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Abstract: Recently, air pollution problems in urban areas have become serious, and unmanned aerial
vehicles (UAVs) can be used to monitor air pollution because they can perform spatial movement.
However, because air pollution sources are fluid, probabilistic search methods are required to identify
a target through the probability of its existence. This study proposes an efficient algorithm to detect
air pollution in urban areas using UAVs. An improved A-star algorithm that can efficiently perform
searches based on a probabilistic search model using a UAV is designed. In particular, in the proposed
improved A-star algorithm, several special weights are used to calculate the probability of target
existence. For example, a heuristic weight based on the expected target, a weight based on data
collected from the drone sensor, and a weight based on the prior information of obstacles presence
are determined. The method and procedure for applying the proposed algorithm to the stochastic
search environment of a drone are described. Finally, the superiority of the proposed improved
A-star algorithm is demonstrated by comparing it with existing stochastic search algorithms through
various practical simulations. The proposed method exhibited more than 45% better performance in
terms of successful search rounds compared with existing methods.

Keywords: unmanned aerial vehicles; probabilistic search; air pollution detection; UAV air pollution
detection

1. Introduction

Recently, unmanned aerial vehicles (UAVs) have been used in various fields. In
particular, they are being widely used in the field of environmental surveillance owing
to their various advantages, including movement in space. UAVs can also be used to
explore polluted areas on the ground, discover various types of pollutants in rivers or the
sea, and identify atmospheric pollutants such as NO, CO, CO2, and fine dust. Therefore,
when a UAV searches for various targets on the ground or in the air, it may not be a good
idea for a person to directly operate the UAV and search for the target. This is due to
the time constraints for target discovery, restrictions on quick decisions, and actions for
target judgment. Therefore, environmental exploration using UAVs requires a method
that enables a UAV to perform its mission according to a preplanned autonomous flight
algorithm [1]. When a UAV is used to detect targets on the ground or in space, autonomous
flight methods that can be applied to the UAV include navigating a preplanned path
and searching for the target by relying on the information collected while the drone is
flying. In the first method, “the method of exploring a preplanned path [2]”, the target’s
location is estimated in advance before flight, the path is input to the UAV, and the UAV
navigates accordingly. The second method, “the method of searching for a target based on
information collected while flying [3]”, uses data such as images, videos, sounds, signals,
and smoke collected while flying to determine the target, and the UAV determines the path
accordingly. This method can be considered to have relatively higher usability than the
first method. Data such as images, videos, sounds, signals, and smoke collected by UAVs
through sensors are used to identify the presence of a target using a target-determination
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algorithm. In air pollution exploration using UAVs, the collected data are likely to be
images or gases such as smoke. An appropriate target-determination algorithm is necessary
to determine the existence of a target based on various types of collected data. When
determining a target using data such as collected images and videos, the target can be
determined by comparison with a previously predicted target image. To achieve this, the
probability of target judgment can be increased through artificial intelligence methods,
such as machine learning or deep learning. When judging a target using collected sounds,
signals, and smoke, the target can be identified by determining the strength and accuracy
of the signal [4,5]. To determine the source of air pollution using UAVs, various sources of
pollution can be identified through sensors, and the presence and area of occurrence of the
source can be determined based on their intensity and accuracy. However, as air pollution
sources are both fluid and invisible, finding air pollution through sensors is difficult for
drones. In such cases, a probabilistic search method that finds the place with the highest
presence probability of air pollution can be used as an alternative. The probabilistic target
search method is used to identify a target by increasing the probability of its existence
based on data collected through repeated searches and a probability model [6–10].

This study focuses on improving the probabilistic search method used to identify air
pollution in urban areas using UAVs. The A-star algorithm is a traditional method for
finding the shortest path in space. The improvement of the A-star algorithm to improve the
mobility of drones in air pollution detection was studied, and an improved A-star model
with additional parameters suitable for air pollution detection was proposed. The proposed
model introduces new parameters such as heuristic weights, weights measured by sensors,
and weights for obstacles to improve the navigation performance. This improved model is
applied to several comparable existing stochastic search methods, and their performance
is compared. In other words, the performance difference is analyzed by comparing cases
where the improved A-star model is applied and cases where it is not applied.

Therefore, this study has the following contributions:

• First, this study presents an improved A-star model that can improve search perfor-
mance when using a stochastic model to search for air pollution in urban areas. To
improve air pollution detection performance, appropriate parameters are introduced
and applied to the improved A-star algorithm. In particular, heuristic estimates for tar-
gets, weights for obstacles, and weights determined by drone sensors are considered.

• Second, an idea is presented to improve the search performance of a probabilistic
model based on Bayes’ theorem. To date, in several studies, a probabilistic search
model based on Bayes’ theorem has been presented to improve the performance of
drone search. This study can improve the performance of the Bayes’-theorem-based
search model.

• Third, ideas on the use of drones to detect air pollution in urban areas are presented.
Ideas about various uses of drones have been presented in several studies, which will
be discussed in the next section. However, relatively few ideas about exploring air pol-
lution have been discussed. Therefore, because the interest in environmental pollution
is increasing, this study can mitigate the environmental problems using UAVs.

2. Related Work

The section summarizes the research and methods employed for target searches using
UAVs. The section is appropriately divided into two sub-sections: UAV navigation-related
studies and existing probabilistic-model-based search algorithm.

2.1. UAV Navigation-Related Studies

Several studies have used UAVs to search for targets. Such cases can be classified
according to the criteria listed in Table 1.

The flight operation method can be divided into route planning and autonomous
flights. In the route planning method, the optimal route is planned, and the drone searches
according to the planned route. Autonomous flight is a method in which a UAV performs



Sensors 2024, 24, 1141 3 of 19

its mission according to a preplanned algorithm. There are studies [2,11,12] related to route
planning methods. Perazzo et al. [2] studied how drones fly through waypoints instead
of fixed anchors on the ground and how to determine and navigate efficient flight paths.
Hayat et al. [11] addressed the dynamic path-planning problem of UAVs for search and
rescue missions. Shivgan et al. [12] studied a method for optimizing the flight path using
the traveling salesman algorithm, considering the limited UAV flight time. Yao et al. [13]
studied the most appropriate route planning when attempting to carry out search missions
in river areas using UAVs. The goal of this route planning is to create a route with the
maximum discovery probability for a single fixed target, taking into account the importance
of the distribution of regions. Chen et al. [14] studied an ant colony system (ACS)-based
heuristic algorithm that allows heterogeneous UAVs to efficiently and fully explore the
coverage. The algorithm consists of an area allocation step and an order optimization
step, and pheromones and heuristic information derived from ACS parameter values are
used for optimization. Chen et al. [15] studied the problem of cooperatively controlling
the behavior of UAVs in a global or local area. To solve this problem, they presented a
reinforcement learning-based approach to derive dynamic action sequences of UAVs and
recognize cooperation. The route planning method has the disadvantage of not being
able to properly adjust the route according to environmental changes because it searches a
predetermined route according to an algorithm. However, because it searches for a set route,
it has the advantage of reducing unnecessary search distance and time. Autonomous flight
methods are used in target searches with most UAVs. These include [3,16–19]. Chuang
et al. [3] addressed the problem of autonomous target estimation by using drones. They
proposed an autonomous UAV control method using high-performance cameras. Wu
et al. [16] studied a method for finding a flying target path through in-depth intensive
learning and training for the autonomous control of drones. Deng et al. [17] studied
the manner in which a UAV equipped with a vision system for surveillance applications
autonomously detected and tracked target objects without human intervention. Rabah
et al. [18] studied a control method for a quadcopter that tracked a moving target. Cheng
et al. [19] proposed a method for detecting small UAV targets to maintain security in urban
areas. Autonomous flight methods have the advantage of being able to optimize navigation
by appropriately adjusting the route according to changes in the navigation environment.
However, it has the disadvantage that the distance and time to perform the mission may
increase depending on environmental changes.

Second, in addition to target tracking and judgment methods, probability-based
and artificial intelligence methods have been proposed. As mentioned previously, the
probability-based method calculates the degree of target matching as a probability based
on the data collected by the UAV, and a probabilistic model increases the probability
through an iterative method and judges it as a target when it reaches a certain probability
value. Artificial intelligence methods have been widely studied recently. These methods
determine the existence of a target by determining whether it matches the image of the
target planned in advance, based on the image and video data collected by the UAV.
Recently, various machine and deep learning methods have been used to increase the
probability of target recognition. Research on probabilistic searches includes [20–27], and
search methods using artificial intelligence include [28–32]. Symington et al. [20] conducted
an early study on stochastic searches. They proposed a target detection algorithm based
on a recursive Bayesian model that estimated the probability of a target being present
in video frames collected from a camera mounted on a UAV. Serna et al. [21] focused on
improving the performance of UAVs used for planetary exploration. They presented a
high-level probabilistic search method for planetary exploration, based on the Partially
Observable Markov Decision Process. Naula et al. [22] proposed an algorithm for detecting
pollutants in the air using a UAV. The proposed algorithm uses both metaheuristic and
probabilistic search methods. Chung [23] expressed the search problem in a probabilistic
formulation that can be used when a search agent, such as a UAV, finds a fixed target in the
search area. Carrese et al. [24] presented a method of using a UAV to determine the location
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of wild-parked e-scooters in urban areas, and they proposed an efficient heuristic model
for this purpose. Mozaffari et al. [25] studied the appropriate altitude and coverage for
UAVs to function as wireless base stations. They derived the coverage probability of a UAV
using altitude and antenna gain functions and studied how to maximize the coverage of a
UAV. Trotta et al. [26] studied how to efficiently perform video monitoring in urban areas
using UAVs that move to search points while charging on a bus. In particular, they use a
probabilistic model to calculate the efficient navigation coverage of UAVs. Alawad et al. [27]
presented a system for collecting and processing disaster information by deploying a group
of UAVs at disaster sites in urban areas. In particular, they used a probabilistic model to
calculate the energy-efficient navigation coverage of the drone. The probabilistic search
method repeatedly searches the search space and increases the probability of success in
the search; therefore, it has the disadvantage that the search distance and time can be long.
However, this method can increase the likelihood of search success when the search target is
not clear. Most artificial intelligence search methods use YOLO (You Only Look Once) deep
learning technology. The YOLO model introduced by Redmon et al. in 2015 [33] detects
objects immediately after looking at the image only once. Tan et al. [28] and Luo et al. [29]
proposed an improved algorithm using the existing YOLO v4 algorithm to improve the
target detection performance from images captured by UAVs. Luo et al. [30] proposed an
improved YOLO v5 algorithm using the k-means++ algorithm. Zhu et al. [31] focused on
improving the recognition accuracy of fruit tree canopies in orchards captured by UAVs
and proposed an improved YOLO v4. Wang et al. [32] proposed an online distributed
algorithm for tracking and searching for object detection and search trajectory planning for
the security surveillance of UAVs with relative mobility and scalability. They also proposed
a quantum probability model that partially explains the observable target location. In
artificial intelligence search methods, environmental data must be collected, processed, and
applied to search activities in real time; therefore, the data processing cost of search drones
is high. However, search drones can perform the most appropriate activities depending on
environmental changes.

Third, studies can be categorized based on the data collected to determine the target.
The types of data collected included images, videos, sounds, smoke, and signals. Images
and videos can be used to detect specific types of targets on the ground. Refs. [34–37] are
related to this topic. Minaeian et al. [34] presented an algorithm for efficiently determining
and tracking the location and movement of crowds in images acquired by UAVs in border
areas. Liu et al. [35] proposed a multitarget tracking algorithm based on YOLO v4 to identify
and track vehicles in urban areas using UAVs. Ren et al. [36] proposed a Mask-R-CNN
algorithm that can efficiently process video streams acquired by UAVs in terms of speed
and storage space. Mandal et al. [37] proposed an image dataset that efficiently recognizes
moving objects in video images collected by UAVs. In addition, several studies have
demonstrated that UAVs can detect objects using sounds produced by the target [38,39].
Zimroz et al. [38] studied the use of UAVs for search and rescue activities in underground
mines. They proposed a method for detecting specific sounds from acoustic data mixed
with noise obtained from underground passages. Yang et al. [39] studied methods for
detecting and determining the path of a flying UAV using sounds generated by the UAV.
The UAV detects the signals generated from the target, tracks the target, and collects data;
related studies include [40,41]. Ebrahimi et al. [40] addressed the efficient collection of
data using UAVs in wireless sensor networks. The UAV detects the signals generated by
the sensor nodes and collects data. Abro et al. [41] proposed a method for identifying
and detecting illegal UAVs in urban areas using signals generated by a UAV Controller
Device. Smoke is gaseous data that can be collected by a UAV, including data on various air
pollutants such as CO, CO2, NO, NO2, and fine dust distributed in the air. Studies related
to this topic have been conducted [3,9,42]. Yuan et al. [42] used UAVs to identify missing
people or objects in remote wilderness areas. They proposed a method for locating and
tracking a target based on gases emitted from the target. Lambey et al. [9] studied the types
of UAV sensors used for air quality monitoring based on an extensive literature review.
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Pochwala et al. [43] proposed a UAV-based air pollution measurement system that can
detect harmful compounds, such as ammonia, hexane, benzene, and CO, and combustible
substances, such as hydrogen and methane, in the atmosphere. Methods for searching
images, videos, sounds, signals, smoke, etc., use an optimal sensor suited to the purpose of
the search. Therefore, data suitable for exploration purposes can be appropriately collected,
but other data cannot be collected.

UAVs are suitable for exploring air pollution in urban environments. This is because
they exhibit superior mobility compared with other air pollution measurement devices.
However, because air pollution possesses dynamic characteristics, a search algorithm that
takes these into account is necessary.

This study focused on gas data and algorithms that can search for sources of air
pollution. Therefore, this study can be classified as follows: autonomous flight as the
flight manipulation method, probability-based method as the target tracking and judgment
method, and method for collecting smoke data as the collected data.

The method proposed in this study is classified as an autonomous flight method.
This means that the method can be applied as an autonomous flight method for actual
drones. Additionally, this method is classified as a stochastic search method. The target of
drone exploration in this study is air pollution. Air pollution is not visible and fluctuates
depending on environmental changes; therefore, it is very difficult to detect with drone
sensors. Therefore, owing to the fluid nature of air pollution, probabilistic search is the
subject of this study to increase the likelihood of successful search, and an improved A-star
algorithm is proposed to efficiently execute this probabilistic search. Therefore, one of the
unique features of this study is the application of the improved A-star algorithm suitable
for air pollution to the stochastic search method.

Table 1. UAV navigation-related studies classified into major categories.

Category Type Study

Flight control Route planning [2,11–15]
Autonomous flight [3,16–19]

Target tracking and
judgment

Probabilistic search [20–27]
Artificial intelligence [28–32]

Collection data

Image [34,35]
Video [36,37]
Sound [38,39]
Signal [40,41]
Smoke [7,42,43]

2.2. Probabilistic-Model-Based Search Algorithm

The probability-based search model proposed by Chung [6] (Equation (1)) is currently
being explored and utilized in many studies. This model is expressed as the probability of
a false alarm (α) and missed detection (β), depending on whether an actual target exists in
the search area and the result of the UAV search. In this equation, dt

a denotes the value of
determining whether a target exists in cell ‘a’ at time t, and xT = a indicates that a target
exists in search area ‘a’. This equation expresses the probability of an error occurring as
α and β when the drone identifies the target. α and β stand for false alarm and missed
detection, respectively. For example, Pr

(
dt

a = 0
∣∣xT = a

)
is the probability determined as

dt
a = 0 under the condition xT = a. In other words, the condition is that there is a target in

search area a, but this means that the drone failed to search for the target, thus indicating a
missed detection.
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Pr
(
dt

a
∣∣xT

)
:


Pr

(
dt

a = 0
∣∣xT = a

)
= β,

Pr
(
dt

a = 1
∣∣xT = a

)
= 1 − β,

Pr
(
dt

a = 0
∣∣xT ̸= a

)
= 1 − α,

Pr
(
dt

a = 1
∣∣xT ̸= a

)
= α,

(1)

If dt is the t-th observation, Dt is the set of t-th observations, and xT = 1 indicates
that a target exists in a specific area, then the probability of the target at time t is calculated
using Bayes’ rule [44] as follows [20]:

Pr
(
xT = 1

∣∣Dt) = Pr
(
dt

∣∣xT = 1
)

Pr
(
xT = 1

∣∣Dt−1)
Pr(dt |Dt−1)

(2)

Equations (3) and (4) based on Bayes’ rule express the relationship between the prior
and posterior probabilities of two random variables.

P(A|B) = P(B|A)·P(A)

P(B)
(3)

P(A|B) = P(B|A)·P(A)

P(B|A)· P(A) + P(B|¬A)·P(¬A)
(4)

If Equation (2) is expressed in the same form as Bayes’ rule (Equation (4)), it can be
expressed as follows:

Pr
(

xT = 1
∣∣Dt) = Pr

(
dt

∣∣xT = 1
)

Pr
(
xT = 1

∣∣Dt−1)
Pr(dt |xT = 1) Pr(xT = 1|Dt−1) + Pr(dt |xT ̸= 1) Pr(xT ̸= 1|Dt−1)

(5)

In the above equation, if dt = 1, that is, if it is determined that there is a target,
applying the Bayesian rule to Equation (5) is expressed as Equation (6).

(1 − βh)Pt−1

(1 − βh)Pt−1 + αh(1 − Pt−1)
, i f dt = 1 (6)

In Equation (6), because dt is judged to be 1 under the condition xT = 1, the coefficient
of Pt−1 is 1 − βh, and because the probability of dt is judged to be 1 under the condition
xT ̸= 1, the coefficient of 1 − Pt−1 becomes αh (false alarm).

If dt is 0 in the above equation, that is, if it is determined that there is no target, by
applying the Bayes rule to Equation (4), Equation (7) is obtained as follows:

(βh)Pt−1

(βh)Pt−1 + (1 − αh)(1 − Pt−1)
, i f dt = 0 (7)

In Equation (7), because dt is judged to be 0 under the condition xT ̸= 1, the coefficient
of 1 − Pt−1 is 1 − αh, and because the probability of dt is judged to be 0 under the condition
of xT = 1, the coefficient of Pt−1 becomes βh (missed detection).

Therefore, by combining both equations, Equation (8) is derived. This equation can
be used in circular and iterative probabilistic searches because the next probability Pt is
obtained using the value of dt repeatedly determined with the value of Pt−1 [6,20].

Pt =


(1−βh)Pt−1

(1−βh)Pt−1+αh(1−Pt−1)
, i f dt = 1

(βh)Pt−1
(βh)Pt−1+(1−αh)(1−Pt−1)

, i f dt = 0
(8)

In other words, the probability Pt that the target exists in a certain cell in the search
space can be cyclically obtained using the previous search probability Pt−1, the probability
αh of a false alarm at altitude h, and the probability βh of missed detection at altitude h.
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3. Improved A-Star Algorithm

This section describes an improved A-star algorithm for probabilistic air pollution
detection using a UAV. The conventional A-star algorithm is improved to detect air pollu-
tion in urban areas using UAVs, and the improved algorithm is applied to the probabilistic
search model. The process of improving the conventional A-star algorithm to be suitable
for air pollution search by adding search distance and direction information and obstacle
information is explained. Additionally, a method for applying the improved model to a
probabilistic search model is presented.

Improved A-Star (A*) Search Algorithm

The conventional A-star algorithm searches for the shortest path in space and deter-
mines it based on heuristic estimates and weight values for motion. This algorithm is
expressed as Equation (9), where G(n) is the weight of the path from the starting point to
the current point, and H(n) is the weight of the estimated path from the current point to the
target point. In general, H(n) is obtained by estimating the distance from the current point
to the target point while ignoring obstacles in space, and G(n) is obtained by accumulating
the path weights from the starting point to the current point [45,46].

F(n) = G(n) + H(n) (9)

The basic A-star algorithm can be applied to a model in which a drone searches for
a target. The conventional A-star algorithm is used to optimize movement in space. This
algorithm includes a directional component toward the target derived from H(n) and
S(n). However, because the existing probabilistic search model does not have a directional
element, an improved A-star algorithm with added elements suitable for air pollution
search is proposed and then applied to the probabilistic search model. Therefore, the key
features of performance improvement are directional information and obstacle information.

This study proposes an adaptive A-star algorithm that can improve the performance
of the stochastic search model. Moreover, this study proposes a method to reduce the
search time and distance in the stochastic model and increase the probability of successful
target search. The proposed algorithm is expressed as Equation (10). This equation is
a combination of Equation (8), which calculates the basic probability of a cell, and the
improved A-star algorithm. In the proposed equation, P(n) inherits the path weight G(n)
from the traditional A-star equation, where P(n) is the cumulative predicted value, based
on the data predicted by the drone in the previous step. H(n) denotes the estimated
distance from the target to the current point. Because efficient search pursues a shorter
distance, H(n) becomes an important factor in determining the direction of search. O(n)
expresses information about obstacles in the search space as weights. Areas where obstacles
exist can be assigned a low weight value because the probability of target discovery is low.
Most areas without obstacles can be assigned normal weights. In this equation, S(n) is used
to increase the probability of search success. S(n) is also one of the features of the proposed
algorithm that improves search performance. This refers to air pollution measurements
collected by sensors in the drone’s actual navigation environment. This value becomes an
important factor for calculating the search probability, as shown in Equation (10). Therefore,
the higher the measurement value, the higher the weight and probability of discovery.
Therefore, the prediction function PF(n) can be expressed as the sum of the previous-step
prediction function P(n), target point distance estimation function H(n), obstacle weight
function O(n), and sensor data collection weight function S(n).

PF(n) = P(n) + H(n) + O(n) + S(n) (10)

The proposed equation was applied to a two-dimensional search space in which the
drone searched. It is assumed that the search space consists of several cells with x- and
y-axes coordinates. The predicted value at time t for a specific cell c(i, j) can be expressed
as Equation (11). The prediction function Pt at time t can be obtained as the sum of the
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prediction value Pt−1 at the previous time t−1, the target point distance estimate Ht−1, the
obstacle weight value O, and the sensor-collected data weight value St−1. The obstacle
weight value is an element with a constant value that does not change with time and can
only be considered once during the initial search; therefore, the time is not displayed.

Pt(i, j) = Pt−1(i, j) + Ht−1(i, j) + O(i, j) + St−1(i, j) (11)

If time t is 1, that is, if it is an initial search, Equation (11) can be expressed as
Equation (12). If time t is greater than 1, repeated searches after the initial search are
performed through a probabilistic search using a prediction function, such as Equation (13).

P1(i, j) = P0(i, j) + H0(i, j) + O(i, j) + S0(i, j) (12)

Pt(i, j) = Pt−1(i, j) + Ht−1(i, j) + St−1(i, j) (13)

The method by which a drone determines the probability of the existence of a target in
each cell in the probabilistic search space uses Equations (12) and (13). The initial probability
of the target existence in each cell in the search space is calculated using Equation (12). In
addition, the probability of target existence in each cell in repeated searches after the initial
search was calculated using Equation (13). In Equation (12), which calculates the initial
target presence probability, S0(i, j) is the initial sensor measurement value given to each cell.
H0(i, j) is the distance between the initial target and the cell assigned to each cell. O(i, j) is
a weight value based on the initial obstacle presence information given to each cell and is a
constant value that does not change. This weight is a factor that the drone can consider once
at the beginning of the search; therefore, it is included in the initial search but excluded
from subsequent repeated searches. In the iterative probabilistic search after the initial
search, the probability of the target existence in each cell is calculated using Equation (13).
Pt−1 was calculated using Equation (5). The St−1 value refers to the value measured by
the drone’s air pollution source search sensor from the previous step. Ht−1 is the value
estimated based on the distance from each cell to the cell with the highest probability (the
expected target point) in the previous step. Therefore, the Pt value calculated by reflecting
the target point distance estimate value Ht−1 and the sensor-collected data weight value
St−1 is cyclically reflected in the next step of the calculation.

In Figure 1, the area marked with the diamond grid pattern represents a cell with an
obstacle; the cells included in this area have low O(n) weight values. The area marked
with the diagonal stripe patterned is wide, including the target cell, and represents the
area with the highest sensor measurement value when a drone searches for sources of air
pollution. In a large-scale probabilistic search, it is extremely difficult to determine the
narrow area with the highest number of sensor measurements. Therefore, a reasonable
sensor measurement value that could be assigned to each cell in the search area was
required. For example, the quadrant containing the cell with the highest target presence
probability value may be assumed to be an area with a high sensor measurement value,
and a high sensor measurement value may be assigned to that area. In an actual drone air
pollution source search, the S(n) value can be determined based on the value detected by
the air pollution sensor; however, in the simulation, experimentally determined reasonable
weights can be used.
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source search space.

H(n) and S(n) can be considered the most important factors in the proposed
Equation (10) for stochastic target search. First, the calculation of H(n) in the search
area is explained. The cell Ct with the highest probability among all cells (Probt) in the
search area is determined, as given in Equation (14), and the heuristic function (Heu)
is applied to all cells based on the probability value of cell Ct to calculate the heuristic
value Ht(i, j) of each cell using Equation (15). In other words, Ht(i, j) is the distance
between each cell and the cell with the highest probability Ct. This distance is obtained
as a straight-line distance depending on two- or three-dimensional space. The Heu(Ct)
function calculates the distance value for each cell.

Ct = max (Probt) (14)

Ht(i, j) = Heu(Ct) (15)

The sensor-collected data weight value, St−1, for each cell is obtained as follows:
In actual navigation, it is determined by the value detected by the drone’s air pollution
sensor. Although the value is easy to measure in the drone’s actual navigation environment,
expressing the value in the algorithm is difficult, In other words, it is not appropriate to
simply substitute a random value into that value. Therefore, methods and processes to
express the value more appropriately were explained as follows. In this study, reasonable
weights were obtained using the following method: First, the average value MAt for all
cells in the search area at time t is obtained, as shown in Equation (16). In this equation,
height and width denote the number of cells horizontally and vertically. The search area
was divided into four quadrants, and the quadrant with the highest Pt value was identified.
If a specific cell is in the quadrant containing the highest Pt value, a high weight value can
be obtained, as shown in Equation (17). Quadt denotes the four quadrants of the search
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area. The Ht and St values obtained in this manner were used to calculate the P value,
gradually increasing the probability of discovery.

MAt = ∑
height
i=1 ∑width

j=1 Prodt(i, j)/height ∗ width (16)

St(i, j) = W(MAt) i f c(i, j) ∈ max(Quadt) (17)

Figure 2 graphically shows how Pt was determined from the Pt−1.
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Based on the equations proposed above, the algorithm for a scenario in which a drone
searches for air pollution sources in the search space is presented in Algorithm 1. First,
the search prediction value P, target point distance estimate H, obstacle weight O, and
sensor-collected data weight S for all the cells are initialized. The flag variable targetFound
and the number of search rounds for target discovery were initialized. The search routine
was repeatedly executed until the target was found. The predicted value for each cell is
obtained from the number of rounds. This was obtained by adding the predicted value
from the previous step, the target point distance estimate, and the sensor-collected data
weight. Subsequently, the search prediction value for each cell was obtained using the
probability model, and it was verified whether the value reached the probability set as
the threshold. If the predicted value is above the threshold, the discovery is considered
successful, and the value of the targetFound flag variable is changed to 1. If the threshold
was not reached, the next round was repeated.

Lines 5–9 of the algorithm demonstrate the process of calculating the prior probability
values of each cell by reflecting the weight values. This process is calculated for all cells in
the search area; therefore, the computational complexity is O(n2). Line 10 of the algorithm
shows the process in which the probability value of each cell is updated, and lines 11
and 12 indicate the process in which the heuristic and sensor measurement values of each
cell are updated. These processes also have a computational complexity of O(n2) because
calculations are made for all cells in the search area. Lines 13–17 show the part that verifies
whether each cell contains the target, and these also have a computational complexity of
O(n2). Because tasks such as the weighting of each cell, probability, and checking whether
the target exists are repeated until the target is found, this algorithm can ultimately be
concluded to have O(n3) computational complexity.
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Algorithm 1: Improved A-Star Algorithm

1: Initialize P0, H0, O, S0
2: targetFound=0, round=1
3: while (targetFound!=1)
4: if(roundLimit!=1) then
5: if(round==1) then
6: P1(i,j)=P0(i,j)+H0(i,j)+O(i,j)+S0(i,j) for each c(i,j)
7: else
8: Pt(i,j)=Pt−1(i,j)+Ht−1(i,j)+St−1(i,j) for each c(i,j)
9: end-if
10: Pt(i,j)=Prob(c(i,j)) for each c(i,j)
11: Ht(i,j)=Heu(Ct)
12: St(I,j)=W(MAt)
13: if(Pt>=Th) then
14: targetFound=1
15: else
16: go to next round
17: end-if
18: round++
19: end-if
20: end-while

4. Simulation

Simulations were conducted to analyze the performance and effectiveness of the
proposed improved A-star algorithm.

4.1. Simulation Environment

The simulation environment is presented in Table 2. The search area consists of
8 × 8 cells, and the target was randomly placed in one of these cells. The drone searches
for a set of targets using various methods.

Table 2. Simulation environment.

Category Value

Search area 8 × 8 cells
Speed 15 km/h (4.1666667 m/s)

Altitudes High altitude: 20 m (1 unit = 4 × 4 cells)
Low altitude: 10 m (1 unit = 2 × 2 cells)

Threshold 0.95
Length of a side 7.592 m

Targets 1 (random)
UAVs 1

Limitations on navigation rounds 200

In this study, search probability models, such as Equations (1) and (8), were used.
Determination of α and β values is important in probabilistic models [3]. Therefore, this
study used the optimal values obtained through experiments for simulations, as listed in
Table 3. The data of the Symington et al. [20] study were used in the simulation. To analyze
the performance of the proposed method, several well-known stochastic search methods
were compared.
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Table 3. Experimental values of α and β.

Altitude
Dataset 1 [5] Dataset 2 [7]

α β α β

10 m 0.06286 0.20000 0.028369 0.000000
20 m 0.00130 0.34593 0.001110 0.046745

The linear search method and high- and low-altitude collaboration search method [7]
were compared with the proposed method. Linear search involves linearly searching for
cells in a search area at a high or low altitude. In the search method based on high- and
low-altitude collaboration, the drone first searches a wide area at a high altitude, selects the
area with the highest probability, and searches at a low altitude to increase the probability of
a target search. In this simulation, the performance was analyzed by applying the proposed
algorithm to the following three search methods.

• Search method 1: Low-altitude linear search method (LowLinear). In this method, the
drone searches linearly at low altitudes to find a target.

• Search method 2: High-altitude linear search method (HighLinear). In this method,
the drone searches linearly at high altitudes to find a target.

• Search method 3: High-altitude and low-altitude collaboration search method (High-
Low). In this method, high-altitude and low-altitude drones cooperate to find a target.

The time and distance required for the drone to search for a target were used to
evaluate the performance of the simulation. The distance explored by the drone was
obtained using the following Equation (18). In this equation, Cn is the number of cells that
the drone moves to for a search, and the tangent value is the value between base b and
height h. The time required for the search was calculated using the average speed of the
drone in the experimental environment, as expressed in Equation (19).

D = Cn ×

√
2 × (

1
tan θhb

× h)2 (18)

Search Time = Velocity of Drone ÷ Search Distance (19)

4.2. Performance Analysis

Search methods with the proposed algorithm and other search methods search for
targets through simulations, and the search results are analyzed. Figure 3a shows the search
success rounds for each round of each method simulated, and Figure 3b shows the CPU
time until the search success for each round of each method. The search success rounds of
methods that do not apply the proposed improved A-star algorithm can be observed to be
large and the CPU time long.

Figure 4 shows the search distance and time for each search round of each method.
Figure 4a shows the distance to successful search, and Figure 4b shows search time for
each round. This result also showed that the method using the improved A-star algorithm
required less search time and distance compared to the corresponding method without the
proposed algorithm.

Figure 5 shows the accumulated search distances and times for each method. The
LowLinear search method had the most cumulative rounds, whereas the HighLinear
search and the HighLow search methods had similar cumulative rounds. However, when
comparing the methods with and without improved A-star algorithm, the method using
the improved A-star algorithm clearly demonstrates superior performance.
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the proposed algorithm.

Figure 6a,b show the total search distance and search time for each method. The
method applying the proposed improved A-star algorithm exhibited significantly better
performance compared with the corresponding method without the proposed algorithm.
The LowLinear search with the proposed algorithm exhibited more than 40% better per-
formance than the LowLinear search method, whereas the HighLinear search with the
proposed algorithm exhibited more than 53% better performance than the HighLinear
search method. In the case of exploration using the HighLow search method, the proposed
algorithm showed approximately 30% better performance than the conventional HighLow
method. Figure 6c shows the total search distance and time for each method.
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Figure 5. Comparison of accumulated search distance (a) and accumulated search time (b) for each
method. A* indicates the proposed algorithm.
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Figure 7 shows the accumulation of successful rounds for each method. The LowLin-
ear search method showed the most cumulative rounds, whereas the HighLow method
exhibited the fewest successful rounds. When comparing the method using the proposed
improved A-star algorithm with the corresponding method without the proposed algo-
rithm, the method with the proposed algorithm exhibited significantly better performance.
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Figure 8 shows the results of the exploration success rounds of the methods with and
without the proposed algorithm. In a successful round, in the case of a low-altitude linear
search, the proposed method exhibited superior performance by approximately 45%, and in
the case of a high-altitude search, the proposed method exhibited superior performance by
approximately 115%. In the case of high-altitude and low-altitude collaborative exploration,
the proposed method exhibited superior performance of approximately 74% or more.
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4.3. Discussion

The simulations demonstrated that when the proposed method was applied to the
LowLinear search, HighLinear search, and HighLow search methods (Section 4.1), the
method using the proposed improved A-star algorithm performed significantly better.
Additionally, the HighLinear search and HighLow search methods were observed to
perform much better than the LowLinear search. This is due to the difference between the
false alarm value α and the missed detection value β used in the probability search, and the
difference in travel distance because high-altitude searches a unit composed of 4 × 4 cells,
whereas low-altitude searches a unit composed of 2 × 2 cells.

As shown in the search results, when comparing the high-altitude search with the
high-altitude and low-altitude collaboration search, the search round shows that the high-
altitude and low-altitude collaboration search exhibit superior performance owing to the
collaboration algorithm; however, the search distance and time are different. In this case,
the performance was slightly lower because the search distance at low altitudes increased.
However, in all three search methods described in Section 4.1, the method applying the
proposed improved A-star algorithm can be observed to perform much better than the
conventional method.

Therefore, the simulations demonstrated that the improved A-star algorithm proposed
in Section 4.1 is effective when applied to the three types of existing probabilistic search
algorithms mentioned. In other words, comparing the probabilistic search algorithm with
the improved A-star algorithm with the one without the improved A-star algorithm, the
application of the improved A-star algorithm proved to be superior in terms of search time,
search distance, and search success rate in the probabilistic search algorithm. This shows
that the proposed algorithm can be used in actual navigation of drones.

The dataset used in the simulation was obtained from practical experiments detecting
ground targets [5,7]. Because actual experimental data for air pollution exploration were
not available, this dataset for ground target detection was utilized. However, applying
various experimental data at different altitudes, aside from those presented in Table 3,
yielded similar results. Therefore, the proposed algorithm is anticipated to be effective
across a wide range of real-world experimental data.

In this simulation, the drone repeatedly searches the search space and checks whether
the probability of each cell reaches a value above the threshold, increasing the probability
of finding air pollution. Therefore, based on the probabilistic model used in this study, it
is difficult for the drone’s path to proceed while maintaining a nearly consistent direction
toward the target. Therefore, an improved A-star algorithm was proposed to reduce the
search distance, which is a disadvantage of the stochastic model, and to obtain information
about the direction of search.

5. Conclusions

In this study, an improved adaptive A-star algorithm that can be used in the prob-
abilistic search of drones to identify air pollution sources in urban areas was proposed.
In particular, to increase the probability of target discovery in the proposed algorithm, a
weight value H(n) based on the expected distance to the target, weight value S(n) based
on the measurement value of the target search sensor, and weight value O(n) based on
the initial presence of obstacles were used. These values are added to the previous search
probability values to calculate a new search probability value. Through several simulations,
high-altitude linear search, low-altitude linear search, and high-altitude and low-altitude
collaboration search methods were selected, and the conventional search algorithm was
compared with the proposed improved A-star algorithm. In terms of search distance and
search time, the proposed algorithm exhibited significantly better performance than the
conventional algorithm for all three methods, ranging from approximately 30% to approxi-
mately 53%. In addition, in terms of search success rounds, the method using the proposed
algorithm exhibited superior performance of approximately 45% and up to 115% compared
with the method with the conventional algorithm.
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The method proposed in this study has the following limitations. First, the stochastic
search method repeatedly searches the search space and increases the probability of success
in the search; therefore, the distance and time of the search are likely to be long. This is a
common problem with stochastic search methods. However, owing to the characteristics
of air pollution, repeated searches may be necessary. Second, the proposed improved
A-star algorithm was applied in a two-dimensional space in the simulation. However, the
proposed algorithm will be easily extended to three-dimensional space. Even if a space
where air pollution exceeds the threshold is found, air pollution can move depending on
climate changes such as wind and rain. Therefore, air pollution detection drones may
need to continuously conduct repetitive searches. Therefore, additional simulation work
needs to be performed in the future to expand the proposed model to three-dimensional
space. Furthermore, additional research is needed to increase search time and perfor-
mance by applying the proposed improved A-star model to other possible probabilistic
search models.

Our study has the following significance. First, this study extends the traditional A-
star algorithm to a drone-based urban air pollution search algorithm. The A-star algorithm
was improved to be suitable for air pollution exploration by considering the fluid and
invisible nature of air pollution. Second, the proposed improved A-star algorithm was
applied to a probabilistic search model for air pollution search. By applying the proposed
algorithm to the existing probabilistic search model, the performance of probabilistic search
was improved. Third, an algorithm that can be used for practical air pollution exploration
using drones is proposed. There are a few algorithms for detecting the presence of air
pollutants with fluid properties. Therefore, the results of this study can serve as a basis for
future air pollution detection and environmental research.
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