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Abstract: Wet age-related macular degeneration (AMD) is the leading cause of visual impair-
ment and vision loss in the elderly, and optical coherence tomography (OCT) enables revolving
biotissue three-dimensional micro-structure widely used to diagnose and monitor wet AMD
lesions. Many wet AMD segmentation methods based on deep learning have achieved good
results, but these segmentation results are two-dimensional, and cannot take full advantage of
OCT’s three-dimensional (3D) imaging characteristics. Here we propose a novel deep-learning
network characterizing multi-scale and cross-channel feature extraction and channel attention to
obtain high-accuracy 3D segmentation results of wet AMD lesions and show the 3D specific
morphology, a task unattainable with traditional two-dimensional segmentation. This probably
helps to understand the ophthalmologic disease and provides great convenience for the clinical
diagnosis and treatment of wet AMD.

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Age-related macular degeneration (AMD), the deposition of metabolites between the retinal
pigment epithelium (RPE) and Bruch’s membrane (BM) [1], is one of the leading causes of
blindness worldwide in people over the age of 60 [2–5]. The number of AMD patients keeps
increasing due to the population aging [6]. According to authoritative statistics, by 2040,
there will be 288 million AMD patients worldwide [7]. There are three stages of AMD: early,
intermediate, and late stages [8], the first two of which are often asymptomatic [9]. However, late
AMD can cause the loss of central vision [10–14]. Wet AMD, a late form of AMD, accounts for
about 10%-20% of AMD patients [15] but is responsible for more than half of all cases of AMD
blindness. PEDs represent a common manifestation of AMD and occur in more than 80% of
patients with wet AMD [16–20]. Considering that patients with wet AMD may be at risk for
blindness, effective 3D segmentation and a more comprehensive quantitative assessment of PEDs
can help understand the ophthalmic diseases better and improve the corresponding diagnosis and
treatment of AMD.
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At present, the most recent method for monitoring and treating AMD is optical coherence
tomography (OCT) [21,22]. OCT, a non-invasive 3D imaging technique, has been widely used to
reveal fundus morphological characteristics, such as wet AMD, due to its ability to offer high-
resolution cross-sections and 3D micro-structure of the samples under measurement [11,23–24].
Although other optical interferometers [25] can also offer accurate tissue morphology, OCT can
penetrate biological tissue with a deeper depth, which can provide real-time images of tissue
structure on the micron scale. In recent years, lots of deep learning models have been successively
applied to wet AMD segmentation in OCT images, and they have shown excellent performance
[26,27]. Bekalo et al. proposed the RetFluidNet, a novel convolutional neural network-based
architecture for segmenting AMD lesions, which has demonstrated significant improvements
in accuracy and time efficiency compared to other methods [28]. Shen et al. developed a
graph attention U-Net (GA-UNet) for choroidal neovascularization (CNV) segmentation in OCT
images [29]. This model, with U-Net as the backbone and two novel components, eliminates the
problems caused by the deformation of retinal layers caused by CNV. Suchetha et al. presented a
deep learning-based predictive algorithm, which applied Region Convolutional Neural Network
(R-CNN) and faster R-CNN to improve the accuracy of AMD lesion segmentation [30]. Mousa
et al. Employed a deep ensemble mechanism that combined a Bagged Tree and end-to-end deep
learning classifiers to segment AMD [31]. However, the major limitation of these approaches is
that their segmentation results are two-dimensional, and cannot take full advantage of OCT 3D
imaging features. Those two-dimensional segmentation results are not capable of showing the
3D shape of the actual AMD lesions, limiting the ability to directly reflect the characteristics
of AMD in clinical practice and impeding corresponding diagnoses. Moraes et al. inspired by
the model in [32], claimed to propose a three-dimensional segmentation network to classify and
quantify multiple features in macular OCT volume scan [33]. Nevertheless, their method still
failed to solve the previous several unsolved problems: the actual three-dimensional morphology
of the AMD lesion has not been shown. Besides, it only introduced volume to evaluate lesions,
and more indicators are needed to evaluate AMD lesions better.

Considering the above factors in mind, here we presented a deep learning-based model
characterizing multi-scale and cross-channel feature extraction and channel attention to obtain
3D segmentation results of PEDs, which can obtain the specific 3D morphology of lesions.
In our proposed network, U-Net [34] is used as the backbone, and for the first time Squeeze-
and-excitation (SE) block [35] is employed at the skip connections [36] and res-block [37],
more characteristic information can be mined and improving the 3D segmentation performance
consequently. Here the network also introduced the Channel-Attention Module (CAM) [38]
at the last layer, which can redistribute the resources of the convolution channel, making the
network ignore irrelevant information and focus on useful features. The purpose of this paper
is to present a novel convolutional neural network for 3D PEDs segmentation. This developed
model was trained, validated, and tested on our dataset, and its 3D segmentation performance
was evaluated by employing three metrics. Furthermore, the 3D PEDs segmentation results can
provide the overall morphological characteristics of wet AMD, which offers an important step
towards automatic PEDs detection and diagnostic tools.

2. Methods

2.1. Datasets

This study was approved by the Institutional Review Board (IRB) of Sichuan Provincial People’s
Hospital (IRB-2022-258). Here our research included the records of patients who visited Sichuan
Provincial People’s Hospital from November 2021 to April 2023. Among the volunteers, they all
had wet AMD and no other fundus diseases. A Swept-source OCT setup (BM-400 K BMizar,
TowardPi Medical Technology, Beijing, China) was used to acquire the images of the PEDs lesion.
It uses a sweeping vertical-cavity surface-emitting laser with a wavelength of 1060 nm. and a
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scanning speed of 400,000 A-scans per second. The-scan depth of the instrument in the tissue is
6 mm (2,560 pixels). Each retinal OCT scan had a 512×512 scan pattern where a 6×6 mm area
on the lesion was scanned with 512 horizontal lines (B-scans), each consisting of 512 A-lines per
B-scan resulting in a cube size of 512×512×1024 pixels (X×Z×Y) For OCT image selection, we
selected the images centered at the fovea in an automatic selection process in MATLAB R2021a.

T dataset included 33 eyes from 18 subjects, resulting in 16896 B-scans. All the volunteers
underwent a comprehensive ocular examination including diopter and optimal corrected vision,
non-contact intraocular pressure, the axis of eyes, slit lamp, wide-filed fundus imaging, and
OCT. The proposed method was trained and evaluated on those 3D datasets, which adhered to
the tenets of the Declaration of Helsinki. 80% of the datasets were used for training, 10% for
validation, and the remaining 10% for testing.

2.2. Data preprocessing

The original images obtained by OCT all have an initial resolution of 1044 × 512 pixels. To
improve training efficiency, all images were cropped to 1044 ×. 512 pixels and converted to unit8
format. Subsequently, these data were enhanced by flipping, rotating, and random vertical or
horizontal rolls.

2.3. Overview architecture

Here we proposed a network characterizing multi-scale and cross-channel feature extraction
and channel attention for the 3D segmentation of PEDs in OCT images. As shown in Fig. 1,
the backbone image segmentation network is a symmetrical U-shaped structure, including five
down-sampling and up-sampling layers with 8, 16, 32, 64, 128, and 256 channels, respectively.
The encoder extracts the features and the decoder restores the output to the size of the input
image by up-sampling.

Fig. 1. Schematic overview of the proposed 3D segmentation model.

To improve the accuracy of PEDs 3D segmentation, Atrous Spatial Pyramid Pooling (ASPP)
[39], CAM, GRU (Graph Reasoning Units), and SE block [35] were applied in this network. Due
to the multi-scale receptive field, the ASPP ensures that more abundant features can be learned
as far as possible. The latter two modules make the receptive field cover the whole feature
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map, strengthen the important channels, and weaken the non-important channels, which is more
conducive to the accurate 3D segmentation of lesion areas from the background. Besides, a
residual structure [37] is also adopted in the down-sampling of each encoder, which effectively
avoids the phenomenon that the final product tends to zero in the forward propagation process
following the chain rule because some parameters are too small. What’s more, with the increase
in the number of layers, some features will be lost. Introducing a multi-feature map by residual
structure can be conducive to the transmission of information. We will detail each module in the
proposed model in the following subsections.

The encoding part consists of layers in which each layer combines a down-sampling (DW)
module and a Res-block. Each down-sampling module adopts a residual structure in which
the first half combines the layers of regular convolutions and Relu activation functions. The
other part is still composed of regular convolutions and Relu layers, but the stride of the former
convolution is set to 2 for down-sampling, thus halving the size of the feature map. After five
layers of down-sampling, the features on the initial image are gradually extracted and a dense
low-resolution feature map is produced. Besides, each down-sampling module is followed by
a Res-block (seen in Fig. 1), which can avoid the gradient problem caused by the increase in
the number of layers and the phenomenon of reduced computing efficiency. Compared with the
traditional Res-block [37], a Squeeze-and-Excitation block [35] is first introduced here. This
module strengthens the interrelation between channels, to realize the adaptive correction of the
intensity of characteristic response between channels.

To learn more information about different scales, the ASPP was introduced here. As shown
in Fig. 2 (a), ASPP sampled a given input with a series of atrous convolutions with different
dilation rates to capture information from an arbitrarily scaled region. Different dilation rates
make the size of the receptive field different, and the context information of different sizes
can be captured, thus enriching the extracted feature information. Then, the obtained feature
maps are concatenated to form the output feature map. What’s more, the GRU can enhance the
global reasoning ability. The three branches of this module enable the projection to node space,
re-projection to feature space, and the fusion of global features. Therefore, by utilizing these
three branches of GRU for projection, disjoint regions or regions that are far apart can be used
for global reasoning.

At the decoder strategy, an up-sampling module and a Res-block were used. Transposed
convolution with the stride of 2 × 2 was introduced into the decoder instead of a normal up-
sampling layer. The feature map after transpose convolution is concatenated with skip connections
corresponding to each layer in the encoder, thus integrating the spatial and semantic information,
avoiding information loss. At the end of the decoder, a CAM is added to this network to assign
the appropriate weight to each channel. It can enhance the features of the region of interest and
filter out unnecessary features while maintaining the original features. The detailed structure of
CAM is shown in Fig. 2 (b). The original data were processed by global max pooling and global
average pooling respectively and then fused by convolution. After the MLP and the sigmoid
activation, the new weight matrix was calculated. The original matrix is dotted with the weight
matrix to get the redistribution of resources between channels.

2.4. Loss function

One of the major challenges for the segmentation task is that the number of pixels in the diseased
area is much lower than at in the non-diseased area. For data imbalance, the learning process
may converge to the local minimum of the suboptimal loss function, so segmentation results with
high accuracy but a low recall rate may occur. To solve the problem of data imbalance, we use a
Tversky loss function [40] to achieve a better balance between precision and recall rate. Tversky
loss is derived from the Dice loss function, in which two coefficients α and β. are introduced to
better balance false negative and false positive. The specific expression of the loss function is as
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Fig. 2. The structures of the sub-modules used in this study. (a) is the ASPP (Atrous Spatial
Pyramid Pooling), which ensures a rich diversity of extracted information; (b) is the CAM
(Channel Attention Mechanism).

follows.

T(α, β) =
∑︁N

i=1 p0ig0i∑︁N
i=1 p0ig0i + α

∑︁N
i=1 p0ig1i + β

∑︁N
i=1 p1ig0i

(1)

where the p0i is the probability of voxel i be a lesion and p1i is the probability of voxel i be a
non-lesion. Also, g0i is 1 for a lesion voxel and 0 for a non-lesion voxel and vice versa for the g1i.
Here, after debugging, we set α to 0.2, and β to 0.8.

In addition, due to the small proportion of PEDs in the fundus, the number of pixels between
the two types is quite different. Binary cross entropy (BCE) is also introduced here. LBCE is
defined as Eq. (2):

LBCE = −
1
N

N∑︂
i=1

yi.log(p(yi)) + (1 − yi).log(1 − p(yi)) (2)

where y is the class label for pixel i, which is 0 or 1, and p(y) is the estimated probability of
pixel i belonging to lesions. In this paper, we used a loss function consisting of Tversky loss and
binary cross entropy (BCE).

LAMD = λ ∗ T(α, β) + (1 − λ) ∗ LBCE, (3)

where λ is a balance parameter that is set as 0.5 for all the experiments.
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3. Experiment

3.1. Experimental settings

The original B-scan results all have an initial resolution of 1044 × 512 pixels, most regions of
which are the dark background. To improve training efficiency and save the cost of time, all
images are cropped to 512 × 512 pixels and are converted to unit8 format.

The data used for training were enhanced by flipping, rotating, and random vertical or horizontal
rolls. Our method was trained with a batch size of 5 using Adam optimizer, with an initial
learning rate of 0.0001, which decayed exponentially as the epoch increased. We trained the
model for 10 epochs and selected the model with the best metrics on the validation set to save.

The training was performed in a computer with an Intel XeonSilver4210R CPU and 24 cores,
using Python 3.9.12 and TensorFlow 2.5.0. On such a set, the training lasted about 15 hours. The
testing was also done on the same setup as the training.

The proposed 3D segmentation model is a binary classifier that is supposed to accurately affect
areas from the background in B-scan images. The ground-truth images which are annotated
by ophthalmologists are used for evaluating the automatic 3D segmentation results. For such a
case, the following four parameters are typically involved: False Negative (FN), True Positive
(TP), False Positive (FP), and True Negative (TN). Based on the above four parameters, many
segmentation metrics are constructed: Pixel Accuracy, Precision, IOU (Intersection over Union),
and Dice, for example. Since the results are three-dimensional obtained by the proposed 3D
method, the above index used to evaluate the results of traditional two-dimensional segmentation
cannot reflect the effect of our results well. Therefore, here we calculated the volume, surface
area, and mean distance to surface (MDS) of the 3D segmentation results and compared them
with those in the 3D ground truth, which could better reflect the accuracy of the 3D segmentation
results.

3.2. Segmentation results and consistency analysis

In this section, we demonstrated the results of the above-mentioned experiments to validate our
proposed 3D model for PEDs 3D segmentation, as Fig. 3 shows. We further evaluated the 3D
segmentation results of the proposed model from the three aspects of volume, surface area, and
mean distance to the surface, as shown in Fig. 4 and Fig. 5.

Figure 3 shows the original OCT image (the left), the predicted 3D lesion image (the middle),
and the 3D lesion image manually annotated by ophthalmologists (the right). It can be seen
intuitively that the 3D prediction results can be close to the actual morphology of the lesion,
which is helpful for ophthalmologists to accurately judge the progression of wet AMD. To
evaluate these 3D segmentation results, we separately calculated the volume, surface area, and
mean distance to surface (MDS) of 33 groups of 3D segmentation results and their corresponding
ground truth. The specific results are shown in Fig. 4.

Figure 4 shows the quantitative scatter plots of the volume, areas, and MDS (Mean Distance
to surface) measurements of PEDs along with Pearson’s correlation analyses for the proposed
algorithm vs. the manual segmentation, respectively. The red lines represent the fit of these
scattered points. Figure 4 (a) shows a significant correlation between the measurements of PEDs
(r= 0.99753, p< 0.0001), as do the results in Fig. 4 (b) (r= 0.99628, p< 0.0001) and Fig. 4 (c)
(r= 0.99879, p< 0.0001). The result of automatic 3D segmentation is compared with that of
manual segmentation, and Bland-Altman analysis showed that the average bias of the volume
measurements was -0.21048 mm3 (95% limits of agreement [-0.93074, 0.50977], Fig. 5 (a)) and
the average bias of the area surface measurements was 8.48383 mm2 (95% limits of agreement
[-16.10051, 33.06817], Fig. 5 (b)). For MDS, the average bias was -0.03121 mm. (95% limits
of agreement [-0.12081, 0.05839], Fig. 5 (c)). the model performs well in the three indicators
of volume, surface area, and MDS, which is of great value for clinical diagnosis of wet AMD
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Fig. 3. Three 3D segmentation results on the selected validation set. From left to right:
OCT 3D C-scans consisting of massive B-scans, the 3D segmentation results, and the
corresponding manually annotated 3D images.

Fig. 4. The performance of eight groups of data in volume, surface area, and MDS.
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Fig. 5. Bland-Altman agreement analysis of wet AMD against measurements, where the
solid blue line represents the bias, and the dashed blue lines represent the upper and lower
95% limits of agreement.

progression. By observing Fig. 4 and Fig. 5, it can be found that the volume and MDS of
the segmentation results had little difference from the actual manual labeling results, but the
measured surface area is relatively small. The deviation value increased with the size of the
lesion.

3.3. ternal testing

To ensure the rigor of our experiment, we randomly selected three groups of data in the datasets
for testing. Figure 6 shows the new 3D segmentation results predicted by the proposed 3D
segmentation model. Figure 6 shows the 3D segmentation results of three lesions from left to right.
The first row is the original image to be segmented corresponding to each data and its corresponding
b-scan image. Input them into our network for 3D segmentation, and the results are respectively
shown in Fig. 6 (d-f). As can be seen from the picture, the external test results not only achieved
a relatively accurate segmentation effect on the two-dimensional level but also clearly showed
the 3D shapes of the lesions in the final 3D results. The 3D segmentation results are detailed in
the Supplementary Materials (Visualization 1, Visualization 2, Visualization 3, Visualization 4,
Visualization 5, Visualization 6, Visualization 7, Visualization 8 and Visualization 9).

Figure 7 and Supplementary Materials (Visualization 10, Visualization 11, Visualization 12,
Visualization 13, Visualization 14 and Visualization 15) show the 3D segmentations of two
PEDs lesions and their corresponding B-scan images. Figure 7 (b) and (c) correspond to the
B-scan images at the yellow dotted line in Fig. 7 (a) and Fig. 7 (d), whale Fig. 7 (c) and Fig. 7
(f) correspond to the B-scan image at the green dotted line in Fig. 7 (a) and Fig. 7 (d). It can
be observed that the 3D shape of PEDs lesions is irregular, and some patients may have more
than one lesion area, which is difficult to obtain by the traditional two-dimensional segmentation
method. The number of PEDs lesions is sometimes not only one but several nearby areas. In
clinical practice, conservative observation is often employed in this situation, regular examination,
once the visual impairment is found, immediate treatment and intervention are given. However,
Ophthalmologists can only infer whether there are other small lesions nearby based on B-scan
images and two-dimensional fundus angiography, which makes it easy to miss some potential
small lesions that may impair vision in the future. Here the 3D segmentation results can show the
3D morphology of all the lesions in the area and meanwhile, preserve B-scan images, which can
help retina specialists accurately evaluate the lesion situations, and further improve corresponding
diagnosis and treatment.

Based on the above, we introduced more 3D OCT images for the 3D segmentation test to
demonstrate the performance of our 3D segmentation model and show more 3D shape differences
of PEDs in patients. The corresponding results are shown in Fig. 8 and Supplementary Mate-
rials (Visualization 16, Visualization 17, Visualization 18, Visualization 19, Visualization 20,
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Fig. 6. PEDs 3D segmentation results on three new datasets. (a) - (b) OCT 3D B-scans
consisting of massive B-scans, (d) - (f) corresponding PEDs 3D segmentation results
(see Visualization 1, Visualization 2, Visualization 3, Visualization 4, Visualization 5,
Visualization 6, Visualization 7, Visualization 8 and Visualization 9).

Fig. 7. PEDs 3D segmentation results (a) - (d) and corresponding B-scan images (b) - (c), (e)
- (f) of two patients with wet AMD (see Visualization 10, Visualization 11, Visualization 12,
Visualization 13, Visualization 14 and Visualization 15). All scale bars are 200 µm.
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Visualization 21, Visualization 22, Visualization 23, Visualization 24, Visualization 25, Visualiza-
tion 26, Visualization 27, Visualization 28, Visualization 29, Visualization 30, Visualization 31,
Visualization 32 and Visualization 33). Those nine 3D images are all from different wet AMD
patients. From Fig. 8, it can be observed that the 3D shapes and the sizes of different wet
AMD patients were different, which can help retina specialists understand AMD diseases better.
Those 3D segmentation results have demonstrated that our 3D segmentation model has good
adaptability and high robustness to different 3D AMD lesion shapes, and it was also the first
time that different 3D shapes of PEDs have been present. It may provide a great convenience for
clinical ophthalmologists to diagnose, monitor, and assess wet AMD.

Fig. 8. Subretinal hyperreflective material 3D segmentation results of nine patients show
the differences in shape, size, and surface details (see Visualization 16, Visualization 17,
Visualization 18, Visualization 19, Visualization 20, Visualization 21, Visualization 22,
Visualization 23, Visualization 24, Visualization 25, Visualization 26, Visualization 27,
Visualization 28, Visualization 29, Visualization 30, Visualization 31, Visualization 32 and
Visualization 33).

3.4. Comparison experiment

To demonstrate the advantage of our proposed method in terms of wet AMD segmentation, we
compared it with five segmentation methods (U-Net++ [41], Attention-U-Net [42], Residual-U-
Net (Res-Net) [43], Retfluid-Net [28], Swin-U-Net [44]). All of these networks were applied to
the 2D segmentation of retinal diseases. Therefore, here we integrated those methods into our
architecture for comparison testing. The experimental results of our method and other competitors
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on a typical case are illustrated in Fig. 9. As shown in Fig. 9, most methods can generate 3D
results, however, for PEDs segmentation, the competitors often produce fragments that do not
belong to lesions and segmentation accuracy, such as the results obtained by Attention-U-Net in
Fig. 9.

Fig. 9. PEDs segmentation results of our model are compared to five existing methods. (b)
- (g) PEDs 3D segmentation results. The unit of data in the lower right corner is pixel. All
the scale bars are 200 µm.

To distinguish the segmentation results obtained by several methods more easily, we selected
three representative parts for emphasis comparison (seen in the green, blue, and yellow boxes).
In terms of the overall morphology, the segmentation results of each method are relatively close,
but in some details, such as the green, blue, and yellow boxes, the performance of each network
is different. Clinically, the CMT index is often generally used to measure the condition of AMD.
In this experiment, we also adopted this metric to compare our results with the segmentation
results of other competitors. Three local B-scan results of this sample are selected to measure
their CMT index, the results of which are presented in the lower right corner of each figure in
sections. It can be seen that the results obtained by our method are the closest to Ground Truth in
the data of the three b-scans, which further proves the accuracy of the segmentation method.

In addition, the above 3D segmentation results were quantitatively evaluated from five
perspectives, including Dice, Precision, Accuracy, Recall, IOU, and F1-score. The boxplots of
different results are depicted in Fig. 10. It can be intuitively seen that the results obtained by our
segmentation method had excellent segmentation effects. Among these five metrics, the variance
of our results can reach the minimum, and the range of upper and lower limits is small, indicating
that our results data is relatively concentrated and stable. Here, we showed the performance of
each frame of this sample on four metrics, Dice, IOU, F1-score, and Recall, as shown in Fig. 11.
It can be seen that our segmentation results, represented by the red solid line, performed better
than other segmentation results on all four metrics, which means that our results are closest to
the labels.

The specific data are shown in Table 1. It can be observed that in all experiments, our method
outperforms other methods, which proves the contribution of the proposed model. As seen, the
average Dice, Precision, Accuracy, Recall, IOU, and F1-score of our methods achieve 0.850,
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Table 1. Quantitative results of different methods in PEDs segmentation.

Method U-Net++ Att-U-Net ResNet RetfluidNet Swin-Unet Our method

Dice 0.675± 0.234 0.650± 0.233 0.556± 0.262 0.713± 0.154 0.785± 0.183 0.850± 0.137

Precision 0.913± 0.222 0.868± 0.277 0.692+ 0.296 0.861+ 0.206 0.892± 0.173 0.835± 0.147

Accuracy 0.986± 0.007 0.986± 0.007 0.980± 0.010 0.991± 0.004 0.986± 0.008 0.992± 0.003

Recall 0.599± 0.210 0.638± 0.202 0.555± 0.242 0.873± 0.083 0.616± 0.185 0.931± 0.128

IOU 0.535± 0.204 0.562± 0.202 0.448± 0.206 0.767± 0.181 0.562± 0.172 0.790± 0.171

F1-score 0.526± 0.225 0.548± 0.225 0.426± 0.247 0.741± 0.151 0.615± 0.178 0.759± 0.136

Fig. 10. Box plot of six segmentation results on Dice, Precision, Accuracy, Recall, IOU,
and F1-score.
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Fig. 11. The frame-by-frame performance of the segmentation results obtained by each
network on four metrics.

0.835, 0.992, 0.931, 0.790, and 0.759 respectively, which convincingly demonstrate that our net
is effective in AMD segmentation.

3.5. Ablation experiments

In order to justify the effectiveness of the SE block, CAM, and GRU in the proposed model, we
conduct the following ablation experiments. Our proposed method is based on U-Net, therefore
we set U-Net as the most fundamental baseline model. We replace the proposed blocks with
regular convolution operations, aiming at enhancing the learning capability. We then incorporated
each block into the baseline to get Model1, Model2, and Model3, as shown in Table 2. To further
verify the effectiveness of these modules, we combined them in pairs and tested three groups in
total. The last column in Table 2 shows the segmentation effect of the network with all modules.
It can be shown that the backbone net achieved a better performance by adopting our proposed
blocks.

Table 2. Ablation experiment results over our dataset.

Network
Module Metrics

SE CAM GRU Precision Dice Accuracy Jaccard IOU

Baseline 52.6± 11.72 67.75± 11.77 97.03± 1.51 52.26± 11.69 52.27± 11.67

Model 1
√

55.54± 15.26 69.81± 14.77 97.62± 0.92 55.33± 15.2 55.34± 15.19

Model 2
√

60.19± 13.36 73.25± 12.77 97.90± 0.99 59.12± 13.4 59.13± 13.39

Model 3
√

66.49± 14.9 77.33± 13.17 98.42± 0.81 64.63± 15.05 64.64± 15.03

Model 4
√ √

66.55± 15.76 77.53± 14.83 98.44± 0.81 65.18± 15.65 65.19± 15.63

Model 5
√ √

68.76± 15.16 77.94± 12.71 98.47± 0.75 73.44± 12.36 65.29± 13.81

Model 6
√ √

60.18± 13.19 76.43± 10.37 98.9± 0.86 67.11± 13.24 62.13± 13.25

Model 7 √ √ √ 85.7± 11.56 89.12± 11.87 99.42± 0.42 81.45± 11.55 81.85± 13.77



Research Article Vol. 15, No. 2 / 1 Feb 2024 / Biomedical Optics Express 1128

4. Clinical trial results

Figure 12 depicts the treatment progress of this wet AMD patient for four months, during which
the patient received three intravitreal injections. These pictures were arranged by time from
left to right, representing different stages of treatment. Before initial treatment, the patient’s
best-corrected visual acuity (BCVA) was 20/133. OCT scanning (seen in Fig. 12 (a)) revealed an
increase in central macular thickness (CMT), significant PEDs lesions, and signs of CNV and
intraretinal fluid (IRF). After two initial injections, follow-up at one-month intervals showed that
the patient’s BCVA remained at 20/133, the CMT decreased significantly compared to before,
PEDs lesions significantly reduced, the blood flow signals of the CNV weakened, and the IRF
disappeared (as seen in Fig. 12 (b, e, h)). After completing three initial treatments, the patient
underwent a review 30 days later. His BCVA improved to 20/80, and OCT (seen in Fig. 12 (c))
showed a further reduction in CMT, a significant decrease in lesion volume, partial regression of
the CNV, and a weakening of blood flow signals.

Fig. 12. PEDs 3D segmentation results. (a) - (c): The 3D segmentation results. (d) - (f):
B-scan images corresponding to the same section. (g - i): The corresponding thickness map
of (a) - (c). All scale bars are 200 µm.

Figure 12(d-f) show B-scan images of this sample at the fovea at three examinations. Figure 12(g-
i) show the thickness topography of the boundary membrane to Bruch’s membrane in the three
stages. The green and yellow parts represent the thickness at the normal value and critical value,
respectively. However, the red part indicates that the part is thicker than the normal range, and
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the redder the color, the thicker the thickness. Both kinds of results prove that the above 3D
segmentation results are accurate.

The above experiment shows that the changes in fundus conditions in the patient with wet
AMD can be intuitively and properly reflected in the 3D segmentation results. Besides, the
3D segmentation results are consistent with the diagnostic results obtained by the existing
clinical diagnostic means, and can further provide more comprehensive information on wet AMD.
Therefore, our method can provide great convenience for the diagnosis and follow-up of the
therapeutic effect of wet AMD, while increasing the acceptance and recognition of the diagnosis
results in the clinical patients. The 3D segmentation results of wet AMD lesions can also help
retina specialists communicate with the patients by showing the patients more visual information.

5. Conclusion

A deep learning-based model for 3D segmentation of PEDs on OCT images was developed and
evaluated. Experiments conducted on our PEDs OCT datasets demonstrated that our model
can achieve excellent 3D segmentation results of PEDs, which probably holds great promise in
providing the precision and efficiency of ophthalmic disease.

Compared with the existing two-dimensional segmentation methods, our method achieved
a remarkable 3D segmentation performance, and different 3D shape features of PEDs have
been shown and measured for the first time, such as 3D surface areas and volumes. 3D lesion
information can help understand ophthalmic diseases better and improve corresponding diagnosis
and treatment. With 3D visualization features, 3D segmentation of PEDs assisted by artificial
intelligence can serve as a powerful tool for diagnosing and monitoring wet AMD, potentially
alleviating the time-consuming manual image reading, with 3D quantitative lesion information.
This achievement may bring great convenience for the clinical diagnosis and treatment of wet
AMD due to the visual interpretability for ophthalmologists’ decision-making, thus facilitating
the formulation of a therapeutic schedule.
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