition in the MnOx
particles inspired our interest in comparison to the oxygen-evolving complex in photosyn-
thesizing organisms. The Mn/Ca ratio in whole-cell BMO tended towards ~90:10 in all of
our analyses (ICP-OES and EDX mapping). Of note, there was a larger concentration of
calcium ions than that of metals other than manganese. While the intercalation of Ca2+ into
the pores of manganese oxide particles is a known phenomenon, the role of Ca2+ in water
oxidation constitutes a question that remains to be addressed. For comparison, the metal
composition of the OEC is a ~85/15 ratio of Mn/Ca. Previous studies have shown that a
calcium ion is essential for water oxidation in the OEC and, later, that calcium is a structural
component of the cluster [35]. A broadly accepted mechanism of O-O bond formation
involves the reaction of an electrophilic Mn-oxo and a metal-bound nucleophile [2]. An
extension of this theory involves naming the nucleophile as the Ca-OH unit because it
is redox-inactive and can act as a nucleophile, which is essential in the formation of an
O-O bond, where manganese ions alone would facilitate one-electron, or non-productive,
processes, and these must be avoided to make the O-O bond [39]. It is also known that
metals can intercalate into BMOs, and some researchers have exploited this ability by using
them to remediate heavy metals from natural waters [20]. We hypothesize that the presence
of calcium that can easily intercalate into holes in particles may serve as a contributing com-
ponent for water oxidation. Investigations into increasing the intercalation of calcium into
BMO materials by varying the growth conditions of MnB1 are ongoing in our laboratory.

The catalytic activity of the whole-cell BMO from MnB1 material for water oxidation
was tested electrochemically using linear sweep voltammetry. This material showed activity
similar to that of the related MnOx acid birnessite. However, because much of the whole-
cell BMO material is organic matter, this comparable activity is derived from a much smaller
amount of Mn. When the current is normalized to the amount of Mn in each sample, the
whole-cell MnB1 material looks quite promising as a water oxidation catalyst. The high
per-Mn activity observed is likely a result of the high surface area of the material, which
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allows more Mn sites to be electrochemically accessible. Although the surface area of the
whole-cell BMO material was not measurable via BET, the XRD and SEM results support
the conclusion that an amorphous material was prepared. The formation of an amorphous,
high-surface-area material might be facilitated by the presence of the cells on which the
BMO is deposited. Previous studies have shown that layered, amorphous MnOx materials
tend to be the most active water oxidation electrocatalysts [30]. In the future, studies will
be performed to measure the Faradaic efficiency of O2 production by whole-cell BMO
material. In addition to their application as water oxidation catalysts, BMOs, even in
samples with an intact organism, would likely also show promise in the remediation of
organic pollutants and prove to be a sustainable tool for bioremediation. Future studies
will include attempting to grow MnB1 directly on electrodes and utilizing whole-cell BMO
for other oxidation processes.
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