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Iterative pseudo balancing for stem 
cell microscopy image classification
Adam Witmer 1* & Bir Bhanu 1,2

Many critical issues arise when training deep neural networks using limited biological datasets. These 
include overfitting, exploding/vanishing gradients and other inefficiencies which are exacerbated 
by class imbalances and can affect the overall accuracy of a model. There is a need to develop semi-
supervised models that can reduce the need for large, balanced, manually annotated datasets so 
that researchers can easily employ neural networks for experimental analysis. In this work, Iterative 
Pseudo Balancing (IPB) is introduced to classify stem cell microscopy images while performing on 
the fly dataset balancing using a student-teacher meta-pseudo-label framework. In addition, multi-
scale patches of multi-label images are incorporated into the network training to provide previously 
inaccessible image features with both local and global information for effective and efficient learning. 
The combination of these inputs is shown to increase the classification accuracy of the proposed deep 
neural network by 3 % over baseline, which is determined to be statistically significant. This work 
represents a novel use of pseudo-labeling for data limited settings, which are common in biological 
image datasets, and highlights the importance of the exhaustive use of available image features 
for improving performance of semi-supervised networks. The proposed methods can be used to 
reduce the need for expensive manual dataset annotation and in turn accelerate the pace of scientific 
research involving non-invasive cellular imaging.
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Stem cell biology is a promising field of study that has applications in the areas of regenerative medicine and 
disease modeling1,2. In-vitro experimentation is paramount to determining the underlying mechanisms of cel-
lular growth and differentiation that contribute to a more comprehensive understanding of stem cell biology. 
However, one bottleneck in experimentation is the reliable and robust analysis of non-invasive microscopy 
imaging used to observe cellular changes. This work proposes to use deep learning algorithms to automatically 
analyze microscopy images containing multiple cell types with dynamic morphological structure. Specifically, 
problems arising from highly imbalanced datasets are addressed here using pseudo-labeling to allow for the use 
of small, imbalanced datasets for training data-expensive neural networks to characterize stem cell health and 
differentiation status. The models presented in this work will allow for more efficacious implementation of deep 
learning in research based settings to reveal key insights into stem cell biology for use in a variety of applications.

Stem cell differentiation is a delicate in-vivo process that orchestrates embryonic changes from naive pluri-
potency to somatic lineage commitment in all living organisms3. These cells are most susceptible to harm at the 
earliest stages of growth and development, when the small number of cells that make up the embryo are easily 
affected by environmental toxicants and mutagens4. The biochemical understanding of the underlying mecha-
nisms of these processes has been harnessed towards technologies that are aimed at regenerative medicine and 
cellular manipulation such as induced pluripotent stem cells (iPSC), which are a useful tool for researchers to 
understand the developmental differentiation process including models of disease5,6.

One such disease, Huntington’s disease (HD), is a neuro-degenerative disorder that affects the HTT gene in 
the human brain7. This mutation causes a repeat expansion of the CAG codon at the terminus of the Huntingtin 
protein. This protein is instrumental in neuronal maturation and migration, and the functional gain incurred 
by HD expression prompts these processes to occur at a much higher rate. Like other proteopathic disorders 
(e.g. Parkinson’s, ALS, etc.), HD manifests itself in muscular skeletal disfunction and rapid cognitive decline8–10. 
These symptoms display themselves at later stages of life, and there is evidence to suggest that nicotine has a 
neuroprotective effect that can slow disease progression11,12. Given this, and the fact that HD has been shown 
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to affect human neurodevelopment in both humans and mice by causing neural progenitor cells to mature at a 
faster rate, it may indicate that nicotine could have the same effect on developing stem cells8.

Live cell microscopy of stem cell disease models is crucial to the research efforts that have made these 
important discoveries. These non-invasive methods allow scientists to observe cellular behavior in response to 
experimental stimuli, and predict outcomes based solely on morphological patterns. Video-bioinformatics (VBI), 
which is defined as “the automated processing, analysis, understanding, data mining, visualization, query-based 
retrieval/storage of biological spatiotemporal events/data and knowledge extracted from videos obtained with 
spatial resolution varying from nanometer to meter of scale and temporal resolution varying from seconds to 
days and months,” has led to the advancement of programs aimed at quantification of stem cell events13. Such 
programs include those that use traditional computer vision, pattern recognition, and machine learning clas-
sification techniques14–16. Others have recently adopted deep learning, which combines the feature extraction 
and classification modules, learns a more robust representation of input images and significantly out-performs 
hand-designed methods in a majority of VBI tasks17–21.

The unique circumstances of biological experimentation and data collection (i.e., cost, time-constraints, 
uncertainty in experimental outcomes, and lack of image data) reveal some drawbacks to deep learning. Factors 
such as class imbalances, contiguous boundaries, multi-label images, anomalies, lack of data, and the prerequisite 
of manual annotations hinder the ability of researchers to easily employ deep learning models for their analytical 
pipeline. These limitations are a major hurdle in training neural networks using biological images.

For example, in the case of stem cell microscopy, many multi-label images are collected that contain more 
than one morphological class in a single image. It is very difficult to use multi-label images for supervised train-
ing because they cannot be accurately annotated without invasive biomarker validation. Unlike natural image 
datasets, the task of biological image annotation must be performed by a domain expert or someone trained to 
specifically analyze a particular dataset. Even with this requirement satisfied, reliable annotations cannot always 
be guaranteed given the high degree of variability within biological images.

Even when manual annotations have been provided to every image, a subsequent problem is the innate 
imbalances in the dataset class distribution. In stem cell biology, these imbalances arise from the pluripotency 
of cells before undergoing differentiation, meaning that they have the ability to change into any mature cell type. 
In-vivo, these changes are orchestrated by a very specific and well-defined cascade of signals from the developing 
embryo22. However, in-vitro they are subject to a measure of uncertainty that results in an imbalance in propor-
tions of the observed image class samples23. This randomness, coupled with the downstream differentiation of 
cells towards somatic lineages causes variation in the number of cells at any given stage of development during 
the experimental growth cycle.

These drawbacks can be overcome by leveraging the power of semi-supervised learning algorithms rather than 
those trained end-to-end in a fully supervised manner. These algorithms allow the network to estimate features 
from an imbalanced, unlabeled dataset and fine-tune these features via reinforcement from a smaller, balanced, 
labeled subset. In a practical setting, this allows researchers to hand label a smaller portion of their dataset and 
train a network on both labeled and unlabeled data without having to perform extensive manual annotations. 
This saves time and resources and improves analytical workflows involving deep learning.

Therefore, this paper introduces Iterative Pseudo Balancing (IPB), which uses meta-pseudo-labeling to bal-
ance a dataset of biological images on-the-fly during model training and improve the performance of a deep 
neural network for the task of stem cell colony classification. The outline of the paper is as follows: First, related 
works are discussed and compared to the proposed method, and the unique contributions of the paper are 
clearly stated along with their significance. Second, an overview of the technical approach is presented, along 
with in-depth explanation of the novel aspects of the network architecture, algorithm, and experimental con-
figurations. Finally, the results of these experiments are summarized and interpreted, and inferences are drawn 
as to the reasons behind the observed patterns. Ultimately, it is determined that the method presented in this 
work improves over previous works by exploiting domain knowledge for network training, and advances the 
state-of-the-art by solving the problem of class imbalances in biological image datasets.

Related work and contributions
Semi-supervised deep learning has recently been leveraged for image classification tasks with a popular method 
being the contrastive learning networks. Contrastive learning refers to training a neural network by comparing 
similar and dissimilar image samples and updating the feature map in relation to a comparative loss function24. 
For example, SimCLR, proposed by Chen et al.25 uses contrastive learning to map input features based on the 
similarities and differences between individual images. At each iteration, a single image is considered a positive 
instance while all other images are considered negative instances. The network learns a general view of the input 
features, and then it is refined via supervised fine-tuning to incorporate class information. This is an effective 
self-supervised method, however, there is no way to account for class imbalances in contrastive learning without 
prior information, which limits the ability of the network to learn unbiased features. These algorithms also require 
an extremely large dataset for effective learning, which is counterproductive for a task involving limited datasets.

Another work by Chuang et al.26 called Debiased Contrastive Learning (DCL) attempts to improve upon the 
contrastive scheme by removing some randomness from the sample selection process. DCL compensates for 
sampling bias by estimating the probability distributions for the negative and positive classes. However, they 
assume that these distributions are uniform, which is often not the case in real world, biological settings.

Similarly, Li et al.27 introduce Contrastive Clustering, which uses two output layers to extract features at the 
instance and cluster levels. They try to approximate the feature space more closely by updating the network with 
respect to a joint contrastive loss function that combinies these two feature modules. They outperform various 
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state-of-the-art clustering methods, but report that their method is highly dependent on data bias and more 
research is needed to improve model robustness to the level of real-world applications such as health care.

Previous studies have attempted to solve the problems associated with biological datasets, including limited 
data and imbalanced class distributions, using semi-supervised, self-supervised and contrastive deep learning 
methods. One such work by Murphy et. al.28 uses a SimCLR model to extract feature embeddings from a dataset 
of immunohistochemicstry (IHC) images and combine them with protein data to predict image biomarkers in 
a self-supervised manner. They implement a hard negative sampling scheme to counterbalance inherent dataset 
biases and outperform baseline methods of transcriptomic classification but fail to beat fully supervised training 
methods aimed at histopathology29. They note that the variability within IHC images and between image samples 
aids in the augmentation schemes necessary for effective learning using contrastive algorithms and theorize 
that multi-scale inputs would help to improve their training. However, their method utilizes concurrent genetic 
information in the form of scRNA sequencing data, whereas the method in this work seeks to determine class 
features based only on morphological information from non-invasive live-cell imaging.

Another work by Liu et al.30 aims to classify histopathology images using a contrastive network that combines 
the SimCLR framework with a triplet-net configuration to simultaneously minimize intra-class variance and 
maximize interclass variance. Their model, SimTriplet, avoids performing negative image sampling by assuming 
that adjacent patches within a large scale image contain features from the same image class, while patches from 
other image regions contain pertinent negative context. Their model overcomes the computational expense of the 
SimCLR model to improve overall accuracy for their classification task, however, they perform pre-balancing of 
the dataset to compensate for dataset imbalances, and only use a single-scale, down-sized image patch to improve 
training efficiency, as opposed to a multi-scale input.

Other similar patch based methods exist such as Visual Transformers (ViT), which break images down into 
patches to perform attention with state-of-the-art classification results, but require large datasets for effective 
learning (15-100M images)31. This requirement has a similar pitfall to contrastive learning, and can affect the 
results of networks trained on smaller datasets. A network called DeepFA, by Benato et al.32, attempts to solve 
this problem by using a student-teacher network that combines a 2D semi-supervised forest classifier with a 
meta-pseudo-label (MPL) module to learn image features from a small data subset on a variety of datasets. They 
use their method to solve the problem of low data availability, but use random sampling in their training and 
note dataset imbalances as a limitation of their work.

Given the drawbacks of the previously described methods, the approach outlined in this work aims to balance 
and classify a stem cell microscopy dataset using a semi-supervised student-teacher framework with multi-scale 
inputs from multi-label images. To the best of our knowledge, no other similar works have been published that 
address biological image classification using meta-pseudo-labeling. The specific contributions of this paper are 
as follows:

•	 Introduces Iterative Pseudo Balancing to classify stem cell microscopy images using semi-supervised learning 
and address dataset limitations surrounding manual annotation and class imbalances; improvements over 
state-of-the-art will allow researchers to accelerate their experimental analysis using deep learning without 
the need for large labeled datasets

•	 Performs on-the-fly dataset balancing via pseudo-label-resampling at the image patch level. This is the first 
use of psuedo-labeling for dataset balancing, which allows for neural network training with unlabeled data-
sets. The previous MPL algorithm33, did not account for imbalanced datasets, which is detrimental to model 
learning

•	 Incorporates previously inaccessible image features using patches of multi-label images to provide local and 
global features via multi-scale inputs. It is shown here empirically that the combination of these features is 
necessary for the greatest improvement in classification accuracy and improves over the single scale inputs 
of state-of-the-art related methods

Technical approach
Iterative pseudo balancing framework
Biological datasets present unique circumstances for image feature modeling and classification. Unlike the stand-
ardized natural image benchmark datasets such as ImageNet34 or CIFAR1035, medical and biological images often 
require extensive curation and pre-processing as well as special considerations for network architecture and 
training procedures. For example, regions-of-interest within microscopy images generally contain high variability 
in terms of local entropy and fine-grained patterns. Furthermore, manual annotation across an entire dataset 
for use in neural network training poses practical issues in terms of time, and analytical redundancy caused by 
having to pre-sort every image in the dataset before training the neural network. In other words, it defeats the 
purpose of training a machine learning algorithm for biological image classification if manual annotation must 
be performed on a large dataset to train, test, and validate the initial model.

Another very important consideration is the effect of class imbalances on semi-supervised learning. The 
meta-pseudo-labels33 algorithm utilized in this work suffers from overfitting as a result of confirmation bias when 
trained on imbalanced datasets. This causes the model to devalue the features of the least prevalent classes in 
its classification decision. Therefore, it is necessary to provide the semi-supervised model with a balanced view 
of the dataset classes to avoid overfitting on the most prevalent class. In this paper, Iterative Psuedo Balancing 
(IPB) is introduced to address these challenges by using semi-supervised pseudo-labeling to balance image 
classes. Figure 1 describes the proposed approach for the IPB framework. The numbered training and testing 
steps are as follows: 
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a.	 Training Initialization 

1.	 The dataset is split by taking a portion of the images in each class for training the student using pseudo-
labeled images (U), pre-training and updating the teacher network (L) and testing the student network 
(T).

2.	 Training is performed over the course of N epochs, for which a single epoch is completed when the 
student network has seen every image in the unlabeled dataset (U).

3.	 The HRNet configuration is used for both the teacher and student networks with the training specifica-
tions as shown in Fig. 3.

4.	 The weights of both the teacher and student networks are initialized using Kaiming initialization36.

b.	 Pre-train Teacher Network 

5.	 The teacher network is pre-trained, in a fully supervised manner, using a small, balanced, labeled subset 
of the dataset (L). Pre-training allows the teacher network to provide informed pseudo-labels to the 
unlabeled dataset during the iterative pseudo balancing phase, however, the teacher is also updated 
during the IPB phase in relation to the students performance on the labeled dataset.

c.	 Train IPB 

6.	 The teacher network (initially pre-trained) is used to provide pseudo-labels to random image patches 
(one from each image) from the unlabeled dataset (U). The pseudo-labels are then used to balanced 
the imbalanced dataset using resampling from a multinomial distribution in relation to the weighted 
class proportions as determined by the teachers pseudo-labels.

7.	 The balanced pseudo-labeled dataset is used to update the student network by collecting the students 
predictions on the pseudo-labeled images patches. The weights of the student network are updated in 
relation to the cross-entropy loss between the students predictions and the image pseudo-labels from 
the teacher (see Eq. (1)).

8.	 To update the teacher, the predictions from the updated student network on the labeled images (L) are 
collected and the cross-entropy loss between the students predictions on the labeled dataset and the 
actual class labels is used to update the teacher (see Eq. (2)). This allows the teacher network to learn 
more robust pseudo-labels with each training epoch in order to provide the student with more accurate 
pseudo-labels.

Figure 1.   The overall diagram for the Iterative Pseudo-Balancing framework. (Top row) The dataset is divided 
into three parts, two smaller labeled subsets for training the teacher and testing the student, and a larger, 
unlabeled dataset for training the student network using iterative pseudo-balancing. (Bottom row) a. the teacher 
network is pre-trained on the balanced, labeled dataset. b. the IPB algorithm uses the pseudo-labels from the 
pre-trained teacher to resample and balance the unlabeled dataset during each epoch for training the student 
network. The teacher is then updated in relation to the classification performance of the students predictions on 
the labeled data. This process is repeated until the network converges. c. The trained student network is validated 
on the testing dataset. Details of this procedure are outlined in the section below.
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9.	 Steps (6-8), are repeated for N epochs until both the teacher and student networks converge, as moni-
tored by the cross-entropy loss values from each network, as shown in Fig. 2. At the end of training, the 
student network with the highest classification accuracy over the course of training is taken as the final 
network for testing.

d.	 Test IPB 

	 10.	 The trained student network is evaluated with the remaining testing data (T). One patch from each 
image in the testing dataset is provided to the network to perform image level testing. Network 
predictions for each image are collected and compared to the image labels for the testing dataset to 
perform final classification.

	 11.	 The final classification is the maximum value of the softmax probability across the four morphologi-

Figure 2.   Training loss curves for the teacher and student networks, averaged over multiple runs. At the 
beginning of the training, the teacher loss increases while the student is still in the warm-up phase, where the 
learning rate is kept low to allow for the student to catch up to the teacher. After this phase, the teacher and 
student losses begin to go down, and stabilize over the course of training. As training progresses, the student 
network producing the best classification accuracy is taken as the network used for evaluation.

Figure 3.   Overview of multi-scale VGG Network Architecture. Image patches of size 224 and 112 are provided 
as input to two separate network streams, from which feature vectors of 512 are concatenated and used to 
make a classification decision over the four classes. Numbers on top of features maps indicate image size at 
the corresponding cross section, and the legend in the top right displays the number of filter channels in each 
color coded layer. Batch normalization is added between every convolutional layer, as well as after the feature 
concatenation layer, and ReLU activation is used between all layers until the final classification.
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cal classes for every image in the testing dataset.

Meta pseudo labels algorithm
As previously discussed, self-supervised and semi-supervised methods present a unique opportunity to avoid 
expensive pre-processing, curation, and manual annotation in training neural networks. However, these contras-
tive learning methods do not adequately account for dataset imbalances and fail to incorporate domain knowl-
edge to guide model learning. Therefore, there is a need to address these issues using semi-supervised learning 
so that researchers can more effectively employ deep learning to standardize and accelerate their experimental 
analysis. To accomplish this, a meta-pseudo-labeling (MPL)33 algorithm is used as a basis for the proposed frame-
work. MPL uses a student-teacher network configuration to learn features from unlabeled data, where a small 
amount of labeled data is used to first pre-train the teacher network, which then provides pseudo-labels for the 
other portion of unlabeled data at every iteration that is subsequently used to update the student network. The 
teacher network is updated in relation to the loss associated with classifying the labeled data using the student 
network as well as with a contrastive loss value inspired by Unsupervised Data Augmentation (UDA)37.

The loss functions for the teacher and student networks shown below highlight the relationship between the 
two networks during training. Equation (1) is the learning equation to update the parameters of the student 
network, where the updated student weights, θ ′S , are calculated from the initial network weights, θS using the 
gradient ( ∇θS ) of the cross-entropy loss, LS , between the pseudo-labels provided by the teacher network for the 
unlabeled images θT (xu) (where (xu) is the unlabeled data) and the predictions of the student network on the 
pseudo-labeled images, θS(xu) , where ηS is the learning rate of the student network. Equation (2) is the learning 
equation for updating the parameters of the the teacher network, θT , using the gradient ( ∇θT ) of the cross-entropy 
loss, Ll , between the predictions of the updated student network on the labeled images, θ ′S(xl) , and the actual 
class labels, xl , to obtain the new parameters of the teacher network θ ′T , where the learning rate of the teacher is 
ηT . In this way, the teacher is iteratively learning from the student network and vice versa, such that the teacher 
can also learn more robust psuedo-labels for the unlabeled data.

In a practical research setting, the MPL algorithm allows for a novel microscopy image dataset to be collected, 
partially annotated, and for the remainder of the raw data to be used as unlabeled input to train the student 
network in a semi-supervised manner. Consequently, this makes it possible to utilize patches of multi-label 
images in the training set without having to provide patch level semantic labels. For example, in the case of an 
experimental protocol for which multiple experimental folds are conducted, the researcher could use a single 
fold for training and testing the MPL network, and the other folds for cross-validation. In this scenario, the 
researcher could manually annotate a small portion of one fold for pre-training and testing the teacher network, 
use a larger, unlabeled, portion of that fold to train the student via MPL learning, and analyze the other folds 
using the trained network. Subsequent experiments with similar visual classes could then be analyzed in real time 
using the trained and tested student network without having to annotate more data, and network fine-tuning 
can be performed to incorporate new data classes. This setup overcomes the need for researchers to annotate 
the entire dataset for fully supervised learning, greatly improving the efficiency of the image analysis pipeline.

As previously stated the MPL algorithm does not inherently account for class imbalances within a dataset, 
which can lead to model bias and overfitting. Furthermore, none of the contrastive methods reviewed here 
include a multi-scale input, which limits the available features for the network to learn. Multi-scale inputs have 
been used for biological image classification to incorporate large scale image features while still allowing images 
to be classified by the fine-grained texture features of cellular image classes38. Therefore, the approach outline 
in this work, Iterative Pseudo Balancing (IPB), utilizes the pseudo-labels estimated by the MPL algorithm to 
iteratively resample a dataset of image patches such that for each epoch, the network is provided with a balanced 
dataset, helping to improve model learning. Furthermore, both multi-scale and multi-label inputs are used to 
improve feature extraction and classification of the network.

Training procedures and architectures
Multiple network configurations are tested using the IPB algorithm to compare the effect of network architecture 
on stem cell classification accuracy. Different networks have certain advantages and drawbacks depending on 
the dataset because of the effect of receptive field on image feature mapping39. Specific parameter values such as 
kernel size, convolutional stride and overlap, and network depth and width contribute to the modeling of features 
and are often best suited for specific tasks. For example, VGG40 is optimal for modeling fine-grained features 
like those found in biological datasets, whereas ResNet41 is better for detection of larger objects and regions-of-
interest (ROI). In this paper, the VGG19 architecture is used as a baseline configuration, and has been shown 
previously to produce superior results in comparison to ResNet on stem cell images42.

The High Resolution Network (HRNet)43 is also tested in this work as an example of a more recent network 
architecture that overcomes the loss of information in low level convolutions by combining network features 
in parallel to conserve high-level features in deeper layers. HRNet fuses layers along parallel branches in order 
to conserve spatial features at multiple resolutions, as opposed to convolutional networks that combine layers 
in series, which results in a loss of high-resolution information at deeper layers. In this way, HRNet is able to 
more effectively represent high and low level image features with a similar number of overall parameters and 
computational cost as other neural network architectures.

(1)θ ′S = θS − ηS∇θSLS(θT (xu), θS(xu))

(2)θ ′T = θT − ηT∇θTLT (xl , θ
′
S(xl)).
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All network configurations are trained from scratch using 10-fold cross validation, with an 80:10:10, Unla-
beled Training:Labeled Training:Testing dataset split. The 10% labeled data is chosen as a standard benchmark 
for semi-supervised learning methods and is used here to simulate a limited data setting33. The balanced, labeled 
training data subset, L, is used to pre-train the teacher network, as well as update the teacher during IPB training 
based on the students predictions over the labeled images. The unlabeled training data, U is used to train the 
student network with the pseudo-labeled patches from the pre-trained teacher. The labeled testing dataset, T, 
is used to evalutate the network at the end if IPB training, and is unseen by either of the networks during any 
of the training steps.

The HRNet used for both the teacher and student networks contains 10 convolutional layers and 5 fully 
connected layers for a total of 15 layers. All convolutional layers use 3 × 3 filter kernels with stride of 1 pixels and 
padding of 1 pixel. Each convolutional layer is followed by a batch normalization function and ReLU activation. 
Down-sampling layers use 3 × 3 filter kernels with stride of 2 pixels and padding of 1 pixel. The number of filter 
channels in each layer is given in Fig. 3. A batch size of 32 is used during pre-training and training of the IPB 
algorithm. Both the teacher and student networks are initialized using Kaiming Initialization36 before beginning 
any of the training steps.

Hyperparameters for the stochastic gradient descent optimizer were determined empirically and include a 
learning rate of 0.005, weight decay of 0.0001, and momentum of 0.9, as well as the number of training epochs, 
which is the epoch at which training stabilizes as determined by the cross entropy loss. The teacher network is 
pre-trained on the small labeled dataset for 200 epochs and the IPB network is trained for of 200 epochs, where 
one epoch is determined when the student sees every pseudo-labeled image of the unlabeled dataset. Dataset 
augmentations (described in the following section) are performed on the training dataset to increase image 
variability, and ensure spatial invariance. When IPB training is complete, the student network with the highest 
accuracy is taken for performing network evaluation using the labeled testing dataset. Figure 2 displays the loss 
function for the student and teacher networks. The IPB training algorithm performs 10 epochs for warm-up of 
the student network, as evident by the plateau present at the beginning of the loss curve for the student network.

Data pre‑processing
Cell colony detection
Before training, several data pre-processing steps are performed to reduce irrelevant information from input 
images. Firstly, the raw microscope images measure 2908 × 2908 pixels and contain several cellular colonies 
within a single image. To remove background area, these colony ROIs are extracted from the image using a 
morphological segmentation scheme that includes the following steps (with specific parameters and OpenCV 
(Version 4.5.5) functions included): 1. Gaussian blurring (cv2.GaussianBlur, kernel size 3 ×3), 2. entropy filtering 
(skimage.filters.rank.entropy, disk filter size 3), 3. binarization via Otsu thresholding (skimage.filters.thresh-
old_otsu), 4. morphological opening (skimage.morphology.opening, disk filter size 3), 5. hole filling (scipy.
ndimage.morphology.binary_fill_holes), 6. small object removal (skimage.morphology.remove_small_objects 
with filter size of 2000 pixels).

Bounding boxes containing these binarized areas are cropped out of the raw images and used to build a 
dataset of single colony images containing either one of the four individual morphological classes (Dense, Dif-
ferentiated, Spread, Debris) or multi-label images that contain more than one morphological class. The binary 
maps are also used as a boundary from which patches are taken within the borders of the cell colony, such that 
every image contains relevant class information. During training, random image patches are selected from the 
image within the colony ROI. An example of a binary map for a gray scale input image can be found in Fig. 5.

Multi‑scale input
There is an important distinction to make when referring to scale and resolution in terms of optical microscopy 
and image properties. For the optical light microscope used to capture the image dataset in this work, the term 
resolution refers to the smallest distance between two discernible points of light captured within an image, 
whereas scale is used to determine the size of objects that can be observed within the image. For images cap-
tured using a specific objective magnification (in this case 10x), the resolution of the image is a fixed value that 
is related to the spacial distance represented by a given number of pixels, and scale is related to the number of 
pixels comprising an image in a given region-of-interest. These two terms can sometimes be used interchange-
ably when discussing images because they can both have similar effects on image output (i.e. changing image 
scale can also affect the resolution of the image). For the purposes of this paper, the term scale is taken to mean 
the size of the input image at a given resolution, and therefore multi-scale refers to taking multiple size patches 
from the original image with a fixed resolution.

Using multi-scale inputs can have several advantages over a single-scale because of the nature of deep feature 
extraction, including image down-sampling steps performed by the neural network which result in low-level 
feature representations of the input image, where some fine grained features can be lost in feature space. Con-
versely, when providing multiple image scales, features at multiple input levels can be provided to the network 
for training, which allows for modeling of local and global features separately. For example, Christiansen et al. 
perform in-silico labeling of histopathology images by using multi-scale inputs to convert immunohistopatho-
logical images to fluorescent staining without the use of fluorescent microscopy38. They successfully segment 
various cellular structures using a multi-head output, but their network is very large and extremely expensive 
computationally, making it impractical to train in a normal research setting. The importance of input feature 
variability cannot be over-emphasized when trying to improve model training. Both global and local features 
contribute to model learning, and multi-scale inputs can help to improve classification accuracy for deep learning 
models by providing multiple views of the input at different scales.
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Given these considerations, the method in this paper leverages multi-scale, and multi-label inputs, and per-
forms resampling of an imbalanced dataset using pseudo-labels for morphological image patches to improve 
feature extraction during training. This approach allows for colony images containing multiple classes to be used 
in a patch wise manner to inform model learning by increasing the features available to the network. It is shown 
empirically here that this method displays improvement over standard convolutional neural networks, as well 
as similar methods of contrastive learning for biological datasets.

The single-scale networks used for the training configurations in this work are modified to accept multi-scale 
inputs. For the single scale architecture, size 128 × 128 image patches are extracted from the training images 
as input for the network. For the multi-scale configuration, the high scale input is a 224 × 224 image patch and 
the lower scale is a 112 × 112 center patch of the higher scale image. This allows for the resulting feature vec-
tors of the two inputs to be concatenated at equal lengths before the final classification layers of the network. A 
diagram of the multi-scale VGG network architecture is shown in Fig. 3, and image samples at various scales 
can be seen in Fig. 4.

These input scales are determined based on the relationship between optical properties of the microscope 
used for data collection and the relevant optical feature scale of cellular colonies in the images. Individual cell 
sizes can range from 10-100 µm , and due to the combination of optical parameters of the microscope unit used 
for data collection in this work, the individual pixel size of the live cell images is 0.8 µm44. Therefore, a line of 128 
pixels equates to 102.4 µm within the region of interest. The larger scale image patch, 224 × 224, encompasses 
a more global view of the input image (179.2 µm2 ) and contains features such as colony shape, edges, and sur-
rounding area. The smaller-scale input patch, 112 × 112 (89.6 µm2 ), captures the morphological texture patterns 
of the cellular area within a colony. Both image patch scales contribute useful information for the network to 
learn, and the concatenation of learned feature vectors provides more information for the network to use in its 
classification decision.

The networks are then trained to learn features of the input patches and sort them into the four morphological 
classes. Some of the images contain areas of more than one image class and because they were captured without 
the use of stains of fluorescent biomolecules, they would not be usable in traditional deep learning training con-
figurations which necessitate image level labels as a minimal requirement. However, using the IPB algorithm, 
image patches from multi-label images can be used to train the student network when given pseudo-labels by 
the teacher network.

Figure 4.   Sample image patches for every class at three scales (112, 128, and 224). Different views of image 
features are provided at each scale. At the lowest scale, 112 × 112, local views of fine-grain texture patterns are 
predominant. At the 128 × 128 scale, local texture features are present but global features, such as edges, are also 
observable. At the 224 × 224 scale colony shape becomes an important feature because images contain views of 
entire colonies.
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Multi‑label input
Figure 5 provides an example of a multi-label colony image that contains areas of all four of the relevant image 
classes. The colonies in these images contain multiple cell classes with contiguous boundaries. As described 
above, it is very difficult to provide sub-image level labels for these inputs because there exists no pixel level 
ground-truth in the dataset and as a result these images are useless for training traditional CNN architectures 
using reinforcement learning. However, the IPB algorithm provides an avenue for including image patches from 
multi-label images without providing semantic labels.

This is accomplished by simply providing image patches of multi-label images to the teacher network and 
conserving those image patch areas for each minibatch of inputs. Additionally, the MPL algorithm determines 
both soft pseudo-labels, as well as hard pseudo-labels provided to the student network using a prediction confi-
dence threshold of than 0.65. In this way, any class overlap that might be captured in a random image patch can 
be filtered out before reaching the student network. By including multi-label images, the network is provided 
with more variability of class input features. Random image patches are resampled for every epoch, allowing the 
network to learn from a balanced dataset distribution on the fly.

Dataset augmentations
Every random patch input is transformed using a series of random augmentations that includes horizontal and 
vertical flipping, 0-180 degree rotation, contrast and brightness adjustment, and gaussian blurring. Each of these 
augmentations is applied independently with a 0.25 probability, and they help to increase the effectiveness of the 
UDA module that is used to train the teacher network. Furthermore, several inherent augmentations are included 
in dataset pre-processing which also contribute to variability within the training dataset.

For example, patch crops provide an intrinsic randomized view of input images during each training epoch 
and introduce different morphological patterns and foreground to background ratios. Also, images that are too 
small to be cropped within the given patch size necessitate a resizing augmentation that helps account for scale 
invariance within the image data. These examples of innate augmentations highlight the relevance of biological 
variability in improving network generalization by expanding the apparent size and scope of the input dataset. 
Specifically those factors relating to the collection of microscopy data, which can encompass multiple scales, 
lighting levels, and optical parameters.

Iterative pseudo balancing resampling scheme
The pseudo label resampling scheme proposed in this work is a crucial step in balancing the input dataset for 
IPB learning. An overview of the pre-training, training, and testing steps are provided in previous sections. In 
line with the standard MPL algorithm, the pre-trained teacher provides pseudo labels to patch samples of the 
unlabeled training dataset. Where normally these pseudo labeled images would then be directly used to update 
the student network, IPB adds an intermediate step that involves balancing the pseudo-labeled image patches 
by weighting each class based on their relative probabilities within the dataset.

At the beginning of each epoch, the teacher network provides a pseudo label to each random image patch 
from the unlabeled dataset. Given a dataset with m classes, the minimum number of samples for a given class 
is ni = min(n1, n2, . . . , nm) for i = 1 → m . The proportion of every class in the unlabeled dataset ( pi ) is deter-
mined using the pseudo-labels and samples are drawn from a multinomial distribution with replacement using 
the inversely proportional weights of the classes within the dataset. The number of images taken from a given 
class ni = pi ∗ ni such that the total number of images taken from a given class can vary given the proportion of 
image labels in the dataset of image patches. The resampled dataset is used to update the student network, and 

Figure 5.   (Right) Binary map of cell colony area calculated using morphological segmentation. This map is 
used to reduce the presence of background area when taking image patches. (Center) Example of a large-scale 
(1325 × 1123) multi-label image containing areas of each of the individual four classes. (Left) 128 × 128 patches 
of images and their corresponding locations within the larger image (from top to bottom: Dense, Debris, Spread, 
Differentiated). The high background to foreground ratio makes taking random patches from within the binary 
map of the colony a crucial step in providing relevant information to the model.
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the student networks performance on the labeled dataset is used to update the teacher networks such that it can 
provide more accurate pseudo-labels to the student.

Inefficiences in network learning caused by class imbalances are due to the effect of confirmation bias in 
model learning45, which is when the teacher network overfits on the most prevelent class, so that when the stu-
dent is provided with random, pseudo-labeled data points, the proportion of these images coming from a given 
class cannot be controlled, and given the high levels of imbalance present in the dataset used for this work, the 
network begins to only learn features of the most prevalent class. The IPB resampling scheme proposed in this 
work overcomes the problem of confirmation bias due to class imbalance by using the pseudo-labels to balance 
the image dataset on the fly for every training iteration.

1: global variables
2: U ← Unlabeled Dataset
3: L← Labeled Dataset
4: T ← Testing Dataset
5: NSE ← Number of Student Epochs
6: N ← Number of Training Loops

7: procedure INITIALIZE TEACHER AND STUDENT NETWORKS

8: Teacher and Student networks both use HRNet architecture
9: Teacher and Student network weights are initialized with Kaiming Initialization

10: procedure PRE-TRAIN TEACHER NETWORK

11: Balance labeled dataset using resampling based on ground-truth labels
12: Update teacher network using cross-entropy loss on L with HRNet
13: Repeat for N pre-training epochs

14: procedure TRAIN IPB NETWORK

15: Collect pseudo-labels using pre-trained teacher network predictions forU
16: Resample image patches in weighted proportions of class psuedo-labels obtained from the teacher network
17: Update student HRNet weights in relation to cross-entropy loss between predictions of student network and
18: pseudo-labels from the teacher on balanced pseudo-labeled dataset
19: Collect student predictions for L image patches
20: Update teacher HRNet weights in relation to student cross-entropy loss between student predictions on labeled
21: image patches and ground-truth labels from L
22: Repeat for all batches inU for total number of student epochs NSE
23: Repeat update of teacher and student for N training loops

24: procedure TEST STUDENT NETWORK

25: Collect student network prediction for every labeled image patch in T
26: Compare student predictions on testing dataset T to target label to test classification performance

Algorithm 1.   Iterative Psuedo Balancing Algorithm.

Results and discussion
Dataset and ground‑truth
The input dataset for this work is composed of time-lapse, phase-contrast microscopy images of induced pluri-
potent stem cells. The goal of these experimental studies is to determine the developmental effects of nicotine on 
Huntington’s Disease affected neurogenesis. The study was designed and conducted by Dr. Barbara Davis from 
the Laboratory of Dr. Prue Talbot at the University of California, Riverside, Stem Cell Center. The experimental 
design centers around the premise that nicotine has a neuroprotective effect on cells affected by neurodegenera-
tive diseases and involves culturing the cells under control and experimental conditions to observe their behavior 
over the course of 48 hours using the Nikon Biostation CT incubator/microscope unit. This microscope outputs 
2908 × 2908 stitched images of the entire culture well at 10x optical magnification, taking one image every hour 
over the course of the experiment. In total, the dataset includes 15, 48 image time-lapse sequences, which are 
pre-processed and annotated before being used for network training.

Cropped colony ROI’s from the dataset of raw microscope images are sorted into four morphological classes 
that correspond to the unique phenotypes that are observed during the experiment. These classes include Dense, 
Spread, Differentiated, and Debris, each characterized by distinct texture and shape features that translate directly 
to the health and developmental status of the cell colonies. More specifically, the Dense class corresponds to early 
stage pluripotent stem cells, with relatively small individual size and dense, uniform, fine grained texture; the 
Spread class indicates intermediate stage progenitor cells with larger cell body area and a more uneven texture 
pattern; the Differentiated class represents adult neurons with dark cell bodies and elongated protrusions called 
axons; the Debris class displays spherical groups of dying or dead cells with high contrast indicative of the bubble 
like rounding of the dead cells which leads to shiny white areas around the perimeter.

The ground-truth labels were determined by a skilled biologist along with two other individuals who were 
trained to distinguish between the individual classes by visual appearance and provided with exemplary image 
references. Final ground-truth was determined via majority vote of annotations for each colony image. Table 1 
details the breakdown of the number of images that fall into each data class. Images range a variety of scales, with 
the smallest being 55 × 85 pixels, and the largest being 771 × 1298. Colony images that contain areas with more 
than one morphological class label were sorted into a separate bin for multi-label images. These 2,659 images in 
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the dataset were previously impractical to use for neural network training because their predicted class cannot 
be compared to any single ground-truth, however, patches of these images are given pseudo labels in conjunction 
with the rest of the dataset during IPB training. Subcategories of these images include partially differentiated 
colonies (1,436 images), that contain at least some portion of the differentiated class, as well as various propor-
tions of the other downstream classes; and partially spread (1,223 images) which similarly contain some portion 
of spread class as well as various proportions of downstream classes. The training dataset contains both labeled 
and unlabeled images, where the majority of the dataset (80%) is used as unlabeled data for the semi-supervised 
IPB algorithm, a smaller portion (10%) is used for the supervised pre-training, fine-tuning and teacher update 
steps, and another small portion (10%) is used for model validation.

True Positive Rate (TPR) and F1 score are used as metrics for classification accuracy because for an imbal-
anced dataset, TPR delineates how misclassifications affect the performance of the network, and F1 score com-
putes the harmonic mean of precision and recall, providing a comprehensive view of the models susceptibility 
to false positives and false negatives. TPR and F1 score are calculated as as shown in Eqs. (3) and (4). The results 
of the training configurations containing these images is detailed in the following sections.

Pseudo‑label resampling scheme accurately predicts class weights for training dataset
The first important step in training any of the experimental IPB configurations is the resampling scheme proposed 
in this work. Without performing dataset balancing via pseudo label resampling as outlined in the previous 
section, the MPL network overfits on the most prevalent class, resulting in imbalanced classification. However, 
by adding this step, the student network learns normally from a balanced dataset after the teacher performs 
pseudo-labeling.

This is important because one of the main limitations of semi-supervised networks is the inability to learn 
effectively on imbalanced datasets. Furthermore, biological datasets are often highly imbalanced, so the psuedo-
label resampling scheme allows for the unlabeled images to contribute equally to the multi-modal distribution 
learned by the neural network. This is illustrated in Fig. 6, which displays the predicted class proportions of 
various networks. The proportions are determined by accumulating the teacher networks predictions across 
the labeled training dataset, which are then used to balance the dataset of image patches during each training 
epoch. Figure 7 shows the teachers progression in estimating the proportions of every class in the unlabeled 
dataset by providing each image a pseudo-label. As training progresses, the teacher begins to learn a more bal-
anced distribution of the dataset, as evident by the values for the differentiated class trending towards the actual 
class proportion.

Ablation experiment: multi‑scale and multi‑label inputs provide global features without the 
need for annotation
The multi-scale IPB configurations (MS HRNet, MS IPB VGG, MS IPB HRNet) which take both 224 and 112 
scale inputs to create a combined feature vector, show the greatest improvement over the baseline architectures, 
in the Dense and Differentiated classes, especially for the HRNet model configuration. These observations may 
be due to the global features that are incorporated into feature learning with the multi-scale input. Specifically, 
the introduction of morphological features such as edges, colony shape and size, and foreground to background 
contrast contribute to improved feature discrimination during model learning. This includes a statistically signifi-
cant increases in the TPR of the Dense class by ∼ 5% (P-value: 0.0009 using student t-test with 95% confidence 
value) and the Differentiated class by ∼ 7% (P-value 0.0448 using student t-test with 95% confidence) when 
compared to the baseline HRNet. For the other classes, these features are already present or prominent in the 
single-scale input or do not contribute additional information at a higher-scale (Fig. 4).

The multi-label IPB configurations (ML IPB VGG, ML IPB HRNet) includes single scale input patches of 
unlabeled training images that contain multiple image classes within a single colony. By taking random crops of 
these images iteratively during training, the number of additional unique features that these images contribute is 

(3)TPR =
TP

TP + FN

(4)F1 =
2TP

2TP + FP + FN

Table 1.   Breakdown of data samples per class for the stem cell microscopy dataset.

Class # Samples

Debris 3587

Dense 3934

Diff 656

Spread 10506

Multi-label 2659

Total 21342
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extremely large. These improvements in model learning can be attributed to the increase in available data-points 
for feature extraction. Another possible consideration for the multi-label images is that they represent some later 
stage cell colonies because of the larger colony size and presence of multiple classes. This could account for some 
of the improvement in the Dense class as well as classes representing the later stage phenotypes (Differentiated 
and Spread).

Combining multi‑label and multi‑scale inputs maximizes available features for model learning
While the separate implementation of multi-label patches and multi-scale inputs results in significant improve-
ment over baseline CNN and IPB implementations, the combination of these modules for IPB training dem-
onstrates the true power of these features when used in conjunction. Tables 2 and 3 contain the classification 
results for the IPB training configurations in relation to a standard VGG and HRNet CNN architectures in terms 
of TPR and F1 Score.

Overall, the ML+MS IPB HRNet improves classification accuracy as measured by TPR over the standard 
CNN architectures by ∼3%, with statistically significant improvements in the Dense ( ∼ 8% ), and Differentiated 
( ∼ 9% ) Classes using a student t-test with a 95% confidence rate (p-values: 0.0001, and 0.0002, respectively). As 
previously stated, the introduction of global features using multi-scale inputs improves feature disentanglement 
by providing context for the networks class prediction. Additionally, these improvements suggests that pseudo-
balancing the multi-label and multi-scale data allows the network to learn from a more balanced distribution 
of class features.

Figure 6.   Predicted class weights from the teacher network for two IPB configurations, as well as the actual 
training dataset distribution. The multi-scale input patches from multi-label images (ML+MS) allows the 
teacher to learn a more accurate distribution of the image classes, which it can then use to provide the student 
with a more accurate pseudo-balanced dataset.

Figure 7.   Sampling weights for each class displayed as the inverse proportion of pseudo-labels as predicted by 
the teacher network across the unlabeled image dataset.
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In terms of F1 score, the ML+MS IPB HRnet configuration also shows the greatest improvement over the 
baseline CNN, by ∼2%, with statistically significant improvements in the Dense class via student t-test (p-value: 
0.0005). These improvements may be due to the fact that HRNet has the capacity to conserve high-level features 
such as shape characteristics of the larger scale input as well as model texture features present at the smaller 
scale input patches.

These improvements can be attributed to the interplay between the multi-label and multi-scale image samples 
that are present in the dataset. For example, the 2,659 additional images that are introduced for the multi-label 
configuration tend to represent larger colonies from later-stage images. When taking single scale patch samples 
of these images, the surrounding area is not taken into consideration, which results in fewer available features 
for the network. Conversely, the global information provided by the multi-scale input may not provide as much 
additional information for model learning when applied to the smaller, single-class images. However, when 
combined, the multi-scale, multi-class input provides useful features from a large portion of the dataset that was 
previously unusable in a supervised network setting.

Reducing proportion of labeled training data for data limited settings lowers classification 
performance
To test the ability of the model to learn on smaller proportions of labeled data for use in the teacher pre-training 
and MPL update steps, network configurations were trained using 1%, and 5% as well as 50% and 80% of labeled 
data and compared to the standard 10% configuration used in this work. The lowest data setting (1%) represents 
only 191 total labeled images, whereas the 5% setting contains 938 labeled images, the 10% setting contains 
1,873 labeled images, the 50% configuration contains 9,341 labeled images and the 80% configuration contains 
14,946 labeled images.

Figure 8 demonstrates a general upward trend in classification accuracy for the IPB network configuration 
until the 50% data mark, when for the 80% configuration, the accuracy of the model declines. This is because the 
student network is trained on images with pseudo-labels from the teacher network, which become more robust 
with increased number of labeled data points until the amount of data used to generate confident pseudo-labels 
results in a lack of sufficient data points with which to train the student network effectively. However, the results 
using the lower data settings still highlight the potential of this method to train the neural network even in very 
data limited settings.

These dataset configurations are also used to train the SimCLR model, which is the most competitive related 
work to the proposed method. This self-supervised method has the limitations of not being able to estimate the 

Table 2.   True positive rate of classification for all IPB configurations, where Multi-scale is denoted as MS, and 
Multi-label is denoted as ML. Bold values represent best result for each column.

Config./Class (std.) Debris Dense Diff Spread Average

VGG19 0.8877 (0.0174) 0.7772 (0.0308) 0.8434 (0.0396) 0.9299 (0.0134) 0.8595

HRNet 0.8670 (0.0087) 0.7752 (0.0291) 0.8162 (0.0569) 0.9239 (0.0076) 0.8455

MS HRNet 0.7921 (0.0491) 0.8410 (0.0116) 0.9013 (0.0595) 0.8813 (0.0111) 0.8539

IPB VGG 0.8389 (0.0615) 0.7695 (0.0590) 0.7971 (0.0621) 0.9281 (0.0277) 0.8334

MS IPB VGG 0.8843 (0.0576) 0.8489 (0.0344) 0.8369 (0.0913) 0.8949 (0.0340) 0.8662

ML IPB VGG 0.8890 (0.0356) 0.8061 (0.0467) 0.8516 (0.0605) 0.9144 (0.0190) 0.8647

ML+MS IPB VGG 0.8905 (0.0419) 0.8529 (0.0312) 0.8259 (0.0741) 0.9006 (0.0148) 0.8674

MS IPB HRNet 0.8934 (0.0512) 0.8241 (0.0295) 0.8846 (0.0826) 0.9112 (0.0174) 0.8783

ML IPB HRNet 0.9139 (0.0364) 0.7920 (0.0311) 0.8737 (0.0785) 0.9139 (0.0158) 0.8733

ML+MS IPB HRNet 0.8843 (0.0159) 0.8575 (0.0218) 0.9085 (0.0189) 0.8985 (0.0074) 0.8872

Table 3.   F1 Score for all IPB configurations, where Multi-scale is denoted as MS, and Multi-label is denoted as 
ML. Bold values represent best result for each column.

Config./Class (std.) Debris Dense Diff Spread Average

VGG19 0.8723 (0.0161) 0.8342 (0.0162) 0.8460 (0.0255) 0.9053 (0.0073) 0.8644

HRNet 0.8579 (0.0111) 0.8215 (0.0154) 0.8565 (0.0174) 0.9011 (0.0055) 0.8567

MS HRNet 0.8122 (0.0206) 0.8071 (0.0066) 0.7628 (0.0541) 0.8901 (0.0072) 0.8180

IPB VGG 0.8497 (0.0245) 0.8152 (0.0142) 0.8037 (0.0678) 0.8899 (0.0143) 0.8396

MS IPB VGG 0.8529 (0.0374) 0.8339 (0.0275) 0.8190 (0.0439) 0.9044 (0.0109) 0.8525

ML IPB VGG 0.8627 (0.0228) 0.8293 (0.0189) 0.8519 (0.0300) 0.9063 (0.0060) 0.8625

ML+MS IPB VGG 0.8574 (0.0182) 0.8513 (0.0196) 0.8204 (0.0463) 0.9102 (0.0104) 0.8598

MS IPB HRNet 0.8608 (0.0141) 0.8412 (0.0158) 0.8536 (0.0346) 0.9125 (0.0036) 0.8670

ML IPB HRNet 0.8580 (0.0146) 0.8419 (0.0188) 0.8587 (0.0486) 0.9067 (0.0057) 0.8663

ML+MS IPB HRNet 0.8609 (0.0102) 0.8422 (0.0020) 0.8749 (0.0278) 0.9132 (0.0030) 0.8728
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dataset distribution, as well as requiring a large amount of data for effective feature mapping. This can be seen 
in Fig. 8 where fluctuations in accuracy can be seen, with a general upward trend. Given the size of the dataset 
used in this work, there are not enough data points for the network to learn effectively, resulting in overall lower 
performance as compared to the IPB method proposed in this work, which obtains superior results to this 
method using only a fraction of the training data.

Observation of misclassifications highlights importance of multi‑scale network
Figure 9 shows examples of misclassified patches for the multi-label/multi-scale configuration. Several observa-
tions can be made including that misclassifications as Debris are often due to the presence of dead or dying cells 
within or surrounding healthy colony areas; Spread images misclassified as Dense sometimes contain areas with 
more than one cell class present and vice versa for the Dense to Spread class; misclassified differentiated images 
are confused by the network because they can appear flat like a spread image, but no differentiated images were 
improperly predicted as Dense and vice versa, mostly because these classes are the least closely associated with 
one another biologically, whereas the Spread class is the intermediate between the Dense and Differentiated, and 
is the most prevalent and most commonly confused class. Table 4 portrays a representative confusion matrix 
for these network predictions, which highlights the misclassifications caused by the presence of feature overlap 
between biologically adjacent classes. These observations help to emphasize the importance of incorporating a 
multi-scale input, which can provide a view of both the fine grained textures, and global feature patterns of the 
input images.

Figure 8.   Graph of classification accuracy vs. proportion of labeled data used for training. There is a positive 
correlation between the amount of labeled data and the final classification accuracy of the student. However, 
these results still demonstrate that in a data limited setting, this method can still be effective.

Figure 9.   Example misclassifications for the multi-scale/multi-label configuration. Black boxes represent 
the omitted correct classifications, and boxes with and x through them represent instances where no 
misclassifications occurred. Figure 4 provides example images of each of the classes.
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Multi‑scale pseudo‑balancing network out‑performs state‑of‑the‑art
Several previous works have attempted to perform semi-supervised and self-supervised learning for natural 
image and biological datasets. To determine the effectiveness of these methods in relation to the proposed 
approach, four state-of-the-art models (MPL33, SimCLR25, Contrastive Clustering27, and SimTriplet30) were 
trained on the dataset, and the results were calculated across 5 folds in Table 5. These results confirm that the 
major pitfall of these methods is that they fail to account for class imbalances in the absence of prior informa-
tion. Furthermore, contrastive methods such as SimCLR work most effectively with very large amounts of data, 
which is counterintuitive to the tasks associated with biological image datasets that are inherently limited by the 
constraints of experimental research.

The MPL algorithm does not inherently account for class imbalances, and also tends to bias towards on the 
most prevalent class (Spread). The MPL algorithm trained with the pseudo-balancing module (MPL Balanced, 
Table 5) has a lower variance in interclass classification accuracy in comparison to the MPL Imbalanced con-
figuration (0.0018 vs. 0.0024), which means that the results provide a more balanced classification performance. 
Furthermore, these MPL configurations show inferior performance to the IPB algorithm, which incorprates 
multi-scale and multi-label image patches to improve feature extraction and classification. The IPB algorithm 
outperforms the MPL configuration by 2% by providing the model with a balanced view of the input classes and 
as well as a global view of input data and incorporates image features from multi-label image patches. It also 
does not necessitate the large amount of data required for learning image features in a fully supervised manner 
because it utilizes semi-supervised pseudo-labeling to guide mapping of the input distribution.

Conclusions
The approach presented in this work, Iterative Pseudo Balancing, represents a significant improvement in semi-
supervised methods for resourceful management of biological datasets. Pseudo-labels from an MPL framework 
are used to iteratively balance a biological image dataset on the fly, and simultaneously train a student-teacher 
ensemble network to accurately classify stem cell colonies. Previously unusable, multi-label images are used to 
increase the available data points for model learning, and multi-scale inputs are used to integrate global and 
local features present in the dataset. Combining these views of the input data for an HRNet results in an overall 
improvement of 3% over the baseline CNN in terms of TPR, which is shown to be statistically significant. The 
results shown in this paper highlight the importance of balanced learning in biological experimentation when 
employing deep neural networks.

The IPB framework proposed here overcomes the problem of confirmation bias via overfitting as a factor of 
dataset imbalance by providing the network with a comprehensive view of the dataset, incorporating multiple 
image scales and exposing hidden features from mutli-label images. The exhaustive use of all available data and 
domain information is crucial to improving model performance when training on biological datasets. This work 
allows for biological researchers to easily employ deep learning analysis to their experimental datasets without 
having to spend time manually labeling large datasets, and to model their data using non-invasive morphologi-
cal classification without the need for molecular biomarkers. In turn, this will accelerate the pace of biological 
research involving predictive models. Other possible avenues of exploration for improving this work include 
adding motion information for dynamics, and the collection of biomarker data for endpoint ground-truth.

Table 4.   Representative confusion matrix for the IPB network. The most confused classes observed here are 
the Dense, Debris, and Spread classes, which can be attributed to the presence of class overlap as a result of 
downstream differentiation. Similarly, there are no misclassifications between the Dense and Differentiated 
classes because of their relatively far distance in terms of biological proximity.

Predicted/Actual Class Debris Dense Diff. Spread

Debris 301 18 2 37

Dense 11 326 0 56

Diff. 1 0 62 2

Spread 32 39 6 973

Table 5.   True Positive Rate for related works in comparison to the multi-label, multi-scale IPB configuration, 
where Multi-scale is denoted as MS, and Multi-label is denoted as ML.  Related methods display inferior results 
due to the effect of class imbalances, which causes over-fitting and high variance. Bold values represent best 
result for each column.

Config./Class (std.) Debris Dense Diff Spread Avg.

SimCLR25 0.8559 (0.0346) 0.8712 (0.0274) 0.7538 (0.0592) 0.7874 (0.0213) 0.8170

CC27 0.5101 (0.1756) 0.3852 (0.4324) 0.2277 (0.2370) 0.3436 (0.0841) 0.3666

SimTriplet30 0.1726 (0.0266) 0.7160 (0.1390) 0.2246 (0.1864) 0.5423 (0.1012) 0.4138

MPL (Imbalanced)33 0.8158 (0.0804) 0.8423 (0.0407) 0.8818 (0.0504) 0.9292 (0.0237) 0.8672

MPL (Balanced) 0.8950 (0.0106) 0.8261 (0.0540) 0.8322 (0.0564) 0.9111 (0.0221) 0.8661

IPB (ML+MS) 0.8843 (0.0159) 0.8575 (0.0218) 0.9085 (0.0189) 0.8985 (0.0074) 0.8872
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Data availability
The dataset analyzed is available from the corresponding author on reasonable request. The code developed here 
is available via Zenodo46.
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