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Clonal gene signatures predict prognosis
in mesothelioma and lung
adenocarcinoma
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Malignant pleural mesothelioma (MPM) is a rare but lethal pleural cancer with high intratumor
heterogeneity (ITH). A recent study in lung adenocarcinoma has developed a clonal gene signature
(ORACLE) from multiregional transcriptomic data and demonstrated high prognostic values and
reproducibility. However, such a strategy has not been tested in other types of cancer with high ITH.
We aimed to identify biomarkers frommulti-regional data to prognostically stratify MPM patients. We
generated a multiregional RNA-seq dataset for 78 tumor samples obtained from 26 MPM patients,
each with one sample collected from a superior, lateral, and inferior region of the tumor. By integrating
this dataset with the Cancer Genome Atlas MPM RNA-seq data, we selected 29 prognostic genes
displaying high variability across different tumors but low ITH, which named PRACME (Prognostic
Risk Associated Clonal Mesothelioma Expression). We evaluated PRACME in two independent MPM
datasets and demonstrated its prognostic values. Patients with high signature scores are associated
with poor prognosis after adjusting established clinical factors. Interestingly, the PRACME and the
ORACLE signatures defined respectively from MPM and lung adenocarcinoma cross-predict
prognosis between the two cancer types. Further investigation indicated that the cross-prediction
ability might be explained by the high similarity between the two cancer types in their genomic regions
with copy number variation, which host many clonal genes. Overall, our clonal signature PRACME
provided prognostic stratification inMPMand this study emphasized the importance ofmulti-regional
transcriptomic data for prognostic stratification based on clonal genes.

Malignant pleuralmesothelioma (MPM) is an aggressive cancer type arising
from the mesothelial cells of the pleura which lines the internal surface of
chest and surrounds the lung1. The majority of mesothelioma cases are
linked to asbestos exposure while a small number are attributable to prior
chest irradiation. Genetic predisposition also contribute to this disease2,3.
MPM tumors are divided into three histological subtypes including epi-
thelioid, biphasic (or mixed), and sarcomatoid. Patients diagnosed with
early-stage disease are amenable to curative surgery4. In addition to che-
motherapy, immune checkpoint blockade therapies have emerged as

another FDA-approved treatment option forMPMpatients5,6. However, the
development of resistance is amajor concernandpatients’ responses to these
treatments varied dramatically. For example, almost 50% of mesothelioma
patients eventually developed resistance to chemotherapy7 Similarly, for
patients treated with dual agen immune checkpoint inhibitors in the
Checkmate 743 trial, only 8% completed the two-year treatment course. As
such, a critical need for biomarkers that prognostically stratifyMPMpatients
for improving personalized treatment is urgently needed. Genomic profiling
has been investigated but has not led to practical clinical applications8,9.
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Current MPM scoring systems incorporated European Organization
for Research and Treatment of Cancer (EORTC) and the Cancer and
Leukemia Group B (CALGB)10,11. These two scoring systems included poor
performance status, highwhite blood count,male sex, sarcomatous subtypes
and a few other systemic factors. The Mesothelioma Weighted Grading
Scheme (MWGS) proposed another risk-score based on BAP1 expression,
histological type, age, and other factors to predict patient survival12. How-
ever, there currently exist no established transcriptomic gene signatures that
have been developed for clinical settings. Transcriptomic profiling by
microarrays and RNA-seq has been widely used to characterize tumor
samples13. Based on the resultant gene expression data, numerous gene
signatures have been developed for prognostic stratification9,14. However,
the majority of expression-based gene signatures have low reproducibility
when applied to independent data9. One of the critical reasons is the high
transcriptomic intratumor heterogeneity (RNA-ITH) of tumors. ITH
represents the genomic and transcriptomic variations among different
regions within the same tumor, which is implicated in the development of
treatment resistance and failure15.

Both MPM and lung adenocarcinoma (LUAD) are thoracic cancers,
but the former arises from themesothelial cells of the pleura along the chest
and lung, while the latter often forms in the lungs. Compared with LUAD.
MPM is usually more aggressive and associated with a poor prognosis
regardless of the stage. Additionally, tumorigenesis is caused by different
genetic alternations: inMPM loss of BAP1 andNF2 are used as biomarkers
while in LUAD EGFR and TP53 are themost frequently mutated genes16,17.
While there are substantive differences between these two thoracic cancer
histologies, some of the environmental etiologies are shared and far more
studies have been performed on LUAD. For example, cigarette smoke acts
synergistically with asbestos to increase the risk of lung cancer in patients
exposed to both carcinogens. Evaluating commonalities in riskmodeling for
the two diseases may provide novel insights for developing a prognostic
model for MPM.

In order to overcome RNA-ITH, a previous study used multi-regional
data and developed a gene signature named ORACLE (outcome risk-
associated clonal lung expression) to stratify patients with non-small-cell
lung cancer (NSCLC).ORACLEconsists of 23 clonally expressed geneswith
low intratumor heterogeneity (ITH) but high intertumor heterogeneity

(Q4 genes) in NSCLC9. These genes tend to be located in chromosomal
regionswith frequent clonal amplifications and their expression is driven by
their copy number variations. By selecting clonal genes, ORACLE reduced
the effect of sampling bias and achieved high reproducibility in the prog-
nostic stratification of NSCLC samples. However, the effectiveness of this
strategy has not been assessed in other cancer types9.

Similar to lung cancer, MPM has a high level of RNA-ITH18. To date,
no prognostic signatures have been translated into clinical applications14,19.
In this study, we applied the same strategy as ORACLE and developed a
clonal gene signature for predicting patient prognosis inMPM. To this end,
we generated a high-quality multi-regional RNA-seq expression dataset
including 78 samples collected from 26 MPM patients, each having 3
regions (superior, lateral and inferior) of the same tumor. By combining this
dataset with the TCGA-MESO RNA-seq data, we defined the clonal gene
signature with 29 genes named Prognostic Risk Associated Clonal Meso-
thelioma Expression (PRACME). We evaluated and demonstrated the
prognostic value of PRACME in multiple independent MPM datasets.
Importantly, we found that PRACME, originally developed for MPM, and
ORACLE, originally developed for NSCLC, can each cross-predict prog-
nosis in the two cancer types.

Results
The development of a clonal gene signature for prognostic
prediction in MPM
Based on themultiregional RNA-seqdata, we calculated the intratumor and
intertumor heterogeneity scores of all genes and identified 3,056 (15.07%)
Q4 genes with high intertumor heterogeneity but low expression variations
across the three regions with the same tumor. From these genes, we selected
a subset of prognostic genes, whichwere identified fromprognostic analysis
by using the TCGA-MESO (n = 87). Following that, a core set of clonal
prognostic genes were selected by the lasso regression model, which forms
the PRACME gene signature (see Fig. 1a for detailed steps). PRACME
consists of 29 genes (see Supp. Table 1), some of which are well-known in
cancer development. One example is COL11A1, which has shown to be
overexpressed inmultiple cancers and relates to patient prognosis20; another
example is MAP4K4, which plays a role in cancer cell proliferation and was
reported to exhibit differential expression in different stages of MPM21.

TCGA-MESO RNA-seq
(n=87)
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Fig. 1 | Schematic diagram in the study. (Left) Data used to define PRACME
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signature with color green to indicate prognostic gene selection and color pink to
indicate clonal gene selection.
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PRACME signature is predictive of prognosis in multiple inde-
pendent MPM datasets
We then evaluated the prognostic value of PRACME in two independent
MPM datasets. In the dataset from Bueno et al, univariable analysis indi-
cated that the PRACME score was significantly associated with patient
survival from surgery (HR > 1, p = 3e−06, univariable Cox regression,
Supplementary Table 2). When patients were stratified into 3 groups of
equal sizes, the high-score groups demonstrated significantly shorter sur-
vival time than medium-score groups or low-score groups (Fig. 2a). Mul-
tivariable Cox regression analysis indicated that PRACME score provided
additional prognostic values after adjusting for established clinical variables,
including age, sex, stage, histology, and asbesto exposure (Fig. 2c and
Supplementary Table 2). The prognostic value of PRACME was further
confirmed the dataset from Bott et al. (Fig. 2b, d). On the other hand, we
found that ORACLE signature, derived from LUAD multi-regional data,
was also informative in MPM patients in TCGA-MESO, Bueno and Bott
datasets (Supplementary Tables 2, 3).

Association of PRACME signature score with clinical and geno-
mic features
Next, we systematically examined PRACME’s prediction power under
potential risk factors. Among the three main mesothelioma subtypes,
including epithelioid (E), sarcomatoid (S) and biphasic (B), we found that
the difference between each subtype remained significant. Further, sarco-
matoid samples showed the highest median PRACME score, which cor-
respondingly led to the poorest prognosis (Fig. 3a, Supplementary Table 4,

Supplementary Fig. 1)22. Subgrouping patients based on asbestos exposure
showed that PRACME score was significantly high in the exposed group,
and patients proved to have longer survival than those who were not
exposed (Fig. 3b, Supplementary Table 4, Supplementary Fig. 1). In addi-
tion, we witnessed a separation of PRACME scores for epithelioid patients,
with worse prognosis for those with higher scores (Fig. 3c). We further
investigated a list of molecular characteristics calculated by Thorsson et al
for TCGA samples23. Our results indicate that MPM samples with higher
PRACME scores tended to have higher proliferation rate, higher pathway
activity in TGF-β response, and higher level of intratumor heterogeneity
(Supplementary Table 5). We identified genes that are correlated with
PRACME scores across all samples in the TCGA-MESO dataset. Enrich-
ment analysis indicated that positively correlated genes are enriched for cell-
cycle related pathways, especially related to mitosis and DNA replications
(Supplementary Table 6). In contrast, negatively correlated genes are enri-
ched in oxidations and tyrosine metabolism.

Interestingly, we found many immune-related genes are highly
correlated the PRACME scores. For example, we observed a significant
correlation betweenPRACMEscore and the expression level ofVSIR gene
(R =−0.56, P = 2.1e−08), which encoded an important immune check-
point protein, V-type immunoglobulin domain-containing suppressor of
T cell activation24. As a matter of fact, the expression of VSIR was sig-
nificantly associated with patient prognosis in MPM (Fig. 3e, f). Another
example is CD276, an immunostimulatory checkpoint gene that inhibits
tumor antigen-specific immune responses25. CD276 had a postive corre-
lation with PRACME score (R = 0.53, P = 1.2e−07) and its high
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Fig. 2 | The clonal signature is predictive of patient prognosis in MPM. In Bueno
MPM patients, (a) We stratified all patients with PRACME score into 3 subgroup-
ings: high-, intermediate-, and low-score groups. We showed their survival differ-
ence by Kaplan–Meier plots. bMultivariable Cox analysis was performed with age,
stage, sex, histology, and, asbestos exposure as additional clinical variables; In Bott

MPM patients, (c) We stratified all patients with PRACME score into three sub-
groupings: high-, intermediate-, and low-score groups and showed their survival
difference by Kaplan–Meier plots. dMultivariable Cox analysis was performed with
age, stage, sex, and histology as additional clinical variables.
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expression led to shorter patients’ survival correspondingly (Fig. 3g, h). To
further investigate the association betweenPRACMEscoreswith immune
cell infiltration in the tumor microenvironment, we performed compu-
tational analysis to infer the infiltration level of 6major immune cell types
based on the transcriptomic profiles ofMPM samples. In both Bueno and
TCGA-MESO datasets, we observed a negative correlation between
PRACME score and immune infiltration, indicating samples with higher
PRACME scores tended to have lower infiltration (Fig. 3i, Supplementary
Fig. 3).

PRACME signature is also predictive of prognosis in lung
adenocarcinoma
Interestingly, we discovered that PRACME could also predict prognosis in
LUAD, although it is developed fully based onMPM data. In the Okayama
data, we found that PRACME score was associated with days before relapse
(HR > 1,p = 6e−04).Additionally, 3 groupsof patients, basedon risk scores,
demonstrated the low-score group had longer recurrence-free survival
(Fig. 4a). Similar results were observed in Shedden LUAD dataset (Fig. 4b).
Multivariable Cox analyses were performed to show PRACME’s indepen-
dence in prognosis adjusting for other clinical variables (Fig. 4c). However,
in LUSC patients, PRACME signatures were not informative of the patient
prognosis (Supplementary Fig. 1).

PRACMEandORACLEsignatures are correlated andprognostic
in both MPM and LUAD
To understand the cross-predictivity of ORACLE and PRACME in the
two cancer types, we examined the correlation between their signature
scores in bothMPMandLUADdata (Fig. 5a, b).As shown inFig. 5e,when
applied to the Bueno data (MPM), the two signatures showed a high
correlation (R = 0.62, P < 2.2e−16) across all samples. Similarly, two sig-
natures showed strong correlation (R = 0.68, P < 2.2e−16) when applying
to Okayama data (LUAD). To further understand why their signature
scores are correlated, we compared the Q4 genes identified in MPM and
LUAD, which were used for defining the two signatures. Out of the 948
MPM and 472 LUAD Q4 genes, 208 genes were shared between the two
cancer types, which was significantly more than what is expected by
chance (P < 2e−65). Among 7064 common genes shared between mul-
tiregional MPM data and TRACERx LUAD data, 948 genes belonged to
Q4 in MPM and 472 genes belong to LUAD Q4; there were 208 over-
lapping Q4 genes, indicating that the Q4 genes were statistically over-
lapped with a significant p-value less than 1.19e−65. Similarly, we
validated the similarity between two sets of prognostic genes in LUADand
MPM (P < 2.78e−143, Fig. 5g). In this way, we concluded that there
remained high overlaps between prognostic genes in MPM and LUAD,
and between Q4 genes in MPM and LUAD.

Fig. 3 | Association of PRACME signature score with clinical and genomic fea-
tures. In Bueno MPM data, (a) PRACME score in three major histologies: epithe-
lioid, biphasic, and sarcomatoid; P-value was calculated from pairwise comparison
among 3 groups by using the t test. b PRACME score in subgrouping of asbestos
exposure and no asbestos exposure. c PRACME Score Kaplan–Meier plot in epi-
thelioid patients.dForest plots showed univariable andmultivariable Cox regression

analysis in both Bueno and Bott datasets. e, f Correlation between PRACME score
and immune gene VSIR and corresponding correlation between VSIR gene
expression and patient survival. g, h Correlation between PRACME score and
CD276 gene expression and corresponding correlation between CD276 gene
expression and patient survival. i Correlation of immune infiltration of Memory B
cells, Naïve B cells, and CD4+ T cells and PRACME score.
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Since clonal genes tend to be located in amplified chromosomal
regions, we then examined the similarity between LUADandMPM in their
copy number variation profiles. Based on the TCGA-LUAD and TCGA-
MESO copy number variation data, we calculated the amplification and
deletion frequency of all genes in the two cancer types. Interestingly, we
found that both the gene amplification and deletion profiles were sig-
nificantly correlated, but the former (R = 0.77, P < 2.2e−16) has a higher
correlation than the latter (R = 0.43,P < 2.2e−16).A similar patternwas also
observed on the chromosome band level, with amplification profiles
(R = 0.78, P < 2.2e−16) more significantly correlated than deletion profiles
(R = 0.47, P < 2.2e−16). Taken together, our results indicated the high

correlation from many aspects may explain the cross-prediction of ORA-
CLE and PRACME in two cancer types.

Discussion
In this study,we generatedmulti-regionalMPMRNA-seq data to define the
PRACME clonal gene signature. We assessed and showed the prognostic
values of this signature in two independent MPM datasets. Our results
validated the strategy of selecting clonal geneswith high intertumor but low
intratumor heterogeneity for prognostic prediction, which was first pro-
posed by Biswas et al in NSCLC. Prognostic signatures based on these genes
are robust against the sampling bias issue and therefore more likely to be
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reproducible than conventional gene signatures developed without con-
sidering RNA-ITH. MPM and lung cancer are susceptible to sample bias
due to their high ITH levels. Togetherwith theORACLE study, our analyses
demonstrated the value of multiregional data in translational studies,
especially in the field of biomarker development.

Interestingly, we found that the PRACME and ORACLE signatures
can cross-predict patients’ prognosis in both MPM and LUAD, although
they were originally developed from cancer-type specific data. Further, the
cross-cancer prediction capability can be at least partially explained by
the fact that the two cancer types shared many Q4 genes and similar gene
amplification profiles. Of note, the gene amplification profiles are more
correlated between MPM and LUAD than their deletion profiles. This is
consistent with the observation that clonal genes are more likely to be
located in amplified genomic regions presenting in dominant tumor clones.
Due to their clonal nature, these genes tend to have lower intratumor het-
erogeneity at the transcriptomic level and therefore enriched in Q4 genes.
This also explains the large number of shared Q4 genes between the two
cancer types. Although MPM and LUAD are both thoracic cancers, it
should be noted that they are quite different cancer types.

In this study, we showed that some gene signatures can predict prog-
nosis in distinct but related cancer types. As such, it is possible to define
prognostic signatures for rare cancers with limited data by leveraging larger
data from a related cancer type. Our analysis indicated that, at least inMPM

and LUAD, clonal gene signatures are likely to have cross-cancer predictive
ability. However, it remains a challenge to utilizemore broadly cross-cancer
signatures in clinical application, because further research is needed to
identify which cancer types are likely to share prognostic signatures and to
what extent can the cross-prediction ability of clonal gene signature be
extended to other cancer types.

We observed that the NSCLC signature ORACLE could actually pre-
dict MPM patient prognosis with a slightly higher performance than
PRACME,whichwas specifically defined fromMPMdata.This resultmight
be explained by the sample size difference of the data used for defining
ORACLEandPRACMEsignatures. ForORACLE,Q4geneswere identified
based on the TRACERx multi-regional data consisting of 89 samples from
28 patients and the prognostic genes were identified by using the TCGA-
LUAD data consisting of 469 samples. In contrast, for PRACME, the Q4
were defined from78 regions and 26patients, and the prognostic geneswere
derived TCGA-MESO consisting of 87 patients. Both themulti-region data
(for identifying Q4 genes) and the TCGA data (for identifying prognostic
genes) have larger sample sizes for LUAD than MPM, which favors more
accurate estimation of intratumor/intratumor heterogeneity of genes and a
better list of prognostic genes in LUAD. Moreover, in our multi-regional
data for MPM, the samples were collected from three regions including
superior, lateral, and inferior. This approach is quite different from the
method used by TRACERx for selecting samples from different regions of

Fig. 5 | PRACME and ORACLE signatures are correlated and prognostic in both
MPM and LUAD. a Univariable and Multivariable Cox regression models on
Bueno, Bott and TCGA MPM datasets. b Univariable and Multivariable Cox
regressionmodels on Lee, Okayama and Shedden datasets; Each segment represents
hazard ratio and 95-percent confidence interval. Red indicates PRACME, black
indicates ORACLE. Vertical dash-line represents hazard ratio of 1.0. c Gene-level
copy number variation correlation with amplification frequency on the left and

deletion frequency on the right. X-axis represents LUAD gene-level CNV and y-axis
representsMESOgene-level CNV. dChromosome-band level CNV correlationwith
amplification frequency on the left panel and deletion frequency on the right panel.
e Correlation of PRACME and ORACLE in Bueno MPM patients (top) and
Okayama LUAD patients (bottom). f Overlapping Q4 genes in MESO (yellow) and
in LUAD (red). g Overlapping prognostic genes in TCGA-MESO (yellow) and
TCGA-LUAD (red).
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the same lung tumors. TRACERx cohort took whole-exome sequencing on
primary tumor regions ranging from2 to 8 and amediandepth of 426x. The
method used by TRACERX might be able to more effectively estimate the
intratumor heterogeneity. Overall, this study improved our understanding
of factors that determine clonal variables in both LUAD and MPM cancer
evolution and provided a clonal gene signature with valuable risk prediction
in patient survival. Overall, this study improved our understanding of fac-
tors that determine clonal variables in both LUAD and MPM cancer evo-
lution and provided a clonal gene signature with valuable risk prediction in
patient survival.

Our cross-prediction results showed the potential to define prognostic
signatures for rare cancers and improved our understanding of common
pathways among cancer types. Our signatures did not intersect with pre-
vious published 5-gene signature from Bai et al. and another 48-gene sig-
nature published recently byNair et al.19,26. Further, our PRACME signature
utilized multi-regional sampling to develop a robust clonal signature that
provide prognostic values independently of stage andhistology.Overall, this
study improvedourunderstandingof factors that determine clonal variables
in both LUAD and MPM cancer evolution and provided a clonal gene
signature with valuable risk prediction in patient survival.

Methods
Multi-regional MPM RNA-seq profiling and processing
This study was performed in accordance under Institutional Review Board
protocol at Baylor College of Medicine (H-35782). We have complied with
all relevant ethical regulations including the Declaration of Helsinki and
written informed consent was obtained from all patients. Twenty six
patients were those with a pathologic diagnosis of MPM undergoing mac-
roscopic cytoreduction (MCR) by extrapleural pneumonectomy (EPP) or
extended pleurectomy/decortication (eP/D) from 2017 to 2019. During the
surgical procedure, we prospectively collected tumor samples from three
different anatomical regions of the chest (superior, lateral, and inferior).
Patient characteristics are described in Table 1.

To thoroughly investigate the complex heterogeneity withinMPM, we
systematically harvested tissue samples from the superior, lateral, and
inferior regions during surgery. This strategic approach was based on the
concept that different sections of the tumor were subject to diverse micro-
environmental conditions and stress factors, potentially fostering distinct
genetic and functional profiles. The three anatomical regions are selected as
they best represent the heterogeneity of the pleural tissue. According to the
2023 NCCN guidelines, the recommended primary management of
resectable MPM is surgical resection followed by chemotherapy, with
additional consideration of sequential radiotherapy. Alternatively, induc-
tion chemotherapy using pemetrexed and cisplatin prior to surgical inter-
vention is an option, followed by potential radiotherapy. In our cohort, 17
patients (65%) underwent primary surgery, while 9 patients (35%) received
neoadjuvant chemotherapy before surgery.All tissue sampleswere collected
during surgical procedures.

RNAwas assessed for quality and quantified using anRNA6000Nano
LabChip on a 2100 Bioanalyzer (Agilent Inc, Santa Clara, CA).We targeted
1.5 to 2mg for RNASeq with RNA Integrity Number greater than 6.
Libraries forRNAsequencingwere sequencedwith IlluminaTruSeqKits on
a NovaSeq 6000 sequencer (Illumina Inc, San Diego, CA) to obtain 80M
reads per samle. Genome sequence GRCh38.p13 was used to map paired-
end reads. The resulting mapped reads were assembled by STAR
(ver.2.7.10b)27. Fragments per kilobase of exon per million fragments
(FPKM) of the transcripts were used to evaluate mRNA expression levels28.
Furthermore, we normalized all downstream analyses against themedian of
total read counts and used log2 transformation.

Other data used in this study
The TCGA-LUAD (lung adenocarcinoma, consisting of 469 stage I and II
samples) and the TCGA-MESO (consisting of 87 samples) RNA-seq
data were downloaded from FireBrowse (http://firebrowse.org)22,29. The
expression level of the genes was normalized and represented as the RSEM

(RNA-Seq by Expectation-Maximization) values28. The Bueno MPM RNA-
seq data were downloaded as raw fastq files from European Genomephe-
nome Archive with accession number EGAS0000100156330. The data con-
tained gene expression profiles for a total of 211 MPM samples. We gained
corresponding clinical information and somatic mutations from whole-
exome sequencing. Particular targeted mutations were retrieved from the
supplementary materials from Bueno publication. The Bott data was
downloaded from the Gene Expression Omnibus (GEO) database with the
accession ID GSE2935431. The data contained the expression profiles for 53
MPM samples measured by Affymetrix microarrays. The clinical and
pathological information about these samples were extracted from the sup-
plementary documents of the original publication. In addition to the MPM
datasets, we have downloaded 3 independent lung cancer datasets including
both LUADand LUSC (lung squamous cell carcinoma) patients.Microarray
data and clinical data were downloaded from the Gene expression Omnibus
for 226 LUAD patients enrolled by Okayama et al (GSE31210), 442 LUAD
patients enrolled byShedden et al (GSE68465), 63LUADpatients enrolledby
Lee et al (GSE8894)32–34. Further, we downloaded expression profiling of 249
LUSCpatients fromBuenoet al (GSE157011)35.Weusedpaired-end fasqfiles
with trimmed adapters for downloaded RNA-seq dataset. HISAT2 was used
to align human genome assemblyGRCh38 and SAMtools36.We usedHTSeq
to calculate read counts per sample37.

Defining PRACME gene signatures
Intratumor heterogeneity and intertumor heterogeneity scores. For
each gene, we calculated an intratumor heterogeneity score and an
intertumor heterogeneity score9. To obtain the intratumor heterogeneity
score, we first calculated the standard deviation of its expression values
across the 3 regions for each patient, and then took the median standard
deviation across all patients (n = 26). The intertumor heterogeneity score
for a gene was calculated by randomly sampling one of the 3 regions from
each patient and taking the standard deviation across the resulting

Table 1 | Characteristics of malignant pleural mesothelioma
patients who underwent macroscopic complete resection

Variable MPM

Number of patients 26

Age, yr. Median (range) 68.5 (39–80)

Gender

Male 18 (69%)

Female 8 (31%)

History of asbestos exposure (n = 21) 13 (62%)

Histology

Epithelioid 17 (65%)

Biphasic 9 (35%)

Clinical staging

I 12 (46%)

II 9 (35%)

III 5 (19%)

Multimodality treatment

Neoadjuvant chemotherapy 9 (35%)

Adjuvant chemotherapy 7 (27%)

Adjuvant radiotherapy 6 (23%)

Preoperative tumor PD-L1 > 1% 14 (54%)

Procedure

EPP 6 (23%)

P/D 20 (77%)

EPP extrapleural pneumonectomy,MPMmalignant pleural mesothelioma, P/D pleurectomy/dec-
ortication, PD-L1 programmed cell death 1 ligand 1.
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single-region cohort. This procedurewas repeated 100 times and then the
average score across all iterations was used as the final intertumor
heterogeneity score.

Clustering coefficient scores. We measured the proportion of patients
with all regions in the same cluster against the number of clusters (2–26
clusters)38. For each gene, we ran a k-means algorithm based on the gene
expression and calculated the percentage of patients with all tumor regions in
the same hierarchical cluster. Next, we averaged the value to get the con-
cordance coefficient for that gene.Wemanually set the cutoff as 0.2 and kept
the genes that have a concordance coefficient greater than 0.2.

To define a clonal gene signature, we integrated the above-described
multi-regionMPMRNA-seq data and the TCGA-MESO RNA-seq data by
following a similar pipeline used for defining ORACLE9. In short, the fol-
lowing major steps were performed. First, starting with 20,501 genes from
the TCGA-MESO data, we filtered out 50% of the genes with low median
expression values across all samples (10,250/20,501 genes). Second, prog-
nostic genes (1667/10,250 genes) were identified as those correlated with
overall survival (P < 0.01) in the TCGA-MESO data according to univari-
able Cox regression analysis. Third, from these prognostic genes, we iden-
tified Q4 genes with high intertumor but low intratumor heterogeneity
scores calculated from the multi-regional MPM RNA-seq data (323/1,667
genes). Fourth, we selected the genes with clustering coefficient scores
greater than 0.2 (118/323 genes). To reduce collinearity among candidate
genepredictors,weused lassoCox regressionmodel. Finally, by applying the
lasso Cox regression model with tuning parameter of 0.06 to the TCGA-
MESO data, we identified a core set of 29 prognostic genes. After lasso
selection, we fitted a final regression model to derive regression coefficients
for the genes that were retained. These genes formed the final clonal gene
signature named PRACME as listed in Supplemental Table 1.

The formula to calculate sample-specific prognostic scores
For each patient, we calculated the patient-specific prognostic score by
calculating the dot product of gene expression values and a gene-specific
weight using the following formula:

S ¼ Σcixi

in which xi is log transformed gene expression and ci is the coefficient from
the lasso regression model for gene i.

Statistical analysis
All statistical analyses were conducted in the R software. We used “coxph”
function for univarible andmultivarible Cox regression. In the multivariable
analysis, we included the variables that were significantly associated with
patient prognosis in univariable analysis and several established variables
including sex and stage. R package “survival” was implemented to perform
survival analyses.The “survdiff” functionwasused to comparepatient groups
using log-rank test; patients with overall survival less than 30 days were
excluded for TCGA-MESO. The “wilcox.test” and the “t.test” functions were
used to compare two groups of selected measurement. Package “VennDia-
gram” was used to show overlapping information between multiple groups.
Function “phyper”wasused to calculate enrichment rationandp-valuebased
onhypergeometric test (“Fisher’s exact test”). Lasso regressionwasperformed
using the “glmnet”packageapplyingpenalty term39.Correlationanalysisused
function “cor.test”withdefault Spearmancoefficients. Package “kmeans”was
used to calculate clustering coefficient scores. Package “ggplot2” was used to
generate boxplot and Kaplan-Meier survival time curves. A p-value of 0.05
was the significant threshold for statistical test, unless noted otherwise. We
used the canonical pathways from BIOCARTA, KEGG40, PID41, and
REACTOME42 databases by R package “gsva”43.

Inferring immune cell infiltration
We used the previously developed computational algorithm to infer the
selected immune cells’ infiltration level based on the gene expression

profiles44,45. This algorithm estimates the immune cells’ infiltration levels by
examining the expression levels of immune-cell-specific genes. Thus, we
received the infiltration scores of six immune cell types includingmemory B
cells, CD4+ T cells, CD8+ T cells, naïve B cells, NK cell and myeloid cells.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
Multiregional MPM RNAseq data have been deposited into NCBI Gene
Expression Omnibus (GSE247203).

Code availability
The code to perform analysis and validation of the signature, and reproduce
all figures in the manuscript can be accessed with no restrictions at https://
github.com/YPeiLin/PRACME--NPJ-precision-oncology- Detailed packa-
ges included in the section Method: Statistical analysis including “coxph”,
“survival”, “wilcox.test”, “Venndiagram”, “ggplot2” and “glmnet”.
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