Skip to main content
. 2024 Feb 9;24(4):1151. doi: 10.3390/s24041151
Algorithm 1 Training a denoising model ϵθ
  • 1:

    Define noise schedule β1,β2,,βT

  • 2:

    Compute α¯t for t=1 to T using α¯t=s=1t(1βs)

  • 3:

    repeat

  • 4:

        (x,z)p(x,z)

  • 5:

        ϵN(0,I)

  • 6:

        t1T

  • 7:

       Take a gradient descent step on θϵϵθα¯tx0+1α¯tϵ,z,t2

  • 8:

    until converged