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Comprehensive analyses of solute 
carrier family members identify 
SLC12A2 as a novel therapy target 
for colorectal cancer
Dan‑yang Chen 1,2,4, Yang‑yang Zhang 1,2,3,4, Hai‑hang Nie 1,2,4, Hai‑zhou Wang 1,2, 
Pei‑shan Qiu 1,2, Fan Wang 1,2, Ya‑nan Peng 1,2, Fei Xu 1,2, Qiu Zhao 1,2* & Meng Zhang 1,2*

As the largest transporter family impacting on tumor genesis and development, the prognostic 
value of solute carrier (SLC) members has not been elucidated in colorectal cancer (CRC). We aimed 
to identify a prognostic signature from the SLC members and comprehensively analyze their roles in 
CRC. Firstly, we downloaded transcriptome data and clinical information of CRC samples from GEO 
(GSE39582) and TCGA as training and testing dataset, respectively. We extracted the expression 
matrix of SLC genes and established a prognostic model by univariate and multivariate Cox regression. 
Afterwards, the low-risk and high-risk group were identified. Then, the differences of prognosis traits, 
transcriptome features, clinical characteristics, immune infiltration and drug sensitivity between 
the two groups were explored. Furthermore, molecular subtyping was also implemented by non-
negative matrix factorization (NMF). Finally, we studied the expression of the screened SLC genes in 
CRC tumor tissues and normal tissues as well as investigated the role of SLC12A2 by loss of function 
and gain of function. As a result, we developed a prognostic risk model based on the screened 6-SLC 
genes (SLC39A8, SLC2A3, SLC39A13, SLC35B1, SLC4A3, SLC12A2). Both in the training and testing 
sets, CRC patients in the high-risk group had the poorer prognosis and were in the more advanced 
pathological stage. What’s more, the high-risk group were enriched with CRC progression signatures 
and immune infiltration. Two groups showed different drug sensitivity. On the other hand, two distinct 
subclasses (C1 and C2) were identified based on the 6 SLC genes. CRC patients in the high-risk group 
and C1 subtype had a worse prognosis. Furthermore, we found and validated that SLC12A2 was 
steadily upregulated in CRC. A loss-of-function study showed that knockdown of SLC12A2 expression 
restrained proliferation and stemness of CRC cells while a gain-of-function study showed the contrary 
results. Hence, we provided a 6-SLC gene signature for prognosis prediction of CRC patients. At the 
same time, we identified that SLC12A2 could promote tumor progression in CRC, which may serve as a 
potential therapeutic target.
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CCK-8	� Cell counting kit 8
tSNE	� T-distributed stochastic neighbor embedding
GEPIA	� Gene expression profiling interactive analysis

Colorectal cancer (CRC) is one of the most prevalent cancers worldwide1,2. Although new treatment options, 
such as targeted therapy and immunotherapy, are developed, the average of five-year survival rate for patients 
with advanced CRC is still less than 15%2,3. To make matters worse, the incidence of CRC has risen dramati-
cally in people under the age of 50, with men aged 20–49 leading the way in CRC mortality during 2012–20164. 
Due to the heterogeneity of colorectal cancer, it’s necessary to identify more effective biomarkers for prognostic 
prediction and personalized treatment5.

The solute carrier (SLC) superfamily, mainly situated on cellular and organelle membranes, is the largest 
transporter family, whose core functions are to facilitate the exchange of soluble substrates across lipid bilayers6. 
Depending on electrochemical or ion gradients, SLC proteins can transport a diverse range of substrates includ-
ing carbohydrates, amino acids, fatty acids, vitamins and inorganic ions7, thereby playing critical roles in essential 
physiological processes. Dysregulation of specific SLC proteins has been closely linked to numerous diseases 
such as cancer, diabetes mellitus and hypertension8.

The functions of SLC proteins involve in mostly hallmarks of cancer9,10. Metabolism reprogramming of 
cancer cell relies on all kinds of nutrients transportation, thus providing enough energy for their sustaining 
proliferation6,11. Aerobic glycolysis is a special metabolic way of cancer cells; therefore, the transporters of glucose 
and lactic acid are core for the survival. It has been repeatedly observed that glucose transporter GLUT1/SLC2A1 
and lactic acid transporter MCT1/SLC16A1, MCT2/SLC16A7, MCT4/SLC16A3 are upregulated in multiple 
tumor types and participate in tumor genesis and development9. SLC7A11, commonly known as xCT, contrib-
utes to maintain cellular redox homeostasis via importing extracellular cystine for glutathione biosynthesis12. 
SLC7A11 is overexpressed in many types of cancers and its overexpression promotes tumor progression partly 
through suppressing ferroptosis, a kind of programmed cell death induced by iron-dependent lipid peroxides9,13. 
The above SLC members have become promising potential targets for cancer therapy. What’s more, nutrient 
limitation frequently happens during tumor development, and the ability of cancer cells to adapt to a series of 
harsh conditions is the key factor to sustain survival11. A study demonstrated that the ability of cancer cells to 
survive from glutamine depletion depended on the aspartate/glutamate transporter GLAST/SLC1A314. In addi-
tion, some SLC transporters contribute to deliver certain drugs to cancer cells, suggesting that they can be novel 
targets for increasing chemotherapy sensitivity and conquering drug resistance15,16. Although the importance 
of the SLC proteins we have come to realize, the role of most SLC members in cancer has not been well clarified.

In the present study, we developed a prognostic risk model based on SLC family genes by performing uni-
variate and multivariate Cox regression. The low-risk and high-risk group were identified in the training and 
testing datasets of CRC. Then, we revealed the prognosis traits, transcriptome features, clinical characteristics, 
immune infiltration and drug sensitivity between the two groups. Furthermore, molecular subtyping was also 
implemented and validated according to the selected SLC genes. Finally, we validated the function of SLC12A2 
in CRC by loss of function and gain of function.

Methods
Data source and processing
The dataset GSE39582, comprising 585 colorectal cancer (CRC) samples, was obtained from the Gene Expression 
Omnibus (GEO) database (http://​www.​ncbi.​nlm.​nih.​gov/​geo/). Similarly, the TCGA COAD dataset consisted 
of 512 CRC samples extracted from the Genomic Data Commons (GDC) data portal (https://​portal.​gdc.​can-
cer.​gov/). Exclusion criteria were applied to remove normal samples, duplicate samples, and those lacking key 
clinical features. After rigorous screening, a total of 556 samples remained in GSE39582 and 435 patients were 
included in TCGA COAD.

Construction of the prognosis‑related SLC gene signature
SLC family genes were identified based on the Human Gene Database (https://​www.​genec​ards.​org/). Initially, 
univariate Cox regression analysis was conducted using the "survival" R package in both GSE39582 and TCGA 
COAD datasets. A p-value threshold of < 0.05 was applied to identify prognostically relevant SLC family genes 
in both datasets. Subsequently, GSE39583 was designated as the training set while TCGA COAD served as the 
test set for further analysis. Multivariate Cox regression analysis was then performed to determine the regres-
sion coefficients associated with prognosis for SLC genes across both datasets. The risk score for each sample 
was calculated using the formula: Risk score = 

∑N
i=1

Expi ∗ βi , where "Exp" represents mRNA expression and 
"β" denotes the corresponding regression coefficient. Based on median risk scores, samples from GSE39582 and 
TCGA COAD datasets were categorized into low-risk and high-risk groups respectively. Survival analyses using 
Kaplan–Meier method along with log-rank test were conducted to compare outcomes between these groups. 
Additionally, ROC curves were plotted using "survivalROC" R package.

Development of a prognostic nomogram for CRC patients
Individual survival probabilities were predicted by creating nomogram containing clinical features by the " rms 
" R package. Calibration curves predicting 1- and 3-year survival were plotted to assess the consistency of the 
nomogram with actual survival times.

http://www.ncbi.nlm.nih.gov/geo/
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.genecards.org/
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Differentially expressed gene (DEG) and functional enrichment analyses
The DEGs between the high-risk and low-risk groups was calculated using the "limma" R package, and the sig-
nificant DEGs was selected by setting the adjusted P-value < 0.05 and |log2FC|> 0.5. Then, Gene Ontology (GO) 
analysis and Kyoto Gene Encyclopaedia (KEGG) analysis were performed by the "clusterProfiler" R package. 
Encyclopedia of Genomes (KEGG) analysis. The results were visualised by the "ggplot2" R package.

Estimation of immune infiltration and cancer progression
First, the ESTIMATE algorithm was utilized to calculate immune score, mesenchymal score, and tumor purity, 
which reflect the enrichment of gene signatures in immune and mesenchymal cells17. Gene set variation analysis 
(GSVA), a nonparametric unsupervised method for gene set enrichment based on transcriptomic data18, was 
employed to obtain scores for pathways or a signature. We obtained 17 immune cell types from previously pub-
lished studies as a gene signature. Relevant labels associated with CRC progression were downloaded from the 
KEGG database. Subsequently, each sample was analyzed using the "GSVA"R package to derive a corresponding 
signature score. Differential analyses were conducted using the ’limma’ R package based on feature cores. The 
results were visualized using the "ComplexHeatmap" R package.

Prediction of drug sensitivity
Two commonly used chemotherapy drugs (5-Fluorouracil and Cisplatin) and one targeted drug (Cetuximab) for 
CRC treatment were selected for the therapeutic response prediction using the“pRRophetic” R package based 
on the Genomics of Drug Sensitivity in Cancer (GDSC) (https://​www.​cance​rrxge​ne.​org/). The half-maximal 
inhibitory concentration (IC50) predicted for patients in training set and testing set was used to assess differential 
drug sensitivity. For prediction of immunotherapy response, the immunophenoscore (IPS) for COAD patients 
was downloaded from the cancer immunome atlas (TCIA) database (https://​tcia.​at/​home).

Classification based on the prognosis‑related SLC genes
Non-negative matrix factor (NMF) clustering analysis of prognostically relevant SLC genes. The unsupervised 
NMF clustering method was implemented on the training and test sets by the "NMF" R package19. The "brunet" 
option was selected as the standard, and total of 30 iterations were performed. The optimal number of clusters 
was determined based on co-occurrence, dispersion, and contour index analyses. Expression differences between 
subtypes were assessed using principal component analysis (PCA).

Clinical samples
Clinical colorectal cancer specimens and their corresponding non-tumor tissues were collected from Zhong-
nan Hospital of Wuhan University and diagnosed by the Department of Pathology. Written informed consent 
was obtained from the patients. This project was approved by the Ethics Committee of Zhongnan Hospital of 
Wuhan University (protocol #2023015 K). We confirmed that all methods were carried out in accordance with 
the guidelines and regulations of the Ethics Committee of Zhongnan Hospital of Wuhan University. The human 
specimen use was in line with the requirements of the Helsinki Declaration.

Cell culture
Human colon cancer cell line (HT29, LOVO, HCT116, SW480) were purchased from Chinese Type Culture 
Centre (CTCC, China Wuhan). All cells were cultured in RPMI-1640 (HyClone, USA) containing 10% fetal 
bovine serum (Cell-Box, Australia) at 37 °C, 5% CO2.

SiRNA and plasmids transfection
PCMV3-SLC12A2 plasmids were purchased from Sino Biological (Beijing, China). SLC12A2 siRNA was syn-
thesized by Ribobio (Guangzhou, China). SLC12A2 siRNA (siSLC12A2 #1: TGA​CCT​TAT​TGA​TAC​CTT​A, siS-
LC12A2 #2: GTA​AGA​TCA​GAG​TAT​TCA​T) was transfected into HT29 and LOVO cells using Lipofectamine 
2000 (Invitrogen, USA). Scrambled siRNA (siNC) was used as a negative control. PCMV3-NEO1 plasmids 
(2.5 μg each well) were transfected to HCT116 and SW480 cells following the manufacturer’s protocol. Empty 
vector pCMV3 plasmids were used as control.

RNA preparation and quantitative real‑time PCR (qPCR)
RNA was isolated from cells using Trizol reagent (ELK Biotechnology, China) according to the manufacturer’s 
protocol. 1 μg of RNA was used to synthesise cDNA by cDNA Synthesis Kit (TOYOBO, Japan). cDNA was 
subsequently used for real-time fluorescence quantitative PCR (qPCR) using the ABI QuantStudio™6 Flex Sys-
tem (USA) and the Real-time fluorescence quantitative PCR (qPCR) was subsequently performed using ABI 
QuantStudio™6 Flex System (USA) and UltraSYBR Mixture (CWBIO, China). Gene primers: SLC12A2 (Forward 
5′-CCT​CTA​CAC​AAG​CCC​TGA​CTTAC-3′ and Reverse 5′-CGT​GAG​TTT​GGA​GCA​CCT​GTCA-3′); GAPDH 
(Forward 5′-GTC​TCC​TCT​GAC​TTC​AAC​AGCG-3′ and Reverse 5′-ACC​ACC​CTG​TTG​CTG​TAG​CCAA-3′). 
The relative mRNA expression levels were calculated using the 2-△△Ct method.

Western blotting analysis
Proteins were collected from CRC cells and tissues using RIPA lysis buffer (EpiZyme, China), and protein con-
centrations were detected using a BCA kit (Beyotime, China). 30 μg of protein per group was loaded on a 10% 
SDS-PAGE gel, transferred to a PVDF membrane (Millipore, USA) and then closed with 5% skimmed milk. The 
blots were cut prior to hybridization with specific antibodies according to the protein molecular weight during 

https://www.cancerrxgene.org/
https://tcia.at/home
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blotting. Thereby, decreasing the amount of incubation solution used during the antibody incubation step, con-
tributing to reduce the use of the costly antibodies. The membranes were incubated overnight at 4 °C in primary 
antibodies: SLC12A2 (13,884–1-AP, Proteintech, China), C-myc (5605S, CST, USA), Nanog (14,295–1-AP, Pro-
teintech, China), CD44 (37259S, CST, USA), GAPDH (Servicebio, China). Finally, the cells were incubated with 
the corresponding secondary antibodies for 2 h and the bands were detected by enhanced chemiluminescence 
reagent (EpiZyme, China).

Cell growth assay
Cell proliferation was detected by Colony Formation and Cell Counting Kit 8 (CCK-8). For Colony Formation 
assay, 1500 colorectal cancer cells were seeded into 6-well plates with 2 ml of medium per well and cultured for 
14 days. The number of colonies with more than 50 cells was counted after 14 days using 4% paraformaldehyde 
fixation and 0.1% crystal violet staining. As for CCK-8 assay, colorectal cancer cells were inoculated into 96-well 
plates at a number of 4000 per well and subsequently transfected with siRNA or plasmids for different groups. 
At specific time points, CCK-8 solution was added to the well plates and cultured for 2 h before detecting the 
OD450 by means of a microplate reader (BioTek ELx800, USA).

Statistical analysis
Differences in clinical characteristics between the high-risk and low-risk groups were analyzed using chi-square 
analysis. Student’s t-test was used to compare normally distributed variables between the two groups. Two-tailed 
p-values < 0.05 were statistically significant.

Ethics approval and consent to participate
This project was approved by the Ethics Committee of Zhongnan Hospital of Wuhan University (protocol 
#2023015 K). Informed consent was obtained from the participated patients.

Results
Identification and validation of a prognosis‑related SLC gene signature in CRC​
First of all, a flow chart was shown to introduce the design of this study (Fig. 1). The clinical characteristics of 
GSE39582 and TCGA COAD dataset had been shown in our previous work, and there was no significant differ-
ence in general features between two datasets20. After excluding the repeated genes and genes whose expression 
value was zero in any analyzed sample, the expression matrix of the SLC family genes combined with survival data 
in the two datasets was acquired for subsequent analysis. To screen out prognosis-related SLC genes, univariate 
cox proportional hazards model was conducted in GSE39582 and TCGA COAD dataset. 6 genes (SLC39A8, 
SLC2A3, SLC39A13, SLC35B1, SLC4A3, SLC12A2) with p-values < 0.05 in the two datasets were regarded as 
prognosis-related SLC genes. Of the 6 genes, SLC2A3, SLC39A13 and SLC4A3 were risk factors with hazard 
ratios (HRs) > 1 and SLC39A8, SLC35B1 and SLC12A2 were protective factors with HRs < 1 (Table S1). We also 
showed the survival curves of the 6 genes (Figure S1). To construct the prognosis-related SLC gene signature, 
we performed multivariate Cox regression analysis and calculated the risk score of each sample based on the 
expression and the regression coefficients of the 6 genes (Table S2). Then, patients were assigned to low-risk 
or high-risk group according to the median risk score in GSE39582 (training set) and TCGA COAD (testing 
set) dataset. The prognosis of CRC patients in the low-risk group was better than that in the high-risk group in 
training set and testing set. The heatmap was used to visualize the expression levels of the 6 genes in the low- and 
high-risk group (Fig. 2A,B).

Figure 1.   A flow chart of the study.
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To further identify the importance of the 6-SLC gene signature on the CRC patients’ prognosis, we per-
formed survival, ROC and multivariate Cox regression analyses. In the training set, survival analysis revealed 
that patients with CRC in the low-risk group had a significantly higher survival probability compared to the 
patients in high-risk group (p = 0.00083) (Fig. 2C-a). ROC analysis showed that the area under the curve (AUC) 
was 0.62 for the training set (Fig. 2C-b). In addition, multivariate Cox regression analysis also confirmed the 
independent prognostic value of this signature (Fig. 2C-c). We further applied this signature into testing set and 
found the consistent results (Fig. 2D). Clearly, these data indicated the 6-SLC gene signature could contribute 
to prognosis prediction of CRC patients.

Development of nomogram and calibration curves for CRC patients
To accurately estimate the survival of individual CRC patients, we built a nomogram to assess 1- and 3-year 
survival probabilities based on staging, age, and risk scores in the training and test sets (Fig. 3A,B). Our results 
suggest that nomograms can be a useful model for prognostic assessment of CRC patients. The calibration curves 
showed that the predicted prognosis was generally consistent with the actual mortality rates at 1 and 3 years 
in both the training and test sets (Fig. 3A,B). These data suggest that the nomograms can accurately assess the 
survival of CRC patients.

Clinical characteristics of CRC patients with different risk
To better clarify the differences of CRC patients in low-risk and high-risk groups, the relationship with several 
clinical characteristics was studied by Chi-square test. The results in training set was shown in Table 1, which 
demonstrated that the proportion of patients in “TNM stage”, “T stage”, “N stage” and “M stage” were significantly 

Figure 2.   Construction of a prognosis-related SLC gene signature in CRC. (A,B) The distribution of risk scores 
and the correspondingly survival status of patients, expression abundance of the 6-SLC gene in the training set 
(A) and the testing set (B). (C) Survival curves(a), ROC curves (b) and multivariate Cox regression analyses (c) 
in the training set. (D) Survival curves(a), ROC curves (b) and multivariate Cox regression analyses (c) in the 
testing set.
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different within different risk groups. Consistently, the differences of “TNM stage”, “T stage” and “N stage” within 
different risk groups of testing set also had significance. However, the p-value of “M stage” in testing set was 
exactly equal to 0.05 (Table 2). A heatmap was further used to more clearly visualize the correlation between 
different risk groups and clinical characteristics in training set and testing set (Fig. 4A,B). We also explored the 
correlation between risk groups and “TP53”, “KRAS”, “BRAF” mutant status in training set. The results showed 
no significant differences (Table 1). As for MSI status, it showed significant differences in testing set, which 
was inconsistent with that in training set (Tables 1, 2). Since clinicopathological stage was closely related to the 
prognosis of patients with CRC, the above results demonstrated the superior performance of the 6-SLC gene 
signature for prognosis prediction.

Functional enrichment analyses of DEGs in different risk groups
In order to gain insight into the molecular characteristics of low- and high-risk group, we screened the DEGs and 
conducted their functional enrichment analyses in training dataset. Under a threshold of Adjusted P value < 0.05 
and |log2FC|> 0.5, a total of 707 DEGs were identified for the different risk groups. In detail, 536 DEGs were 
down-regulated while 171 genes were up-regulated (Table S3). GO analysis including biological process (BP), 
cellular component (CC) and molecular function (MF) showed that the above DEGs were mostly enriched in 
extracellular matrix (ECM) related functions (Fig. 4C, Figure S2). Moreover, KEGG analysis also exhibited that 
the pathways of focal adhesion, ECM-receptor interaction, PI3K-Akt and cell cycle were particularly prominent 
in these DEGs (Fig. 4D).

Immune infiltration and cancer progression estimation in different risk groups
To evaluate the heterogeneity of tumors between low- and high-risk groups, we utilized the ESTIMATE algorithm 
to calculate stromal scores, immune scores, and tumor purity for both training and test sets. Results showed that 
the high-risk group had the higher immune score and stromal score, while the tumor purity of the high-risk 
group was lower than that of the low-risk group (Fig. 5A,B). The training set and the testing set exhibited the 
highly consistent results. We further investigated the expression of several immune checkpoints in the two risk 
groups. In training set, the expression of most immune checkpoints in the high-risk group were significantly 
higher than that in the low-risk group, except for CTLA4 and IL1A (Fig. 5C). Since CD274, CTLA4, IL1A and 
IL6 were not shown in the filtered expression matrix of the testing set, we analyzed the rest immune checkpoints, 
the results of which were coincided with that in training set (Fig. 5D). With the significant differences in immune 
score and immune checkpoints, immune infiltration was investigated to characterize their immunologic land-
scape. Based on a signature of 17 immune cell type (Table S4), immune cell infiltration was analyzed by GSEA 
in training set. The heatmap showed that immune cells were significantly enriched in the high-risk group, which 
was consistent with the result that the group had higher immune scores (Fig. 5E).

Figure 3.   Development of nomogram and calibration curves for CRC patients. (A,B) The nomogram and 
calibration curves for CRC patient 1- and 3-year survival prediction in the training set (A) and the testing set 
(B).
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Table 1.   Clinical characteristics of patients with different risk in training set. *P < 0.05, **P < 0.01, ***P < 0.001.

Clinical characteristics

Total Low risk High risk

Chi-square P valuen = 556 n(%) n(%)

Gender
male 306 154(50.3) 152(49.7)

0.029 0.865
female 250 124(49.6) 126(50.4)

Age
 < 65 210 102(48.6) 108(51.4)

0.275 0.600
 ≥ 65 346 176(50.9) 170(49.1)

TNM stage
0–2 295 166(56.3) 129(43.7)

9.886 0.002**
3–4 261 112(42.9) 149(57.1)

T stage

Tis-T2 57 41(71.9) 16(28.1)
10.859 0.001**

T3-T4 479 234(48.9) 245(51.1)

NA 20 3(15.0) 17(85.0)

N stage

N0 296 170(57.4) 126(42.6)

12.940 0.002**N1 131 64(48.9) 67(51.1)

NX 109 41(37.6) 68(62.4)

NA 20 3(15.0) 17(85.0)

M stage

M0 473 250(52.9) 223(47.1)
3.861 0.049*

M1-MX 63 25(39.7) 38(60.3)

NA 20 3(15.0) 17(85.0)

TP53

M 188 90(47.9) 98(52.1)
0.397 0.529

WT 156 80(51.3) 76(48.7)

NA 212 108(50.9) 104(49.1)

KRAS

M 213 111(52.1) 102(47.9)
0.811 0.368

WT 322 155(48.1) 167(51.9)

NA 21 12(57.1) 9(42.9)

BRAF

M 49 24(49.0) 25(51.0)
0.004 0.950

WT 453 224(49.4) 229(50.6)

NA 54 30(55.6) 24(44.4)

MMR

dMMR 72 42(58.3) 30(41.7)
2.221 0.136

pMMR 438 214(48.9) 224(51.1)

NA 46 22(47.8) 24(52.2)

Table 2.   Clinical characteristics of patients with distinct risk in testing set. *P < 0.05, **P < 0.01, ***P < 0.001.

Clinical characteristics

Total Low risk High risk

Chi-square P valuen = 435 n(%) n(%)

Gender
male 233 123(52.8) 110(47.2)

1.693 0.193
female 202 94(46.5) 108(53.5)

Age
 < 65 171 83(48.5) 88(51.5)

0.205 0.651
 ≥ 65 264 134(50.8) 130(49.2)

TNM stage

1–2 239 140(58.6) 99(41.4)
16.120  < 0.0001***

3–4 185 72(38.9) 113(61.1)

NA 11 5(45.5) 6(54.5)

T stage
Tis-T2 87 57(65.5) 30(34.5)

10.630 0.001**
T3-T4 348 160(46.0) 188(54.0)

N stage

N0 255 150(58.8) 105(41.2)

20.527  < 0.0001***N1 102 41(40.2) 61(59.8)

N2 78 26(33.3) 52(66.7)

M stage

M0 320 170(53.1) 150(46.9)

6.000 0.050M1 61 22(36.1) 39(63.9)

MX 47 23(48.9) 24(51.1)

NA 7 2(28.6) 5(71.4)

MSI status

MSS 269 128(47.6) 141(52.4)

7.047 0.03*MSI-L 79 34(43.0) 45(57.0)

MSI-H 73 46(63.0) 27(37.0)

NA 14 9(64.3) 5(35.7)
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For further investigation, several CRC progression relevant pathways were also evaluated in training set 
(Table S5). Results exhibited that the high-risk group displayed higher expression for PI3K-AKT, WNT, MAPK, 
RAS, NOTCH, HIF-1 and ECM pathways, while the low-risk group was especially enriched with P53 and CELL 
CYCLE pathways. APOTOSIS pathway had no significance between two groups (Fig. 5F).

Therapeutic drug sensitivity prediction of CRC in different risk groups
Due to the high heterogeneity of CRC, it’s important to choose a therapeutic drug with high sensitivity. There-
fore, we explored the relationship between the risk score and clinical response to different therapeutic drugs. 
Based on the Cancer Genome Project (CGP) database, we screened two commonly used chemotherapy drugs 
(5-Fluorouracil and Cisplatin) and one targeted drug (Cetuximab) for CRC treatment to calculate IC50. The 
results showed that, both in training set and testing set, CRC patients in the low-risk group were more sensitive 
to the treatment of 5-Fluorouracil, while patients in the high-risk group had a favorable response to the treatment 
of Cisplatin. However, there was no significant differences for the treatment of Cetuximab (Fig. 6A,B). Besides, 
the cancer immunome atlas (TCIA) is a database that provides comprehensive immunogenomic analyses based 
on the TCGA. Here, we used the TCIA database to evaluate the immunotherapy response of CRC patients 
with different risk scores through the immunophenoscore (IPS). The results revealed that the total IPS and IPS 
for CTLA-4 blocker in the low-risk group were significantly higher than that in the high-risk group (Fig. 6C), 

Figure 4.   Clinical characteristics and functional enrichment analyses in different risk groups. (A,B) Heatmap 
of core clinical characteristics in different risk groups in the training set (A) and the testing set (B). (C) GO 
analysis for biological process of identified DEGs in the training set. (D) KEGG analysis of identified DEGs in 
the training set. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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which strongly predicted that CRC patients with lower risk scores would have better immunotherapy response, 
especially for CTLA-4 blocker.

Molecular subtyping based on the prognosis‑related SLC genes for CRC patients
Recently, molecular subtyping was broadly applied to reveal the tumor heterogeneity. To more comprehen-
sively identify the importance of the 6 prognosis-related SLC genes we selected, NMF clustering was executed. 
The consensus map showed that patients with CRC were classified into two distinct clusters in the training set 
(Fig. 7A-a). There were 344 samples in the cluster 1 (C1) and 212 in the C2. To access the subclasses’ assignments, 
we performed PCA. Data showed that the two clusters were distributed in different side of the two-dimensional 
coordinate systems (Fig. 7A-b). Survival analysis showed that the survival probability of patients in C1 was sig-
nificantly lower than that of patients in C2 (Fig. 7A-c). Furthermore, a similar NMF consensus clustering was 
acquired in the testing set (Fig. 7B-a). Consistently, two subclasses were identified, which also manifested the 
same distribution as that in training set by PCA (Fig. 7B-b). In the testing set, patients in C1 also had a signifi-
cantly lower survival probability compared to the patients in C2 (Fig. 7B-c). The correlation analysis of clinical 
characteristics showed that the proportion of patients in “TNM stage”, “T stage” and “N stage” were significantly 

Figure 5.   Immune infiltration and cancer progression estimation in different risk groups. (A,B) The violin plot 
of immune score, stromal score and tumor purity from ESTIMATE of two risk groups in the training set (A) 
and the testing set (B). For violin plots, the three lines within the boxes represent the 25th percentile, median 
value and the 75th percentile, respectively. The bottom and top of the plots represent the min and max value. 
(C,D) Expression differences of several immune checkpoint genes between two risk groups in the training 
set (C) and the testing set (D). (E) Heatmap describing the abundance of immune cell populations in two 
risk groups. (F) Heatmap describing the abundance of several CRC progression relevant pathways in two risk 
groups. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, ns: no significance.
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different within distinct subclasses (Tables 3 and 4). We then calculated the risk scores in different subclasses in 
the both training set and testing set. Data showed that C1 had higher risk scores than C2 (Fig. 7C). The Sankey 
showed that patients in the high-risk group and C1 subtype had a worse prognosis (Fig. 7D). These data suf-
ficiently demonstrated that the 6-SLC genes could be applied to prognosis prediction.

Expression analysis of the prognosis‑related SLC genes in CRC​
To better realize the 6 prognosis-related SLC genes, their expression distribution in different cell clusters of 8 
CRC samples was shown by single cell RNA-sequencing data. A t-Distributed stochastic neighbor embedding 
(tSNE) map demonstrated that of the 6 prognosis-related SLC genes, the expression of SLC35B5 and SLC12A2 
were more enriched in malignant cells (Fig. 8A,B). The expression levels of the 6-SLC genes in malignant cells 
were further shown by the violin plots, from which we could clearly find that SLC35B5 and SLC12A2 were 
widely and highly expressed in each CRC sample (Fig. 8C). According to Gene Expression Profiling Interactive 
Analysis (GEPIA) database (https://​gepia.​cancer-​pku.​cn/), we found that SLC35B5 and SLC12A2 were both 
upregulated in tumor tissues compared with normal tissues of CRC. However, the comparison of SLC35B1 had 
no significance (Fig. 8D). Furthermore, we extracted expression data of SLC35B5 and SLC12A2 from paired 
tumor tissues and adjacent normal tissues in TCGA COAD and GSE41258. Results showed that SLC12A2 
was consistently and significantly upregulated in tumor tissues of both datasets (Fig. 8E). We also found that 
the expression of SLC12A2 was decreased with the progression of CRC from GEPIA (Fig. 8F). The above data 
revealed that SLC12A2 was specially enriched in malignant cells of CRC and obviously increased in tumor tis-
sues compared to normal tissues.

SLC12A2 regulated cell proliferation and stemness in CRC cells
The above results demonstrated that SLC12A2 expression was significantly up-regulated in human CRC tissues. 
For validation, we collected 29 pairs of tumor tissues and adjacent non-tumor tissues in Zhongnan Hospital of 
Wuhan University. The results confirmed that SLC12A2 was up-regulated in CRC tumor tissues when compared 
with non-tumor tissues, both at mRNA level (p = 0.04,

n = 29) (Fig. 9A) and protein level (n = 15) (Fig. 9B). Then, SLC12A2 expression level in several kinds of CRC 
cells was examined. Compared to normal colon cell NCM460, SLC12A2 showed higher expression in CRC cells 
(Fig. 9C,D). In order to further investigate the biological role of SLC12A2 in CRC cells, two specific SLC12A2 
siRNAs (siSLC12A2 #1, #2) were used to knockdown SLC12A2 expression in HT29 and LOVO cells while 
pCMV3-SLC12A2 plasmids were used to overexpress SLC12A2 expression in HCT116 and SW480 cells. The 
results of colony formation and CCK-8 assays showed that cell proliferation was distinctly inhibited in SLC12A2 
knockdown cells compared with the control cells (Fig. 10A,B). One the other hand, SLC12A2 overexpression 
induced cell proliferation in HCT116 and SW480 cells (Fig. 10C,D). What’s more, western blotting assays showed 
that knockdown of SLC12A2 down-regulated the expression of the stemness marker c-Myc, Nanog and CD44 
while overexpression of SLC12A2 showed the contrary results (Fig. 10E,F). The above data partly indicated that 
SLC12A2 was involved in CRC progression by promoting cell stemness.

Figure 6.   Drug sensitivity prediction to different therapies in different risk groups. (A,B) IC50 was calculated 
for 5-Fluorouracil, Cisplatin and Cetuximab in two risk groups in the training set (A) and the testing set (B). (C) 
Immunophenoscore (IPS) difference of CRC with treatment of CTLA-4 or (and) PD1/PD-L1/PD-L2 blocker 
between the high- and low-risk groups. **P < 0.01, ***P < 0.001, ****P < 0.0001, ns: no significance.

https://gepia.cancer-pku.cn/


11

Vol.:(0123456789)

Scientific Reports |         (2024) 14:4459  | https://doi.org/10.1038/s41598-024-55048-y

www.nature.com/scientificreports/

Discussion
As the largest transporter family, SLC membrane transporters had been used to construct the prognosis related 
signature in lung adenocarcinoma21, osteosarcoma22, hepatocellular carcinoma23, renal cell carcinoma24 and 
pancreatic ductal adenocarcinoma25. Here, we devoted to reveal a prognosis related SLC gene signature in CRC, 
which has not been reported before. Our study identified and validated a 6-SLC gene (SLC39A8, SLC2A3, 
SLC39A13, SLC35B1, SLC4A3, SLC12A2) signature that could predict prognosis of CRC patients. We classified 
the samples in the training and testing datasets into low-risk or high-risk group based on the expression level of 
the 6-SLC genes. Different risk group was associated with different prognosis, clinical traits, molecular features, 
functions, and immune cell fractions.

Figure 7.   Identification of subclasses based on the screened SLC genes for CRC patients. (A,B) Two distinct 
subclasses (C1, C2) was identified by NMF clustering in the training set (A) and the testing set (B). The 
consensus map (a), PCA (b) and survival analysis (c) of two subclasses were shown. (C) The risk scores of two 
subclasses in the training set and testing set. (D) Sankey diagram for the two risk groups and two subtypes. 
****P < 0.0001.
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In detail, results showed that CRC patients in the high-risk group had the poorer prognosis. Clinical feature 
analyses showed that most samples in the high-risk group were in advanced pathological stage. CRC progres-
sion signatures, such as PI3K-AKT, WNT, MAPK, RAS, NOTCH, HIF-1 and ECM were also enriched in the 
high-risk group. Moreover, tumor microenvironment relevant estimation demonstrated that the high-risk group 
had the higher immune score, stromal score and the lower tumor purity. These data suggested that tumors in 
the high-risk group were of high heterogeneity and might be refractory. Our opinion was also consistent with 
the results that the high-risk group had the worse prognosis in both training and testing sets. The high-risk 
group was filled with a variety of immune cells, and there was a high expression of immune checkpoint genes 
in the high-risk group, particularly CD274 (also known as PD-L1), CXCR4,CD276, CD4, IL6, LAG3, CCL2, 
and TGFB1, suggesting that PD-L1 antibodies (e.g., Nivolumab, Durvalumab) and other promising checkpoint 
inhibitors may be sensitive26. Additionally, our analyses revealed that CRC patients in the low-risk group had a 

Table 3.   Clinical characteristics of patients with distinct classification in training set. *P < 0.05, **P < 0.01, 
***P < 0.001.

Clinical characteristics

Total C1 C2

Chi-square P valuen = 556 n(%) n(%)

Gender
male 306 196(64.1) 110(35.9)

1.373 0.241
female 250 148(59.2) 102(40.8)

Age
 < 65 210 129(61.4) 81(38.6)

0.028 0.867
 ≥ 65 346 215(62.1) 131(37.9)

TNM stage
0–2 295 163(55.3) 132(44.7)

11.661 0.001**
3–4 261 181(69.3) 80(30.7)

T stage

Tis-T2 57 24(42.1) 33(57.9)
10.426 0.001**

T3-T4 479 307(64.1) 172(35.9)

NA 20 13(65.0) 7(35.0)

N stage

N0 296 165(55.7) 131(44.3)

15.385  < 0.0001***N1 131 82(62.6) 49(37.4)

NX 109 84(77.1) 25(22.9)

NA 20 13(65.0) 7(35.0)

M stage

M0 473 285(60.3) 188(39.7)
3.834 0.050

M1-MX 63 46(73.0) 17(27.0)

NA 20 13(65.0) 7(35.0)

TP53

M 188 110(58.5) 78(41.5)
0.479 0.489

WT 156 97(62.2) 59(37.8)

NA 212 137(64.6) 75(35.4)

KRAS

M 213 127(59.6) 86(40.4)
0.889 0.346

WT 322 205(63.7) 117(36.3)

NA 21 12(57.1) 9(42.9)

BRAF

M 49 41(83.7) 8(16.3)
9.663 0.002**

WT 453 277(61.1) 176(38.9)

NA 54 26(48.1) 28(51.9)

MMR

dMMR 72 53(73.6) 19(26.4)
5.297 0.021*

pMMR 438 260(59.4) 178(40.6)

NA 46 31(67.4) 15(32.6)
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favorable response to the treatment of 5-Fluorouracil and CTLA-4 blocker, which suggested that the 6-SLC gene 
signature could also be well applied to choose individualized therapies for CRC.

On the other hand, we also developed a molecular subtyping based on the prognosis-related SLC genes for 
CRC patients. Two distinct subclasses were identified, which showed different prognosis, clinical traits and risk 
scores. We also showed that patients in the high-risk group and C1 subtype had a worse prognosis.

Furthermore, a detailed analysis of the 6 prognosis-related SLC genes was implemented. We found that 
SLC35B5 and SLC12A2 were more expressed in malignant cells of CRC compared with other selected prognosis-
related SLC genes. Hence, we evaluated the expression differences of SLC35B5 and SLC12A2 in tumor and normal 
tissues of CRC. In multiple datasets, we found that SLC12A2 was steadily upregulated in tumor tissues compared 
with not only over all normal tissues but also paired normal tissues of CRC, which was in consistent with others27. 
What’s more, a recent study showed a specific SLC12A2 immunohistochemical staining pattern in precancerous 
and cancerous colonic UC lesions, which could be helpful for diagnosing dysplasia and cancer in UC and non-
UC patients28. Thus, we decided to explore the role of SLC12A2 in CRC, which has not been reported before.

The gene SLC12A2 encodes the Na/K/2Cl cotransporter NKCC1, which mainly regulates intracellular ion 
concentrations and cell volume and plays important functions in neurons and epithelial cells29. So far, the role 
of SLC12A2 in different types of tumors has not been well defined. A study revealed that NKCC1/SLC12A2 was 
highly expressed in Glioblastomas and it promoted EMT-like process via RhoA and Rac1 signaling pathways30. 
Moreover, inhibition of the NKCC1 could reduce glioma invasion31. Detailly, NKCC1 modulated migration of 
glioma cells by two distinct mechanisms, one was to regulate focal adhesion dynamics and cell contractility; the 
other was to regulate cell volume through ion transport32. Recently, a study showed that blockade of NKCC1 

Table 4.   Clinical characteristics of patients with distinct classification in testing set. *P < 0.05, **P < 0.01, 
***P < 0.001.

Clinical characteristics

Total C1 C2

Chi-square P valuen = 435 n(%) n(%)

Gender
male 233 105(45.1) 128(54.9)

0.041 0.839
female 202 93(46.0) 109(54.0)

Age
 < 65 171 81(47.4) 90(52.6)

0.389 0.533
 ≥ 65 264 117(44.3) 147(55.7)

TNM stage

1–2 239 96(40.2) 143(59.8)
8.090 0.004**

3–4 185 100(54.1) 85(45.9)

NA 11 2(18.2) 9(81.8)

T stage
Tis-T2 87 28(32.2) 59(67.8)

7.796 0.005**
T3-T4 348 170(48.9) 178(51.1)

N stage

N0 255 101(39.6) 154(60.4)

8.763 0.013*N1 102 54(52.9) 48(47.1)

N2 78 43(55.1) 35(44.9)

M stage

M0 320 138(43.1) 182(56.9)

4.341 0.114M1 61 35(57.4) 26(42.6)

MX 47 20(42.6) 27(57.4)

NA 7 5(71.4) 2(28.6)

MSI status

MSS 269 118(43.9) 151(56.1)

0.931 0.628MSI-L 79 38(48.1) 41(51.9)

MSI-H 73 36(49.3) 37(50.7)

NA 14 6(42.9) 8(57.1)
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Figure 8.   Expression analysis of the 6 prognosis-related SLC genes in CRC. (A) A tSNE map of global cell 
clusters from 8 CRC samples. (B) Expression distribution in different cell clusters of the 6 SLC genes. (C) 
Expression levels in malignant cells from 8 CRC samples of the 6 SLC genes. (D) Expression levels of SLC35B5 
and SLC12A2 in CRC tumor tissues and normal tissues from GEPIA. (E) Expression levels of SLC35B5 and 
SLC12A2 in paired tumor tissues and adjacent normal tissues in TCGA COAD and GSE41258. (F) Expression 
levels of SLC12A2 in the different tumor stage from GEPIA. *P < 0.05.
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could increase Temozolomide (a conventional chemotherapy drug) induced glioma apoptosis and reduced astro-
gliosis, which presented the potential therapeutic effect of NKCC133. Besides glioma, it was reported that high 
expression of NKCC1 predicted poor clinical outcomes for lung adenocarcinoma patients and an EGFR-mutated 
subgroup34. In our study, we proved that SLC12A2 could promote cell growth and stemness in CRC cells.

Here, we presented a pioneer work for identifying a prognosis-related SLC gene signature in CRC. However, 
we have to mention some defects. Firstly, more datasets are needed to verify our signature. Then, the validation of 
our signature in clinical samples is necessary. Moreover, our univariate cox proportional hazards model showed 
that SLC12A2 was a protective factor in CRC while our basic experiments showed that SLC12A2 promoted can-
cer progression in CRC cells, this inconsistency needs to be explored further. Besides, our data showed that the 
expression of SLC12A2 was decreased in a stage-dependent manner, the causes also remain unclear. We thought 
the expression of SLC12A2 might be influenced by the tumor microenvironment, the different therapeutic drugs 
and so on, which needs to be studied by in vitro and in vivo experiments further.

Conclusions
Overall, our works deepened the understanding of SLC family genes in CRC, and provided a 6-SLC gene signa-
ture for prognosis prediction of CRC patients. At the same time, we have tentatively revealed the role of SLC12A2 
in CRC, which may serve as a potential therapeutic target.

Figure 9.   Validation the expression of SLC12A2 in CRC. (A) The expression of SLC12A2 in 29 pairs of CRC 
tumor tissues and adjacent non-tumor tissues was tested by real-time PCR. (B) The expression of SLC12A2 
in 15 pairs of CRC tumor tissues and adjacent non-tumor tissues was tested by western blotting. (C,D) The 
expression of SLC12A2 in 6 CRC cell lines and normal colon cells were tested by real-time PCR (C) and 
western blotting (D). The western blot images in this figure were cropped from full blots and original full blots 
were presented in Supplementary Fig. 3. Three dependent experiments were performed with similar results. 
***P < 0.001, ****P < 0.0001.
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Data availability
The TCGA data were extracted from GDC data portal (https://​portal.​gdc.​cancer.​gov/). The GSE39582 gene 
expression profiles were downloaded from GEO (https://​www.​ncbi.​nlm.​nih.​gov/​geo).
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