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Abstract

In comparisons between mutant and wild-type genotypes, transcriptome analysis can reveal

the direct impacts of a mutation, together with the homeostatic responses of the biological

system. Recent studies have highlighted that, when the effects of homozygosity for reces-

sive mutations are studied in non-isogenic backgrounds, genes located proximal to the

mutation on the same chromosome often appear over-represented among those genes

identified as differentially expressed (DE). One hypothesis suggests that DE genes chro-

mosomally linked to a mutation may not reflect functional responses to the mutation but,

instead, result from an unequal distribution of expression quantitative trait loci (eQTLs)

between sample groups of mutant or wild-type genotypes. This is problematic because

eQTL expression differences are difficult to distinguish from genes that are DE due to func-

tional responses to a mutation. Here we show that chromosomally co-located differentially

expressed genes (CC-DEGs) are also observed in analyses of dominant mutations in het-

erozygotes. We define a method and a metric to quantify, in RNA-sequencing data, local-

ised differential allelic representation (DAR) between those sample groups subjected to

differential expression analysis. We show how the DAR metric can predict regions prone to

eQTL-driven differential expression, and how it can improve functional enrichment analyses

through gene exclusion or weighting-based approaches. Advantageously, this improved

ability to identify probable eQTLs also reveals examples of CC-DEGs that are likely to be

functionally related to a mutant phenotype. This supports a long-standing prediction that

selection for advantageous linkage disequilibrium influences chromosome evolution. By

comparing the genomes of zebrafish (Danio rerio) and medaka (Oryzias latipes), a teleost

with a conserved ancestral karyotype, we find possible examples of chromosomal aggrega-

tion of CC-DEGs during evolution of the zebrafish lineage. Our method for DAR analysis

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011868 February 12, 2024 1 / 27

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Baer L, Barthelson K, Postlethwait JH,

Adelson DL, Pederson SM, Lardelli M (2024)

Differential allelic representation (DAR) identifies

candidate eQTLs and improves transcriptome

analysis. PLoS Comput Biol 20(2): e1011868.

https://doi.org/10.1371/journal.pcbi.1011868

Editor: Alexandre V. Morozov, Rutgers University,

UNITED STATES

Received: March 30, 2023

Accepted: January 29, 2024

Published: February 12, 2024

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pcbi.1011868

Copyright: © 2024 Baer et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Availability of code All

code to reproduce the described analyses can be

found below. • APOE mouse dataset: https://github.

com/baerlachlan/211001_APOE_Mm • psen1

https://orcid.org/0000-0001-5213-3401
https://orcid.org/0000-0002-4693-8833
https://orcid.org/0000-0002-5476-2137
https://orcid.org/0000-0003-2404-5636
https://orcid.org/0000-0001-8197-3303
https://orcid.org/0000-0002-4289-444X
https://doi.org/10.1371/journal.pcbi.1011868
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011868&domain=pdf&date_stamp=2024-02-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011868&domain=pdf&date_stamp=2024-02-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011868&domain=pdf&date_stamp=2024-02-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011868&domain=pdf&date_stamp=2024-02-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011868&domain=pdf&date_stamp=2024-02-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011868&domain=pdf&date_stamp=2024-02-23
https://doi.org/10.1371/journal.pcbi.1011868
https://doi.org/10.1371/journal.pcbi.1011868
http://creativecommons.org/licenses/by/4.0/
https://github.com/baerlachlan/211001_APOE_Mm
https://github.com/baerlachlan/211001_APOE_Mm


requires only RNA-sequencing data, facilitating its application across new and existing

datasets.

Author summary

Many human-relevant diseases result from genetic mutations that disrupt cellular func-

tions. We can model these mutations in other organisms (e.g. mouse, zebrafish) and

employ gene expression analysis (transcriptomics) to determine how mutations directly

affect cells and how cells adjust expression of their genes to compensate for these muta-

tions. In our transcriptome analyses of dominant disease-causative mutations in zebrafish,

we identified an interesting phenomenon where a disproportionate number of differen-

tially expressed genes reside on the same chromosome as a mutated gene. Here, we pro-

vide strong evidence supporting that the differential expression of some of these

chromosomally co-located genes is not due to the mutation but is due to differential segre-

gation of gene alleles with innately different expression levels (i.e. expression quantitative

trait loci, eQTLs). We have developed a procedure to measure the likelihood of differential

gene expression being due to an eQTL. This allows us to compensate for the presence of

such eQTLs in bioinformatic analyses. Our procedure, Differential Allelic Representation

(DAR) analysis, revealed evidence for aggregation of genes with related functions on the

same chromosome over evolutionary timescales. DAR analysis allows disentanglement of

eQTLs from mutation-dependent gene expression responses, thereby permitting more

comprehensive investigation of transcriptome data.

Introduction

Morphologies of chromosomes change over evolutionary timescales due to the processes of

translocation, inversion, duplication, and deletion. These processes change the order of genes

along a chromosome, and so change the interactions between those genes. Changes in chro-

mosome morphology create new regulatory relationships between genes and disrupt previous

ones because genes can share regulatory elements and a regulatory element for one gene may

be in an intron of a different nearby gene. The expression of genes is also influenced by their

location within chromatin regulatory domains existing within and between chromosomes

(reviewed by [1]), which are also disrupted after chromosome rearrangements.

To survive and reproduce, living cells/organisms must be resilient in the face of continuous

environmental and genetic change. Such resiliency has driven the evolution of robust systems

of homeostasis. One aspect of homeostasis is the ability to vary the expression of genes in differ-

ent circumstances to maintain appropriate cellular functions. Transcriptome analysis monitors

variations in gene expression at the RNA level. When transcriptome analysis is used to examine

a biological system before and after a change (environmental or genetic), the differences in tran-

script levels reflect both the direct impacts of the change and homeostatic responses to it.

The alleles of genes positioned in cis on the same chromosome may show genetic linkage

leading to non-random co-assortment into gametes [2]. However, despite linkage, the shuf-

fling of alleles between homologous chromosomes through recombination over successive

generations means that the probability of any two particular alleles of two genes being chro-

mosomally co-located in cis in a randomly selected individual should be the product of each

allele’s frequency in the population. Occasionally, a particular pair of alleles of two
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functionally-related genes can act in concert to increase an individual’s likelihood of survival

and reproduction. When a chromosomal rearrangement causes these two genes to exist within

linkage disequilibrium, the pair of alleles are more likely to be co-inherited by the next genera-

tion. This non-random co-inheritance of the two alleles bestows a further fitness advantage

and the frequency of this pair in the population increases. Positive selection for the pair of

alleles can eventually drive the new chromosomal arrangement to fixation–the chromosomal

rearrangement becomes homogeneous across the population. New variants may then arise

sporadically within the new arrangement.

Sir Ronald Aylmer Fisher FRS is recognized for his very significant contributions to devel-

oping the science of statistics and, in particular, for applying statistical methods to the study of

genetics. Fisher’s work, ‘The genetical theory of natural selection’ published in 1930 [3] is

regarded as central to the “modern synthesis” reconciling Darwin’s theory of evolution with

Mendelian genetics. In discussing the phenomenon of linkage disequilibrium between pairs of

alleles across a population he asserted that,

“. . .the presence of pairs of factors in the same chromosome, the selective advantage of each
[pair] of which reverses that of the other, will always tend to diminish recombination, and
therefore to increase the intensity of linkage in the chromosomes of that species.”

An expected outcome of this tendency, acting in an evolutionary background of substantial

chromosome rearrangement, is that rearrangements establishing linkage between function-

ally-related genes facilitate selectively advantageous linkage disequilibrium. Therefore, we pre-

dict that, over evolutionary timescales:

1. Functionally-related genes may group together to show linkage within chromosomes.

2. The smaller the selective advantage of functionally-related gene pairing, the tighter the

genetic linkage between them must be to exert positive selective pressure on chromosome

structure over evolutionary time.

3. A gene with multiple, distinct functions (each subject to independent homeostatic mecha-

nisms) will drive accumulation of sets of genes distinct for each function near that gene on

the same chromosome.

Considerable evidence exists for the clustering of functionally-related genes on chromo-

somes in both prokaryotes and eukaryotes [4,5]. Such clustering should be revealed as

CC-DEGs in transcriptome data when mutations change the activity of those chromosomally

co-located genes and initiate homeostatic responses. However, the reality of functional rela-

tionships between CC-DEGs is challenged by the possibility that their observed differential

expression results from unequal distribution between experimental comparison groups of

alleles with discrete levels of expression (due to differences in allelic transcription rate and/or

transcript stability), i.e. “expression quantitative trait loci”, eQTLs, as illustrated in Fig 1.

Indeed, obvious enrichments of DE genes on the same chromosome as a mutation-of-interest

have previously been observed in analyses involving comparisons of homozygous mutant with

homozygous wild-type individuals [6,7]. We recently observed such CC-DEGs when compar-

ing transcriptomes from pools of embryos either wild-type or homozygous for a loss-of-func-

tion mutation in the zebrafish gene fmr1 (orthologous to the human FMR1 gene mutated in

Fragile X Syndrome) [8]. However, that analysis also revealed enrichment in homozygous

mutant embryos for a particular gene set previously seen as affected in Fmr1 knock-out mice

[8,9], supporting the possibility that some of the CC-DEGs do participate in fmr1 functions,

and highlighting challenges in this aspect of transcriptome analysis.
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Fig 1. Transcriptome analysis of homozygous mutants compared to their wild-type siblings and the impact of

non-isogenic genetic backgrounds on gene expression. A) Experimental selection of progeny homozygous for a

mutant allele of a gene-of-interest (GOI, mutation-bearing chromosome indicated in red) necessarily involves

increased homozygosity for alleles of genes linked to that mutation (i.e. on the same chromosome). The rates of

transcription or transcript degradation for these alleles may differ significantly from their corresponding alleles on the

homologous wild-type chromosomes (shaded differentially to illustrate that these wild-type chromosomes are not

isogenic). B) Differential expression of alleles of a linked bystander gene, LG, between wild-type and mutant

chromosomes due to a functional interaction between the GOI and the LG. C) eQTL-driven differential expression of

LG between wild-type and homozygous mutant chromosomes in the absence of a functional interaction between the

GOI and the LG. The expression of LG differs independently of the GOI genotype when LG’s different alleles are

eQTLs. D) Breeding to produce genotype groups (e.g., homozygous GOI mutants for comparison to wild-type) selects

for differential representation between those groups for the alleles of neighbouring LGs. When those alleles are eQTLs,

they can show differential expression between the groups that is not a phenotypic effect of the mutation but can,

mistakenly, be inferred as such. Zebrafish icons used in this image were obtained from https://bioicons.com and have

been modified from DBCLS https://togotv.dbcls.jp/en/pics.html, licensed under CC-BY 4.0 Unported https://

creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1371/journal.pcbi.1011868.g001
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White et al. [10] recently published an analysis of gene expression differences between the

individual, inbred descendants of an ancestral cross between two discrete isogenic zebrafish

strains. This allowed comparison of gene expression from discrete chromosomal segments iso-

genic for one or other of the ancestral genotypes. The authors demonstrated evidence for the

existence and importance of eQTLs in DE gene analysis, and suggested some ways to identify

such eQTLs in transcriptome analyses.

Chromosomally co-located allele specific expression has been shown to affect RNA-seq

analyses in studies involving recessive mutations [10], but has not yet been investigated for

dominant mutations. An early-onset inherited (familial) form of Alzheimer’s disease (EOfAD)

is caused by dominant alleles of a small number of genes. The majority of EOfAD mutations

are missense mutations (or in-frame insertions/deletions) of the human gene PRESENILIN 1
(PSEN1) [11]. In contrast, some frameshift mutations in this gene cause a very distinct, domi-

nant, functional effect—an inflammatory skin disease, familial Acne Inversa (fAI) without Alz-

heimer’s disease [12–14]. We have examined the young adult brain transcriptomes from a

number of zebrafish models of these mutations [12,15–22]. As expected from the very different

disease phenotypes of human PSEN1 frame-preserving and frameshift mutations, our previ-

ously published analyses of these zebrafish mutation model transcriptomes have revealed very

distinct functional effects on energy metabolism and cell signalling pathways [12]. However,

among the genes detected as DE between the brains of the wild-type and the dominant hetero-

zygous mutant zebrafish, we were surprised to observe that a greater than expected number

were chromosomally colocalised with the mutation-of-interest (i.e. many are CC-DEGs). Here

we investigate this colocalization phenomenon further by examining between-group differen-

tial allelic representation in brain transcriptome datasets from zebrafish. We also extend our

investigation to similar mouse transcriptome datasets. We find strong support for the impor-

tance of eQTLs, but also for Fisher’s postulate on colocalization of functionally related genes.

We show that using differential allelic representation information can improve the detection

of significant gene sets.

Results

Transcriptome comparisons revealing CC-DEGs

Several datasets were selected to facilitate a comprehensive investigation into the presence of

CC-DEGs. A summary can be seen in Table 1.

CC-DEGs in heterozygous mutant analyses

Our previous observation of CC-DEGs in our analysis of homozygous fmr1 mutant zebrafish

embryos [8] led us to re-examine our numerous adult zebrafish brain transcriptome datasets

where we had previously analysed the effects of dominant mutations in heterozygotes. Surpris-

ingly, we saw CC-DEGs in a number of our analyses as illustrated by Manhattan plots of DE

gene expression (Figs 2A and S1A–S1C). To confirm that CC-DEGs are not a phenomenon

specific to zebrafish, we searched in public databases of transcriptome data for other datasets

comparing wild-type and mutant (but non-transgenic) individuals. While suitable datasets

were few, we found that an analysis of different APOE alleles (human nomenclature to denote

the use of humanised alleles) in mice showed CC-DEGs for 3-month-old cerebral cortices

homozygous for the Alzheimer’s disease-protective ε2 allele (APOE2) compared to cortices

homozygous for the neutral-risk ε3 allele (APOE3, [23], Fig 2B). Interestingly, CC-DEGs were

less obvious in the analysis of cortices homozygous for the Alzheimer’s disease-risk ε4 allele

(APOE4, S1D Fig), supporting that mutations/alleles that are more disruptive to cell biology

cause the appearance of DE genes distributed throughout the genome.
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White et al.’s analysis [10] of DE genes in the inbred descendants of two wild-type isogenic

zebrafish strains strongly supports the conclusion that many CC-DEGs are eQTLs and showed

how homozygosity for regions of the genome can enhance observation of allelic expression

Table 1. Summary of transcriptome data and experimental comparisons that comprise the analyses reported in the following sections. Experiments were chosen

that utilise zebrafish or mouse as the model organism, and discrete datasets are defined by the mutated gene-of-interest. Differential gene expression testing was performed

for each comparison, with the threshold for significance set to a false discovery rate (FDR)-adjusted p-value of less than 0.05. The total number of differentially expressed

genes (Total DEGs) is listed for each comparison, as well as the number that were chromosomally colocalised with the mutated gene (CC-DEGs). The significance column

(Sig.) indicates the Bonferroni-adjusted p-values for over-representation of CC-DEGs (Fisher’s Exact Test, ***:< 0.001, **:< 0.01, *:< 0.05).

Organism Mutant gene Chromosome Comparison Total DEGs CC-DEGs Sig.

Danio rerio psen1 17 T428del/+ vs +/+ 10 4 ***
W233fs/+ vs +/+ 11 7 **

naglu 24 A603Efs/A603Efs vs +/+ 53 25 ***
sorl1 15 R122Pfs/+ vs +/+ 5 4 ***

V1482Afs/+ vs +/+ 3 2 –

Mus musculus Apoe 7 APOE2/2 vs APOE3/3 (male) 664 99 ***
APOE2/2 vs APOE3/3 (female) 1663 183 ***
APOE4/4 vs APOE3/3 (male) 3963 299 –

APOE4/4 vs APOE3/3 (female) 649 49 –

https://doi.org/10.1371/journal.pcbi.1011868.t001

Fig 2. Manhattan plots highlighting CC-DEGs from differential expression testing in: A) Brain transcriptomes from a

comparison of zebrafish psen1W233fs/+ vs. psen1+/+ siblings at 6 months of age. psen1W233fs is a dominant fAI-like

frameshift allele. B) 3-month-old cerebral cortex transcriptomes from a comparison of homozygous male mice bearing

humanised APOE2 or APOE3 alleles. Non-random accumulations of DEGs are supported by Bonferroni-adjusted

Fisher’s exact test p-values for enrichment of DE genes on the mutant chromosome, A) psen1W233fs/+ vs. psen1+/+:

p = 7.41e-7, B) APOE2/2 vs. APOE3/3: p = 2.03e-10. Genes are plotted along the x-axis based on their genomic positions

along the chromosomes distinguished by alternating shades of grey. Genes on the chromosomes containing the

mutations are highlighted in red. The approximate locations of the mutated genes are indicated with small black arrows

on the x-axis. The raw p-values are plotted along the y-axis at the -log10 scale such that the most significant genes exist at

the top of the plot. The cut-off for gene differential expression (FDR-adjusted p-value< 0.05) is indicated by a dashed

horizontal line. Genes classified as differentially expressed under this criterion are represented as diamonds with a black

outline.

https://doi.org/10.1371/journal.pcbi.1011868.g002
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differences. Transcriptome comparisons between individuals or groups of individuals should

not reveal eQTLs when comparisons are made within single isogenic (e.g. inbred) back-

grounds or when allelic sequence differences between comparison groups (here described as

differential allelic representation, DAR) are sufficiently limited. Therefore, we sought to test

whether DAR between genotype groups in transcriptome datasets could be used to determine

the likelihood that any particular gene is differentially expressed due to eQTL effects. To facili-

tate this analysis, we assembled a computational workflow to quantify DAR between samples

(see below).

A method for differential allelic representation (DAR) analysis

Differential allelic representation (DAR) occurs when the composition of experimental sample

groups results in an uneven distribution of polymorphic loci between these groups. This sce-

nario is commonly encountered in RNA-seq experiments involving organisms that do not

share an isogenic background. DAR raises significant concerns regarding the reliability of

results in differential expression analysis. In cases where a polymorphic locus involves unequal

representations of eQTLs between sample groups, gene expression differences can be observed

irrespective of experimental condition, thereby contributing to the set of genes (or transcripts)

regarded as differentially expressed. This issue does not pertain to the statistical methods for

detecting differential expression, because the underlying biology does indeed result in differen-

tial expression of genes. However, the impacts of DAR are confounded with the experimental

condition of interest, necessitating the development of a complementary technique alongside

differential expression analysis to avoid erroneous inferences.

We developed a computational approach for the examination of DAR in RNA-seq data.

DAR analysis yields a metric for each observable polymorphic locus, offering a localised assess-

ment of expression differences that are possibly eQTL-driven across the genome. Notably, our

methodology exclusively utilises RNA-seq data, making it applicable to both ongoing and pre-

existing RNA-seq investigations.

Our pipeline for calculating DAR between sample groups is summarised in Fig 3 (see

Methods for extended details). Briefly, we determined single nucleotide variants based on the

GATK Best Practice Workflow for RNA-seq short variant discovery [24]. Monoallelic calls

Fig 3. Computational workflow for the calculation of DAR starting with raw RNA-seq short read data. Raw RNA-seq

reads must consist of at least two experimental groupings to allow the calculation of DAR between them.

https://doi.org/10.1371/journal.pcbi.1011868.g003
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(where only the reference allele is reported at a single nucleotide locus across all samples) were

excluded due to the computational implications for downstream processing. Bi- and multialle-

lic calls (one or more alternative alleles reported at a single nucleotide locus across all samples)

were then analysed using the R programming language [25]. We present the calculation of the

DAR metric as a modification of the Euclidean distance formula,

DAR1;2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

i2fA;C;G;Tgðpi1 � pi2Þ
2

2

s

ð1Þ

where DAR1,2 represents the DAR value between sample groups 1 and 2 at a single nucleotide

locus. pi1 and pi2 correspond to the proportion of the total reported allele counts (A, C, G or T)

in sample groups 1 and 2 respectively at a single nucleotide locus. Dividing the Euclidean dis-

tance of allele proportions by
p

2 results in an easy-to-interpret DAR metric where 0 repre-

sents identical allele proportions and 1 represents complete difference (non-identity).

DAR analysis of the humanised APOE alleles in a mouse cerebral cortex

transcriptome dataset

After establishing a workflow to quantify DAR between samples, we quantified variation in

this metric across entire genomes with a particular focus on chromosomes containing muta-

tions of interest. We chose the mouse APOE cortex transcriptome dataset for an initial DAR

analysis as it displayed the strongest signal of CC-DEGs on the mutant chromosome (Fig 2B).

For visualisation purposes, and to alleviate noise, we smoothed the DAR metric using an elastic

sliding window approach to calculate the mean DAR value at each single nucleotide variant

locus along with the nearest five loci on either side (n = 11). See S2A Fig for a summary of the

elastic window sizes. Interestingly, the cortex transcriptome comparison of mice homozygous

for APOE2 with those homozygous for APOE3 revealed a region containing peaks of very high

DAR localised around the APOE gene on Chromosome 7 in both male and female samples

(Figs 4 and S3). 99 and 183 CC-DEGs were observed in the comparisons of males and females

respectively, with an intersect size of 59 CC-DEGs. An inspection of the cumulative distribu-

tion of DAR across each chromosome supports the notion that the mutant chromosome con-

tains the most DAR of all the chromosomes (S4 Fig). In a completely isogenic strain, this result

would not be expected. However, the mice in this study were engineered through targeted

replacement of the murine Apoe locus with human APOE alleles by homologous recombina-

tion in mouse 129 strain embryonic stem cells followed by repeated backcrossing into the

C57BL/6J strain [26]. The strain 129 alleles of genes located near (in tight linkage with) the

APOE locus are less likely to be replaced by strain C57BL/6J alleles through recombination

than alleles of syntenic genes distant from APOE or alleles of genes on other chromosomes.

Having identified a region of high DAR potentially prone to eQTL-dependent effects, we

looked for CC-DEGs within our differential expression analysis. We observed a clear cluster-

ing of CC-DEGs around the APOE gene within the identified regions of high DAR, strongly

supporting the existence of eQTLs as drivers of differential expression (Fig 4). The remaining

DE genes on Chromosome 7 found within regions of low DAR are more likely to represent

biological responses to the mutation because they are DE even without close linkage. However,

genes may become DE as a secondary effect of eQTLs located elsewhere in the genome [27], so

the existence of a DE gene in a region of low DAR does not confirm a direct, primary func-

tional relationship with any mutation. We also noticed that the APOE region showed relatively

low DAR compared to the surrounding region, which was unexpected as each sample group

has a different APOE allele. On closer inspection, it was evident that variants in this region
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were removed during quality control filtering due to being classified as potential single nucleo-

tide polymorphism (SNP) cluster artefacts (>3 SNPs in a 35bp window). This most likely

occurs because the APOE alleles in these mice are humanised and therefore exhibit substantial

variation in the APOE region as reads were aligned to the mouse genome (GRCm39, Ensembl

release 104).

DAR analysis reveals zebrafish psen1 CC-DEGs are unlikely to be eQTLs

DAR analysis of the mouse APOE dataset showed convincing evidence implicating eQTLs as

the primary drivers of differential expression for a large proportion of genes. Unexpectedly,

our analysis of DAR in the comparisons of 6-month-old brain transcriptomes in zebrafish

psen1T428del/+ (EOfAD-like) vs. psen1+/+ siblings and in psen1W233fsl/+ (fAI-like) vs. psen1+/+

siblings did not support the hypothesis that those DE genes clustered near psen1 on zebrafish

Chromosome 17 are eQTLs. Nevertheless, the identified DE genes are indeed clustered with

psen1 on Chromosome 17 (supported by Bonferroni-adjusted Fisher’s exact test p-values for

enrichment of DE genes on Chromosome 17 despite consistently low DAR along this chromo-

some; psen1T428del/+ vs. psen1+/+: p = 8.63e-3, psen1W233fsl/+ vs. psen1+/+: p = 7.41e-7). As shown

in Fig 5, DAR along the length of Chromosome 17 in the psen1T428del/+ vs. psen1+/+ and the

psen1W233fsl/+ vs. psen1+/+ comparisons was uniformly below 0.2, as expected from the fact that

Fig 4. The relationship between DE genes and DAR along the entirety of mouse Chromosome 7 between male

APOE2/2 and APOE3/3 mouse cerebral cortices (at 3 months of age). The plot contains four sets of information

represented by separate tracks horizontally. Track A represents the axis of Chromosome 7. The position of the APOE gene

is marked and labelled in bold red. Track B displays differentially expressed genes according to their positions along the

chromosome. 99 of 1126 total genes (8.79%) on Chromosome 7 that were expressed in the dataset were classified as DE

(FDR< 0.05). Track C shows the trend in DAR as a connected scatterplot with each point in black representing the DAR

value at a single nucleotide variant position (elastic sliding window size = 11 variants). Positions of the DE genes shown in

track B are indicated by light red lines.

https://doi.org/10.1371/journal.pcbi.1011868.g004
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these mutations were generated in one, very inbred, strain of zebrafish. Indeed, the Tübingen

(Tu) strain zebrafish in the facility used to produce these mutant fish were bred in relatively

small populations in isolation for over 15 years. It is also notable that the genes that were DE

due to the EOfAD-like psen1T428del mutation were not the same as those DE due to the fAI-like

psen1W233fs mutation, consistent with these two very different types of mutation in the same

gene (reading frame-preserving vs. frameshift respectively) having discrete molecular effects

(as revealed and discussed in our previously published analysis [12]). (Note that the mecha-

nisms underlying the differential effects of frame-preserving and frameshift mutations on

PSEN1 function are currently unclear [28]). The genes that were DE due to the EOfAD-like

mutation are clustered very close to psen1, while those DE due to the fAI-like mutation are

greater in number and more widely distributed on Chromosome 17 (Fig 5). This finding is

consistent with the second prediction from Fisher’s assertion (gene pairings with a smaller

selective advantage require tighter genetic linkage, see Introduction) because the relatively

late-acting (after reproductive maturity), dementia-inhibiting function of psen1 that is

Fig 5. The relationship between DE genes and DAR along the entirety of zebrafish Chromosome 17 in brain

transcriptome comparisons of 6-month-old wild type fish against sibling fish heterozygous for either of two

different psen1 mutations. Track A represents the axis of Chromosome 17. The position of psen1 is marked and

labelled in bold red. Tracks B and C show the results from the EOfAD-relevant psen1T428del/+ vs. psen1+/+ comparison,

while tracks D and E show the fAI-relevant psen1W233fsl/+ vs. psen1+/+ comparison. Tracks B and D display DE genes

from their respective comparisons, while tracks C and E show the trend in DAR as a connected scatterplot with each

point representing the DAR value at a single nucleotide variant position (elastic sliding window, n = 11 variants). The

positions of DE genes are highlighted on the DAR tracks in a light red colour.

https://doi.org/10.1371/journal.pcbi.1011868.g005
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disrupted by the EOfAD-like mutation should only exert mild selective pressure on the organ-

ism’s survival and reproduction. In contrast, the fAI-like mutation affects the role of Psen1

protein in Notch signalling and in other cellular signalling pathways that are important in

embryo development and immune system function, and so likely exerts stronger selective

effects. It is also relevant to note that meiotic recombination is suppressed in male zebrafish

relative to females so that recombination distances along of the majority of chromosomes,

including Chromosome 17, are less than 50 centiMorgans in males [29]. This means that, in

male zebrafish, alleles of any two genes anywhere on Chromosome 17 are genetically linked.

Due to the low numbers of DE genes in this dataset, we looked for additional evidence that

the clustering of DE genes on Chromosome 17 had not occurred by chance. Therefore, we

investigated whether DE clustering was still observed after applying a less stringent DE signifi-

cance threshold. We performed an additional analysis using an FDR-adjusted p-value< 0.15

(i.e. 3α for α = 0.05) allowing for detection of additional DE genes, along with a likely increase

in false positives. This change increased the total number of DE genes from 10 to 20 across the

entire genome in the EOfAD-relevant psen1T428del/+ vs. psen1+/+ comparison, and from 11 to

30 in the fAI-relevant psen1W233fsl/+ vs. psen1+/+ comparison. Both comparisons remained sig-

nificant for enrichment of DE genes on Chromosome 17 with Bonferroni-adjusted Fisher’s

exact test p-values of 1.88e-2 and 2.73e-12 respectively.

Aggregation of psen1 CC-DEGs over evolutionary time

Our analysis of zebrafish psen1 mutant brain transcriptomes supports Fisher’s contention that

selection for linkage disequilibrium may influence chromosome structure over evolutionary

timescales. Therefore, we looked for evidence of structural rearrangements favouring cluster-

ing of DE genes during teleost (bony fish) speciation. Medaka (Oryzias latipes) is a small fresh-

water teleost sharing a common ancestor with zebrafish approximately 290 million years ago

[30]. Its widespread use as a model organism has encouraged detailed characterisation of its

genome. The medaka genome has not undergone any major chromosomal rearrangements in

the 323 ± 9.1 million years since divergence from its common ancestor with zebrafish [31].

Therefore, it provides a suitable reference outgroup to assess how the zebrafish genome has

changed over time.

We accessed The Synteny Database [32] to assess whether CC-DEGs revealed in our various

analyses exist on separate chromosomes in the medaka genome. Although our efforts were

limited by low numbers of DE genes, we did indeed find evidence supporting that some psen1
CC-DEGs have become chromosomally co-located during zebrafish evolution. Of the seven

DE genes chromosomally co-located with psen1 (on zebrafish Chromosome 17) in fAI-like

psen1W233fs mutants, two (fam167aa, sh3pxd2ab) were predicted to have orthologues on sepa-

rate medaka primary chromosomes, while another two (psen1, dglucy) were predicted to be

located on alternate scaffolds (S5 Fig). The remaining three DE genes (mrpl33, kcnk17, si:
ch211-278p9.3) were either not present in the Ensembl version 71 database or not predicted to

have medaka orthologues. As Ensembl version 71 was released in 2013 we wanted to confirm

our findings with the most recent Ensembl database (version 108, released 2022). By searching

the gene names of the zebrafish genes DE on Chromosome 17, we confirmed that fam167aa
and sh3pxd2ab are located on medaka Chromosomes 24 and 1 respectively as predicted by

The Synteny Database. However, four DE genes (psen1, dglucy, mrpl33, kcnk17) where ortho-

logues could not be found on the medaka primary chromosomes of Ensembl version 71 have

since been assigned to medaka Chromosome 22 and represent syntenies since the last com-

mon ancestor of medaka and zebrafish. While these four genes on medaka Chromosome 22

have been linked together with psen1 for at least 323 ± 9.1 million years in zebrafish, fam167aa
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and sh3pxd2ab may be examples of genes that have been captured more recently during zebra-

fish evolution due to functional interactions with psen1.

DAR-based exclusion of probable eQTLs improves gene set enrichment

analyses

eQTL artifacts due to linkage represent noise that could reduce the sensitivity of functional

pathway analysis of mutations. Therefore, we investigated whether we could reduce such noise

(exclude eQTLs) by excluding genes located in those parts of the genome differing between

mutant and wild-type individuals. Using the previously calculated DAR metric across the

genome, we set gene exclusion thresholds at DAR values ranging from 0.1 to 1.0 at 0.1 intervals

prior to functional enrichment analysis. We excluded from analysis those genes located in

regions with a DAR value greater than the threshold. As the maximum possible DAR metric

value is 1, a threshold at this value does not remove any genes and, therefore, represents the

results of analyses where no eQTLs are excluded. We utilised two well-established and comple-

mentary pathway analysis methods at each of the ten thresholds to observe the effects of DAR

metric-based filtering; Rotation Gene Set Testing (ROAST) implemented using the fry func-

tion in Bioconductor package limma [33,34], and Gene Set Enrichment Analysis (GSEA)

implemented using Bioconductor package fgsea [35,36]. We chose the 186 a priori gene sets

defined by the Kyoto Encyclopedia of Genes and Genomes (KEGG) [37] to be tested in each

analysis.

To examine the effects of different DAR metric thresholds, we applied this approach to a

zebrafish brain transcriptome dataset previously generated by our laboratory that includes

transcriptome data on the effects of homozygosity for a mucopolysaccharidosis type IIIB (MPS

IIIB)-like mutation in the gene naglu, nagluA603Efs, at 7 days post fertilisation (dpf, see also

Data description and generation). This dataset displays a highly variable pattern of DAR

along the mutant chromosome and clustering of DE genes near the mutation site (Fig 6).

Mutations in the human NAGLU gene causing MPS IIIB have a clearly understood

Fig 6. The relationship between DE genes and DAR along Chromosome 24 between nagluA603Efs/A603Efs and naglu+/+ 7 dpf larval zebrafish. Track A

represents the axis of Chromosome 24. The position of naglu is marked and labelled in bold red. Track B displays DE genes according to their positions

along the chromosome. Track C shows the trend in DAR as a connected scatterplot with each point representing the DAR value at a single nucleotide

variant position (elastic sliding window, n = 11 variants). Positions of the DE genes shown in track B are indicated by light red lines.

https://doi.org/10.1371/journal.pcbi.1011868.g006
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pathological mechanism; they reduce a lysosomal enzyme activity required in the degradation

of heparan sulfate [38]. In contrast to EOfAD, where the pathological mechanism(s) is dis-

puted, interpretation of the results of functional analyses of mutations causing MPS IIIB is less

ambiguous. In fact, the KEGG collection of gene sets includes a gene set/pathway directly

related to heparan sulfate degradation, “Glycosaminoglycan Degradation”. We performed func-

tional analysis of nagluA603Efs/A603Efs vs. naglu+/+ siblings from this dataset at each of the afore-

mentioned thresholds and the results are summarised in Fig 7.

Setting DAR thresholds caused only minor impact on the ranking and significance of gene

sets when using ROAST. The lower thresholds of 0.1 and 0.2 showed clear perturbations in

rankings but this is unsurprising due to the large proportion of genes excluded. Results at low

thresholds would be expected to be unreliable due to the removal of genes representing real

gene expression differences caused by the mutation. This is evident from the loss of statistical

significance of all three pathways that had previously shown significance at thresholds greater

than 0.2. The consistent significance of the pathways (gene sets) Glycosaminoglycan Degrada-
tion, Other Glycan Degradation, and Lysosome at most thresholds gives confidence in the results

of ROAST because these three pathways have previously been implicated in MPS IIIB [39].

Fig 7. The impact of gene exclusion by DAR thresholding on the outcomes of functional enrichment analysis

using KEGG gene sets. Panel A displays the outcomes of ROAST, while panel B displays the outcomes of GSEA. Gene

sets are displayed only if they were found in the top ten most significant gene sets for at least one DAR threshold. The

relative ranking between the displayed gene sets is represented along the y-axis for each threshold indicated on the x-

axis. Filled dots indicate that the gene set was classified as significantly enriched (FDR-adjusted p-value< 0.05) at the

respective threshold. The numbers inside the dots show the overall ranking of the gene set among all 186 KEGG gene

sets tested. Panel C displays the proportion of DE (grey) and non-DE (black) genes that were removed at each

threshold. The number of genes this equates to is displayed above each bar of the chart.

https://doi.org/10.1371/journal.pcbi.1011868.g007
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In contrast to the effects on ROAST, the imposition of DAR thresholds before GSEA offers

a number of interesting observations. Substantial alterations in rankings are seen crossing

each threshold for most pathways. This trend remains true even when very few genes are

removed from the analysis, for example by DAR thresholds at 0.8 and 0.9 (20 and 4 genes

excluded in total respectively). A general trend showing an increasing number of significant

gene sets is observed as the DAR metric threshold is lowered. Eleven pathways are classified as

significant at a threshold of 0.3 in comparison to four pathways when no filtering was per-

formed (i.e. at a DAR threshold = 1). Most notably, the pathway Glycosaminoglycan Degrada-
tion that is relevant in MPS IIIB achieves statistical significance uniquely at a DAR threshold

of 0.6 where a total of 66 genes (11 DE, 55 not DE) are excluded from the analysis. Interest-

ingly, and despite being an expected true positive, this pathway does not achieve significance

at any other threshold. Closer inspection of the p-values of pathways that achieved significance

at one threshold or more (S6 Fig), found that most pathways return smaller p-values as the

DAR metric threshold is lowered, until too many genes are excluded. The Lysosome and Regu-
lation of Actin Cytoskeleton pathways show this trend even as the number of leading-edge

genes (those driving the enrichment) become fewer.

Due to our finding that GSEA produced a greater number of significant gene sets at lower

DAR thresholds, we examined more closely the genes remaining after imposition of a DAR

threshold = 0.3. Interestingly, Fisher’s exact test revealed that significant enrichment for clus-

tering of DE genes on Chromosome 24 persisted (Bonferroni-adjusted p-value = 6.16e-3)

despite the exclusion of 20 of the 25 DE genes initially found on this chromosome. Two of the

five remaining genes on Chromosome 24 at DAR = 0.3 can be found in The Synteny Database.

These genes exist on medaka Chromosomes 17 and 20 indicating their aggregation onto Chro-

mosome 24 during the past ~323 million years, see S7 Fig.

DAR-based weighting in GSEA

GSEA requires a ranked list of genes to calculate gene set enrichment scores. In typical GSEA,

a ranking statistic is calculated from the results of differential expression analysis, which is

used to define the order of the ranked list. Often, the ranking statistic is calculated by multiply-

ing the sign of each gene’s log2 fold-change value by -log10 of its respective p-value, resulting in

the most significant up-regulated genes being positioned at the top of the list, and the most sig-

nificant down-regulated genes at the bottom. Genes at the top or bottom of the list provide a

greater contribution to their associated pathways’ enrichment scores than those in the middle

of the list. To deemphasise the contribution to differential expression of genes more likely to

be eQTLs, we weighted each gene’s ranking statistic prior to GSEA by multiplying it by the

complement of the gene’s DAR value (1 –DAR). See S8 Fig for the impact of weighting on

gene rankings in the nagluA603Efs/A603Efs vs. naglu+/+ 7 dpf sibling larval transcriptome dataset.

This resulted in genes existing in high DAR regions being pushed towards the middle of the

list, where they would have less impact on the GSEA algorithm. Weighting gene ranks using

the DAR metric in the nagluA603Efs/A603Efs vs. naglu+/+ dataset caused one pathway that was not

initially significant, Glycosaminoglycan Degradation, to achieve significance (FDR-adjusted p-

value = 1.56e-2). Given the expectation of Glycosaminoglycan Degradation being a true posi-

tive, this result supports DAR-weighting as a viable strategy when using GSEA. The other five

initially significant pathways, Lysosome, Focal Adhesion, Other Glycan Degradation, ECM
Receptor Interaction, and Spliceosome, all retained their significance when using the weighted

approach (Fig 8).

We also examined the effects of DAR-weighting in our separate brain transcriptome dataset

from 6-month-old zebrafish that compares a heterozygous mutation in the sorl1 gene
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(sorl1V1482Afs/+, an EOfAD-like model) to wild-type siblings [21]. This dataset displayed

CC-DEGs (S1 Fig) and DAR levels of around 0.4 were noted as a concern (S9 and S10 Figs). A

comparison of GSEA results before and after weighting also showed compelling results for

pathways we expect to be perturbed by the mutation (S11 Fig). Gene sets associated with neu-

rodegeneration, i.e. Parkinsons disease, Huntingtons disease and Alzheimers disease, all showed

increased significance using the DAR-weighting method. Additionally, Oxidative phosphoryla-
tion, the most significantly enriched gene set and one we see consistently enriched in all our

zebrafish models of EOfAD, also increased in significance. Three of the pathways (Viral myo-
carditis, Cytokine-Cytokine Receptor Interaction and Galactose metabolism) that were initially

classified as significant, but were on the verge of non-significance, were shown to lose signifi-

cance after DAR-weighting.

DAR-based weighting in over-representation analysis

Over-representation analysis differs from the approaches of ROAST and GSEA by determin-

ing if a higher-than-expected representation of DE genes exist within chosen gene sets (e.g.

KEGG pathways). We sought to broaden our investigation into the utilisation of DAR with

existing enrichment methods by performing over-representation analysis on Gene Ontology

(GO) terms. A standard approach in over-representation analysis is to perform a hypergeo-

metric test. However, in RNA-seq data, selection bias attributed to transcript length [40] vio-

lates the assumptions behind a hypergeometric distribution. The GOseq method [41]

addresses the implications of selection bias in RNA-seq datasets by initially calculating a Prob-

ability Weighting Function (PWF) from data representing the source of bias, such as transcript

length. The PWF is then used to weight the chance of selecting each gene when forming a null

distribution for gene set membership. However, the bias data used to calculate a PWF need

not be restricted only to transcript length. A PWF can be formulated using any type of data

that is expected to influence the classification of a gene as being DE.

To test the utility of the DAR metric in a PWF we implemented GO over-representation

analysis with the GOseq method and compared the outcomes of two different choices of bias

data: transcript length and DAR. We chose the MPS IIIB relevant nagluA603Efs/A603Efs vs.

naglu+/+ data to illustrate our findings, as this dataset contains a high number of DE genes

Fig 8. Comparison of GSEA results for KEGG gene sets that achieved significance before and/or after use of DAR to

weight the gene-level ranking statistic in the nagluA603Efs/A603Efs vs. naglu+/+ 7 dpf sibling larval transcriptome dataset. An

asterisk indicates that a pathway was determined to be significantly enriched (FDR-adjusted p-value< 0.05).

https://doi.org/10.1371/journal.pcbi.1011868.g008
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relative to other datasets and our knowledge of the biological effects of mutations in the corre-

sponding human gene (NAGLU) is quite detailed.

Firstly, we compared plots of the PWF calculated from either transcript length or DAR to

quantify the amount of respective bias present in the data (S12 Fig). Minimal transcript length

bias was observed, while genes with high DAR showed a clear bias towards classification as

DE. This means that transcript length has relatively less influence than DAR on the formation

of the null distribution for assessing over-representation in this dataset, and the outcomes can

be interpreted as being more similar to that of a typical hypergeometric test. We then identi-

fied those GO terms showing significant over-representation of DE genes (Fig 9). Both choices

of bias data returned the same three GO terms as significant (FDR-adjusted p-value< 0.05).

These GO terms are known to be implicated in MPS IIIB pathology: N-acetylneuraminate cat-
abolic process, N-acetylglucosamine metabolic process and lysosome. However, similar to the

outcomes of using DAR to weight the GSEA ranked list, gene sets implicated in MPS IIIB

pathology showed greater statistical significance when DAR was used as bias data, suggesting

that DAR may be suitable for the improvement of over-representation analysis.

Discussion

High throughput RNA-sequencing is currently the most advanced technology for gene expres-

sion analysis. However, experimental artifacts are widespread and can lead to misinterpreta-

tion of results when not appropriately addressed. There is considerable evidence for transcript

length and guanine-cytosine (GC) content as complexities of RNA-seq contributing to bias in

differential expression and functional gene set analyses [42,43]. Techniques such as cqn [44],

EDASeq [45] and GOSeq [41] have been developed to assist in the correction of these issues.

Biological artefacts resulting from less-understood mechanisms such as transcriptional burst-

ing (reviewed in [46]) also pose questions about the reliability of inferences from RNA-seq

data. As we uncover new challenges in the interpretation of RNA-seq data, we require the con-

tinuous development of procedures to identify and alleviate such situations.

White et al. [10] recently proposed that CC-DEGs might be mistakenly interpreted as dif-

ferential expression caused by a mutation of interest when, in reality, they are an allele-specific

expression (eQTL)-dependent effect. The authors highlighted that eQTLs can be revealed in

contexts of differential allelic representation between sample groups subject to comparison; a

situation commonly encountered when using non-isogenic strains of model organisms. White

et al. used inbred descendants of a cross between two discrete isogenic wild-type zebrafish

strains and identified chromosomal sub-regions of homozygosity corresponding to one or

other of the original strains. When gene expression data from these individuals was grouped

Fig 9. Comparison of over-representation analysis results for GO terms that achieved significance when using either

transcript length or DAR as bias data for GOseq analysis of the nagluA603Efs/A603Efs vs. naglu+/+ 7 dpf sibling larval

transcriptome dataset. All three displayed GO terms showed statistical significance when transcript length or DAR was used

as bias data. However, DAR showed greater significance for all terms.

https://doi.org/10.1371/journal.pcbi.1011868.g009
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according to such regional homozygosity, and then compared according to its derivation from

the original strains, evidence was revealed for an eQTL basis of differential expression. While

the analysis was appropriately designed to address the eQTL issue, the regions of chromosomal

homozygosity analysed were relatively small and lacked the genetic context that would com-

monly be encountered in RNA-seq experiments investigating the effects of mutations. Gener-

ally, homozygosity for a mutant or wild-type sequence is the criterion for sorting individual

samples into comparison groups, resulting in samples homozygous for a large portion of a

mutation-bearing chromosome near the site of the mutation. The majority of the 82 homozy-

gosity regions analysed by White et al. were limited to 3Mbp or less, which accounts for ~6%

of the average length of zebrafish chromosomes (GRCz11, Ensembl version 101). In the con-

text of a zebrafish transcriptome comparison such as described in Fig 1, recombination will

often alter the size of the shared homozygous region to a length shorter than an entire chromo-

some. However, the region of homozygosity around the mutation locus may remain larger

than 3 Mbp, particularly as recombination is suppressed during meiosis in male zebrafish [29].

Our discovery of clustering of, apparently, non-eQTL DE genes around heterozygous psen1
mutations is consistent with Fisher’s assertion that functional relationships between genes cre-

ate selective pressure driving the chromosomal co-location of advantageous allelic pairs during

evolution to allow linkage disequilibrium. However, the differential representation of eQTLs

in groups under comparison is also a parsimonious explanation for CC-DEGs. In an attempt

to resolve these two explanations, we developed a means to measure localised between-group

differential allelic representation in RNA-seq datasets. Our DAR metric allows for refined

identification of genomic regions that may be prone to eQTL expression bias in transcriptome

studies. Such bias was clearly highlighted in our analysis of the mouse APOE dataset (Fig 4)

where we found extreme clustering of genes around the APOE locus, apparently differentially

expressed due to differential representation of eQTLs in the comparison groups. By the same

measure, the CC-DEGs associated with heterozygous, dominant psen1 mutations are unlikely

to be eQTLs. Intriguingly, the CC-DEGs differ for the functionally very distinct psen1T428del

EOfAD-like and psen1W233fs fAI-like mutations, and the degree of clustering of the CC-DEGs

is consistent with the selective disadvantage that each mutation would cause. In particular, the

fAI-like mutation, which we have shown to affect significantly Notch signalling [12] (a mecha-

nism of central importance to cell differentiation and embryo development, reviewed in [47])

shows differentially expressed genes scattered across the entire length of Chromosome 17, in

contrast to the fewer, tightly clustered DE genes of the EOfAD-like mutation that, in humans,

causes an adult-onset disease. In male zebrafish, the entirety of Chromosome 17 shows a

recombination distance of less than 35 cM (~118 cM in females) [29] meaning that alleles of

any pair of genes on this chromosome can exist in a state of linkage disequilibrium and so

might be under positive selection for chromosomal co-location if co-involved in Notch signal-

ling-dependent processes.

Our limited investigation of chromosome evolution in zebrafish revealed some evidence

consistent with the idea that selection for linkage disequilibrium may be influential during

genome evolution. A number of CC-DEGs due to mutation of psen1 were found to reside on

separate chromosomes in an ancestral chromosome arrangement. However, a far more expan-

sive and detailed investigation of this issue would be necessary for confidence that generation

of linkage disequilibrium is an important positive selective pressure on chromosomal rear-

rangements. If such selective pressure is important, then why have CC-DEGs not been

observed more widely in transcriptome studies? It is notable that the only situations where our

laboratory has observed distinct CC-DEGs patterns are in well-controlled comparisons of sin-

gle gene mutations in 2 dpf embryos [8], 7 dpf larvae, or in young (~6-month-old zebrafish &

~3-month-old mouse) whole brains/cortices. If genes are connected in complex, homeostatic
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networks, then disturbance of only one network node would cause great expression changes in

only the most closely co-functional nodes, much as pulling on one point in a spider’s web

causes greatest displacement for the most closely associated threads. In contrast, influences

that disturb multiple nodes simultaneously (such as environmental change) would, like wind

over a spider’s web, give much more widespread network expression change. The magnitude

of a mutation’s phenotypic effect may also be a factor. In our analysis of human APOE alleles

in humanised mouse cortices, the APOE4 allele may differ in its activity from APOE3 more sig-

nificantly than the APOE2 allele differs from APOE3, contributing to the greater number and

broader chromosomal distribution of genes that are DE in the APOE4/4 vs. APOE3/3 compari-

son than the APOE2/2 vs. APOE3/3 comparison.

Identification of possible eQTLs in transcriptome comparisons is important if their exclu-

sion from analyses can improve the identification of affected gene sets. Our investigation into

utilising the DAR metric to exclude possible eQTLs in the nagluA603Efs/A603Efs vs. naglu+/+ 7 dpf

sibling larval transcriptome dataset revealed a number of interesting observations. Both

ROAST and GSEA methods returned the expected Glycosaminoglycan Degradation gene set as

significantly enriched at various stages of the thresholding procedure. ROAST, however,

appeared far more robust to the removal of genes in comparison to GSEA. ROAST consis-

tently reported Glycosaminoglycan Degradation as significantly enriched at most DAR thresh-

olds, together with two other gene sets known to be implicated with MPS IIIB disease (Other
Glycan Degradation, and Lysosome). These gene sets also remained consistent in their respec-

tive rankings as defined by their p-values. GSEA, on the other hand, displayed considerably

more variability in its outcomes. Aside from the four gene sets that remained significant at all

thresholds using GSEA (Lysosome, Focal Adhesion, Other Glycan Degradation, ECM Receptor
Interaction), we noticed that excluding genes had a clear impact on the relative rankings of

gene sets. We also observed a general increase in the number of significant gene sets as more

genes from high DAR regions were excluded, suggesting that the removal of eQTL-biased

genes may improve the sensitivity of GSEA. This is indeed evident for the Glycosaminoglycan
Degradation pathway, which only achieved significance at a DAR threshold of 0.6. It is likely

that the Glycosaminoglycan Degradation pathway/gene set did not achieve significance at a

threshold greater than 0.6 because the genes of this dataset mostly have DAR values below this

threshold. Therefore, removal of biased genes with DAR greater than 0.6 allowed for those

genes associated with Glycosaminoglycan Degradation to increase their relative ranking among

the genes remaining. Similarly, at a DAR below 0.6, sufficient genes of the Glycosaminoglycan
Degradation gene set were removed for this gene set to lose significance. The detection of the

MPS IIIB-related Glycosaminoglycan Degradation pathway in this data set only at a DAR

threshold of 0.6 suggests that this DAR threshold is the most suitable for removing bias from

this particular dataset. However, the optimal DAR threshold is likely to vary between datasets

so that its choice becomes arbitrary. Therefore, we considered alternative solutions to this

issue, i.e. weighting-based approaches.

The disparity in the effects of thresholding between ROAST and GSEA is considerable but

not surprising. Indeed, GSEA is well-known to be prone to bias, such as the false positive calls

attributed to sample-specific gene length bias by Mandelboum et al. [42]. GSEA requires a

gene-level ranked list as determined by differential expression analysis to calculate down-

stream gene set scores. It is also a competitive test, meaning that the magnitude of enrichment

of each gene set affects the significance assessment of other gene sets. Therefore, biased genes

influence the ranking of genes showing mutation-driven differential expression, and gene sets

containing the biased genes affect the significance of gene sets without them. In comparison,

ROAST is a non-competitive test that works directly from the gene expression values, without

requiring intermediate calculations of gene-level scores. Therefore, in the context of ROAST,
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biased genes will only impact the outcomes for a particular gene set if they are a member of

that gene set. This provides a likely explanation for ROAST appearing more robust to experi-

mental biases than GSEA.

In terms of good bioinformatics practise, excluding information is generally undesirable in

contrast to applying statistical methods such as gene-level weightings to address differences in

confidence. The DAR-based weighting approach for GSEA presented compelling findings

because Glycosaminoglycan Degradation, a pathway we expect to see enriched in studies of

MPS IIIB, only achieved significance after the ranked list was weighted with DAR, along with

all other gene sets, which showed consistent significance across all thresholds. While the gene

sets we expected to see enriched in the sorl1V1482Afs/+ vs. sorl1+/+ comparison were already sta-

tistically significant before weighting, the increase in significance after weighting further rein-

forces the validity of this method. This finding provides confidence that using DAR to weight

ranking statistics and adjust gene rankings can be a suitable approach to improving GSEA in

situations where eQTLs are present. While this approach is not applicable for ROAST, as it

does not require intermediate gene-level rankings, ROAST appears far more robust to eQTL

artefacts and may simply be a preferable choice in many situations.

The application of DAR to calculate a PWF for the GOseq method showed promising

results for the improvement of over-representation analysis. This provides a further example

of where DAR can be utilised as a weighting technique for statistical analysis without the

removal of data. However, due to the fact that there was minimal length bias in the naglu data-

set, the question arises as to whether it is more important to account for transcript length or

DAR when length bias is, in fact, present. In this situation we suggest that length bias is

accounted for prior to differential expression testing through well-established methods such as

cqn [44], allowing the impacts of DAR to be addressed downstream when performing over-

representation analysis.

Materials and methods

Data description and generation

Two of the RNA-seq datasets involved in this analysis have already been described in previ-

ously published analyses. For information about animal ethics, genome editing, breeding strat-

egy and RNA-seq data generation for each dataset please refer to their respective publications.

The psen1 mutant zebrafish dataset is described in [12] and is available in the GEO database

(GSE164466). The APOE mouse dataset is described in [26] and is available at the AD Knowl-

edge Portal (accession number syn20808171, https://adknowledgeportal.synapse.org/). The

nagluA603Efs/A603Efs vs. naglu+/+ 7 dpf sibling larval RNA-seq dataset is available from the GEO

database (GSE217196). It is comprised of RNA-seq libraries derived from whole zebrafish 7

dpf sibling larvae either heterozygous for the EOfAD-like mutation psenQ96_K97del, homozy-

gous for the MPSIIIB-like mutation nagluA603Efs, or wild-type.

Differential expression analysis

Paired-end raw RNA-seq reads in FASTQ format were assessed for quality with FastQC [48]

and ngsReports [49]. Adapters, poly-G regions and bases with a PHRED score below 20 were

trimmed from raw RNA-seq data using fastp (v0.23.2) [50]. Any resulting reads were removed

if they were shorter than 35bp after trimming. Trimmed reads were aligned to the Ensembl

genome (GRCz11 release 101 for zebrafish, GRCm39 release 104 for mouse) using STAR
(v2.7.7a) [51] in two-pass mode to achieve better alignment around novel splice junctions.

Aligned reads were counted at the gene-level using featureCounts from the Subread package

(v2.0.1) [52] if they were unique and mapped to strictly exonic regions. The analysis of count
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data was then performed in R [25]. Genes were retained for downstream analysis if they had a

minimum of 1 count per million in at least the number of samples equalling the smallest genotype

group. Differences in library sizes was accounted for by normalisation using the trimmed mean

of M-values method [53]. Conditional Quantile Normalisation (CQN, [44]) was performed prior

to differential expression analysis if guanine-cytosine content or length bias was detected in the

dataset. Differential expression analysis was performed by fitting a negative binomial generalized

log-linear model to gene-level counts and likelihood ratio testing using edgeR [54]. The design

matrix was specified with an intercept of 0 and coefficients corresponding to genotypes. Contrasts

were defined and the null hypothesis was tested that the specified contrasts of the coefficients are

equal to zero. Genes were considered to be differentially expressed in each comparison if the false

discovery rate (FDR)-adjusted p-value was less than 0.05.

Variant calling and the DAR metric

Variants were determined based on the Genome Analysis Toolkit (GATK) best practices work-

flow for RNA-seq short variant discover (SNPs + Indels) [24]. Unique Molecular Identifiers

(UMIs) were incorporated into FASTQ headers with fastp (v0.20.1) where this information was

available to improve deduplication methods. Adapters were trimmed from raw reads using fastp
(v0.20.1) and resulting trimmed reads were discarded if they were shorter than 35bp. Trimmed

reads were aligned to the Ensembl genome (GRCz11 release 101 for zebrafish, GRCm39 release

104 for mouse) using STAR (v2.7.7a) in two-pass mode. Read groups were assigned to the aligned

reads based on sample and sequencing lane with the GATK’s (v4.2) AddOrReplaceReadGroups to

allow accurate correction of technical batch effects. Reads were grouped based on their UMI and

mapping coordinates by tagging BAM files with umitools group (v1.1.1) [55]. Reads were dedupli-

cated with Picard MarkDuplicates (GATK v4.2) and those that spanned splicing regions were

split using SplitNCigar reads (GATK v4.2). A set of known variants was obtained from the

Ensembl database for the corresponding release chosen for the Ensembl genome during align-

ment. Base Quality Score Recalibration (BQSR) was performed with BaseRecalibrator and

ApplyBQSR (GATK v4.2) to detect systematic errors in sequencing and adjust base quality scores

accordingly. Variants were called in GVCF mode with HaplotypeCaller and joint-genotyped with

GenotypeGVCFs (GATK v4.2). The resulting calls were filtered based on the GATK’s recom-

mended specific hard filters (phred-scaled p-value using Fisher’s exact test for strand bias (FS)>

60, variant confidence/quality by depth (QD)> 2, root mean square mapping quality (MQ)<

40, strand odds ratio (SOR)> 4). Lastly, variants were selected for only single nucleotide poly-

morphisms (SNPs) using the GATK (v4.2) SelectVariants tool.

Calculation of the DAR metric was performed in R. Genotype calls were assessed at each

SNP locus that contained a non-reference allele in at least one sample. Samples were grouped

according to mutant genotype and SNPs were excluded from the analysis if the number of

samples with missing or filtered genotype calls was greater than 50% within each group.

Allele-level counts for each SNP were normalised as a proportion of the total number of

reported alleles for each group (2n alleles reported for n genotypes called). The Euclidean dis-

tance formula was then implemented using the base R dist function on the normalised allele

counts between the sample groups contrasted during differential expression analysis. The cal-

culated distance was divided by its maximum possible value of
p

2 to achieve the DAR metric

ranging between 0 and 1.

Assigning gene-level DAR values

Because not all genes contained SNP information to assign a DAR value, we smoothed the

DAR metric using an elastic window approach of n = 11 SNPs, allowing for a broader
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representation of DAR. Genes were assigned a DAR value based on the average of any regions

the gene was located in.

DAR-based thresholding for functional enrichment analysis

Prior to functional enrichment analysis, gene exclusion thresholds were established at DAR

values ranging from 0.1 to 1.0 at intervals of 0.1. Here, any genes that had an assigned DAR

value above the threshold were excluded from the analysis. Two separate methods were chosen

to perform functional gene set analysis: ROAST [33], implemented with the fry function from

the limma package [34], and GSEA [35], implemented with the fgseaMultilevel function from

the fgsea package [36], Both methods were performed at each of the 10 established DAR

thresholds.

DAR-based weighting for functional enrichment analysis

We evaluated GSEA under two conditions: with and without DAR-based weighting. GSEA

without DAR weighting involved creating a ranked list, where the order was determined by a

ranking statistic that prioritises the most significantly upregulated genes at the top and the

most significantly downregulated genes at the bottom of the list. In the weighted approach, the

ranking statistic for each gene was adjusted by multiplying it with the complement of the

gene’s associated DAR value (i.e. 1 –DAR).

Over-representation analysis was performed using the goseq function from the goseq pack-

age [41]. Each gene’s median transcript length or DAR value was used to calculate a PWF for

weighting the chance of selecting a gene when forming the null distribution for gene set mem-

bership. GO terms with no DE genes or less than 5 total genes were excluded from the

analysis.

The Synteny Database

Analysis of conserved synteny between zebrafish and medaka was performed using the dot

plot feature of the Synteny Database [32]. The Danio rerio Ensembl version 71 genome was

selected as the source genome and the Oryzias latipes Ensembl version 71 genome was selected

as the outgroup genome. Note that Ensembl version 71 was selected as it was the most recent

available release on the Synteny Database. Plots were generated by inputting the zebrafish

Ensembl gene identifiers, and selecting the corresponding chromosome to display along the x-

axis.

Supporting information

S1 Fig. Manhattan plots highlighting CC-DEGs from differential expression testing in het-

erozygous vs. wild-type zebrafish siblings (6-month-old brains) and between homozygous

mouse mutants (3-month-old male cortices). A) zebrafish EOfAD-like psen1T428del/+ vs.

psen1+/+ B) zebrafish EOfAD-like sorl1 R122Pfs/+ vs. sorl1+/+ C) zebrafish EOfAD-like sorl1-
V1482Afs/+ vs. sorl1+/+ D) mouse APOE4/4 vs. APOE3/3. Non-random accumulation of DEGs

was tested using a Bonferroni-adjusted Fisher’s exact test p-value for enrichment of DE genes

on the mutant chromosome, A) psen1T428del/+ vs. psen1+/+: p = 8.63e-3, B) sorl1 R122Pfs/+ vs.

sorl1+/+: p = 1.92e-4, C) sorl1V1482Afs/+ vs. sorl1+/+: p = 9.24e-2, D) APOE4/4 vs. APOE3/3:

p = 1.00. Genes are plotted along the x-axis based on their chromosomal position in alternating

shades of grey for visual distinction between chromosomes. Genes on the chromosome con-

taining the mutation are highlighted in red. The raw p-values are plotted along the y-axis at the

-log10 scale such that the most significant genes exist at the top of the plot. The cut-off for gene
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differential expression (FDR-adjusted p-value< 0.05) is indicated by a dashed horizontal line.

Genes classified as differentially expressed under this criterion are represented as diamonds

with a black outline.

(TIFF)

S2 Fig. Elastic window sizes summarised in 100 bins of equal size for A) the mouse APOE
dataset B) the zebrafish psen1 dataset. Window sizes are determined based on the genomic

distance between 11 subsequent SNPs. Zebrafish datasets have a greater number of variant

sites distributed across the genome relative to mouse due to the lack of isogenicity, resulting in

much smaller window sizes.

(TIFF)

S3 Fig. The relationship between DE genes and DAR along the entirety of mouse Chromo-

some 7 between female APOE2/2 and APOE3/3 mouse cerebral cortices (at 3 months of

age). The plot contains four sets of information represented by separate tracks horizontally.

Track A represents the axis of Chromosome 7. The position of the APOE gene is marked and

labelled in bold red. Track B displays differentially expressed genes according to their positions

along the chromosome. 183 of 1126 total genes (16.25%) on Chromosome 7 that were

expressed in the dataset were classified as DE (FDR< 0.05). Track C shows the trend in DAR

as a connected scatterplot with each point in black representing the DAR value at a single

nucleotide variant position (elastic sliding window size = 11 variants). Positions of the DE

genes shown in track B are indicated by light red lines.

(TIFF)

S4 Fig. Cumulative distribution of DAR by chromosome between male APOE2/2 and

APOE3/3 mouse cortices (3 months). The mutant chromosome exhibits the most regions of

high DAR.

(TIFF)

S5 Fig. Dotplot displaying the chromosomal location of medaka (Ola) genes predicted by

the Synteny Database [32] to be orthologues of zebrafish (Dre) Chromosome 17 DE genes

from the fAI-relevant, psen1W233fs/+ vs. psen1+/+ comparison. Genes are plotted along the x-

axis based on their position on Chromosome 17 in zebrafish, while the y-axis indicates the

chromosome they are located on in medaka. The four DE genes predicted to have orthologues

are circled in blue. The two genes without a secondary blue circle plotted along the y-axis

(dglucy and psen1), were predicted by the Synteny Database to exist on alternate scaffolds of

medaka Ensembl version 71, which are not plotted. The smaller grey-filled circle indicates the

centromere of Dre Chromosome 17.

(TIFF)

S6 Fig. The effects of gene exclusion by DAR threshold on KEGG gene set p-values from

GSEA testing. The gene sets displayed are those that achieved significance for at least one

DAR threshold value. p-values are plotted on a -log10 scale along the y-axis such that the most

significant results exist at the top of each graph. Each position along the x-axis represents a dif-

ferent DAR gene exclusion threshold. Dots on the graph filled with colour indicate that the

gene set was classified as significantly enriched (FDR-adjusted p-value < 0.05). The number

inside a dot corresponds to the number of leading-edge genes that contributed to the respec-

tive gene set’s enrichment score.

(TIFF)

S7 Fig. Dotplot displaying the chromosomal location of medaka (Ola) genes predicted by

the Synteny Database [32] to be orthologues of zebrafish (Dre) Chromosome 24 DE genes
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from the nagluA603Efs/A603Efs vs. naglu+/+ 7 dpf sibling larval RNA-seq dataset comparison

at a DAR threshold of 0.3. Genes are plotted along the x-axis based on their position on Chro-

mosome 24 in zebrafish, while the y-axis indicates the chromosome they are located on in

medaka. The two DE genes predicted to have orthologues are circled in blue. The smaller grey-

filled circle indicates the centromere of Dre Chromosome 24.

(TIFF)

S8 Fig. The effects of using DAR to weight gene-level rankings in the MPS IIIB-relevant

transcriptome comparison of nagluA603Efs/A603Efs vs. naglu+/+ 7 dpf sibling larvae. Genes

that are plotted close to the blue diagonal line are least impacted by the weighting method.

Genes that exist on the mutant chromosome (Chromosome 24) are coloured red, while those

that exist on other chromosomes are coloured black. Genes that were most substantially

affected (rank change> 2000) are labelled with their respective gene symbol.

(TIFF)

S9 Fig. The relationship between DAR and DE genes along Chromosome 15 in the compar-

ison of sorl1V1482Afs/+ vs. sorl1+/+ sibling zebrafish brains. The plot contains four sets of

information represented by separate tracks. Track A represents the axis of Chromosome 15.

The position of the sorl1 gene is marked and labelled in bold red. Track B displays differentially

expressed genes according to their positions along the chromosome. Track C shows the trend

in DAR as a connected scatterplot with each point representing the DAR value at a single

nucleotide variant position (elastic sliding window, n = 11 variants). Positions of the DE genes

shown in track B are indicated by light red lines.

(TIFF)

S10 Fig. Cumulative distribution of DAR by chromosome between sorl1V1482Afs/+ and

sorl1+/+ sibling zebrafish. The mutant chromosome exhibits the greatest number of regions of

high DAR.

(TIFF)

S11 Fig. Comparison of GSEA results for KEGG gene sets that achieved significance before

and/or after using DAR to weight the gene-level ranking statistic in the sorl1V1482Afs/+ vs.

sorl1+/+ siblings dataset. An asterisk is used to denote that the pathway was determined to be

significantly enriched.

(TIFF)

S12 Fig. The resulting fit of the Probability Weighting Function (PWF) on the nagluA603Efs

dataset for bias data A) Median transcript length B) DAR. The points indicate the propor-

tion of DE genes for bias data in 200 gene bins. The green line represents the monotonic spline

fitted when calculating the PWF. Minimal transcript length bias is observed relative to DAR

bias.

(TIFF)
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