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Abstract: Forest production has great relevance in the Brazilian economy, characterized by several
production sectors, including the production of seedlings. With the focus on maximizing the capacity
of survival, development, and adaptation of seedlings, Trichoderma is highlighted as a potentially
useful genus of microorganisms for promoting growth and higher product quality. In this sense,
this review aims to describe the main mechanisms of fungi action in forest seedlings’ production.
The different species of the genus Trichoderma have specific mechanisms of action, and the current
scenario points to more advances in the number of species. The interaction process mediated by
different mechanisms of action begins in the communication with plants, from the colonization
process. After the interaction, chemical dialogues allow the plant to develop better because, from
colonization, the forest seedlings can maximize height and increase shoot and root development.
Fungi promote solubilization and availability of nutrients to seedlings, which show numerous benefits
to the development. The use of beneficial microorganisms, such as fungi of the genus Trichoderma, has
become a sustainable strategy to enhance seedling development, reducing the use of agrochemicals
and industrial fertilizers.

Keywords: plant–microorganism interaction; synergism; growth promotion

1. Introduction

Forest production has great relevance in the Brazilian GDP, characterized by several
production sectors, including seedlings. Despite the global scenario of the COVID-19
pandemic (SARS-CoV-2), the forest production chain showed resilience in the Brazilian
market, with a growth of 7.5% in 2021, higher than the evolution of the national GDP [1].
This sector has great economic importance, intended for commercial plantations and
recovery plans of degraded areas, which denotes the need to expand the capacity of
seedling production and obtain higher production rates [2].

Despite the relevance of the forestry sector, in Brazil, there is still a great dependence
on the import of inputs, with emphasis on synthetic fertilizers, which requires measures
correlated with the reduction in the use of fertilizers and adequate practices to obtain
success in the production of seedlings [3]. The production of woody plants promotes
environmental and economic benefits by reducing the use of chemicals, including having
less soil and water contamination, having sustainable production, spending less time on
the formation of seedlings, and having higher-quality parameters [4].

To obtain high-quality seedlings, it is necessary to achieve high growth parameters
arising from morphological and physiological attributes that reflect the development
capacity and survival in the field. The morphological attributes are used to evaluate the
ability of plant development, measured by height, the diameter of the neck, and root
development. In contrast, the physiological attributes are obtained through the capacity
of absorption of water and nutrients by the plant to provide important information on
the performance of the species and efficiency in the production of seedlings, because
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vigorous seedlings with high field performance are defined in the initial phase of seedling
establishment and development [5,6].

However, there are gaps in adopting technologies that increase biomass production
with lower costs and production time. There are technologies aimed to improve the
germination potential of seeds. To maximize the survival, development, and adaptation
capacity of seedlings, the inoculation of microorganisms can improve growth and higher
production quality [7,8].

When inoculated in seedlings and after the colonization of the root system by Tri-
choderma, changes occur in plant metabolism and increase root development, growth,
and nutrition of plants [9]. The main mechanism of interaction between Trichoderma and
seedlings occurs via chemical signaling, resulting from the production of compounds
responsible for modifications in the transcriptome, proteome, and plant metabolome [10].

From there, the beneficial action of fungi begins via the modulation of molecular
centers and prolonged systemic responses that stimulate plant development [11,12]. As
there are broad benefits promoted by fungi of the genus Trichoderma in plant development,
the objective of this review was to discuss the main mechanisms of action of fungi in the
production of forest seedlings.

2. Fungi of the Genus Trichoderma: Beneficial Microorganisms

The genus Trichoderma is the imperfect phase of Hypocrea, belonging to the King-
dom Fungi, Phylum Ascomycota, Class Sordariomycetes, Order Hypocreales, and Family
Hypocreaceae [13]. It comprises many species of free-living filamentous fungi in multiple
ecosystems, from tropical to temperate regions, characterized by accelerated growth. They
are considered highly active species in the soil, associated with the rhizosphere and the
decomposition process of plant residues and wood, and are rarely associated with plant
diseases [14].

The fungi Trichoderma spp. have bright green conidia and a repeatedly branched coni-
diophore, are opportunistic and avirulent plant symbionts, and have asexual reproduction
by the production of conidia and chlamydospores and in wild habitats by ascospores [9]. In
recent years, there has been an exponential increase in the number of species identified in
the genus, and the current scenario points to further advances in the number of species [15].

3. Interaction Process: Trichoderma spp. and Forest Species

During the production process, the seedlings are generally subjected to several abiotic
factors (climate, temperature, water availability) and/or biotic stress (phytopathogenic
agents). These stresses may lead to considerable restrictions to obtain vigorous seedlings
with high-quality indexes. The inoculation of Trichoderma fungi enhances acclimatization,
resistance/tolerance through plant response mechanisms under adverse conditions and,
above all, induces greater growth of seedlings [16–18].

The colonization of roots results in physical or biochemical responses, initiating chemi-
cal transmission, in which plants produce secondary metabolites (SM), constituting limiting
factors for the invasion of the fungus in the cortical cell layers in the roots [19]. According
to the barriers imposed by plants, Trichoderma fungi can produce strategies to “dribble”
plant responses; this occurs via hormone production to establish a prolonged mutualistic
association without the occurrence of obstacles that can make the root establishment and
the symbiotic process unfeasible [10].

The interaction process between Trichoderma and plants is mediated by different mech-
anisms of action that begin in the communication with plants from the root colonization
process. Figure 1 illustrates the stages of the interaction process between Trichoderma spp.
and the host plant, starting via the release of root exudates, recognized by the fungus and
responsible for chemotaxis (release of secondary metabolites). Subsequently, the fungus
adheres to the root surface via protein action (hydrophobins) and produces enzymes re-
sponsible for cell degradation (cellulolytic, proteolytic, pectinolytic, and xylanolytic) and
colonization of the root epidermis and cortex.
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4. Potential Mechanisms of Interaction

Trichoderma fungi cause physiological changes and plant metabolism when colonizing
the root system. From a practical point of view, the interaction is promising since it allows
high-quality indexes of seedlings to be achieved, according to the release of compounds,
which the root system will assimilate, solubilizing and absorbing nutrients by plants [9].

The ability to synthesize plant hormones is commonly observed in Trichoderma
species [20,21]. Auxins, abscisic acid, cytokinin, ethylene, and gibberellins stimulate plant
growth, especially in adverse conditions [22]. The biosynthesis of indole-3-acetic acid (IAA)
performed by the fungus increases root development and production of secondary roots
and root hairs [23].

The expansion of the root system occurs through endophytic colonization and the
production of phytohormones in the induction of water and nutrient efficiency by plants,
in addition to greater tolerance to biotic and abiotic stresses [24]. In the dynamic plant–
microorganism communication process, the interaction with roots and other parts of the
plant can be influenced by different factors, such as soil type, the potential of strains, and
plant species [25].

4.1. Solubilization and Availability of Mineral Nutrients

Despite the high nutritional requirement of forest seedlings, Brazilian soils generally
have low natural fertility and a high degree of weathering, which limit obtaining greater
production potential since the low availability of nutrients in the soil reduces the efficiency
of absorption and use of macro and micronutrients by plants [26]. Considering that the
soil composition is a fundamental part of the forest production system, it is important
to adopt management practices to maintain its physical–chemical–biological quality and
obtain vigorous, productive, and profitable woody plants [27].

In general, the mineral nutrients available to plants cannot meet the appropriate
demands in the production of vigorous seedlings; this factor is associated with the existence
of and functions performed by microorganisms in the soil [28]. In this sense, a strategy
to reduce the nutritional restriction to the production of seedlings becomes necessary to
potentiate the production. Therefore, the adequate absorption of nutrients is important
during the initial phase of seedling formation, with emphasis on phosphorus (P) because
the insufficient nutrition restricts the production and quality of plants [29].



Microorganisms 2024, 12, 237 4 of 16

The macronutrient phosphorus (P) in soils occurs in two forms: organic (plant decom-
position) and inorganic (salts such as calcium (Ca), iron (Fe), and aluminum (Al)). However,
most of it is in the inorganic and insoluble form, making its availability to plants unfea-
sible [30]. Phosphate rock is the world’s main P source; however, seedlings’ production
depends on the continuous supply of phosphate fertilizers [31]. In this scenario, aiming at
less dependence, there is a growing need to seek and adopt sustainable strategies capable
of improving P availability [32].

Fungi release substances such as volatile organic compounds (VOCs) and SM to form
complexes with Fe (III) or reduce such element [33]. Fe is solubilized by siderophores and
changes root morphology via induction of root hairs, which enables the absorption of this
micronutrient, and this process is involved in several metabolic processes [34,35]. These
mechanisms are the most common among Trichoderma fungi; however, the responses can
be variable according to the capacity of each strain [36].

The nutritional flow system is mediated by complex interactions influenced by chem-
ical reactions between the root system and Trichoderma fungi. The strains of the genus
Trichoderma have different mechanisms of action on soil nutrients; however, the ability to
solubilize and mineralize P is emphasized, transforming it into soluble forms for plant
absorption [37,38]. Figure 2 illustrates the interaction process that is coordinated by multi-
ple actions of microorganisms in the solubilization of P from biochemical mineralization
(enzymatic release) and secretion of chemical complexes responsible for mineral solubi-
lization (siderophores, protons, hydroxyl ions, organic acids), increasing P absorption by
seedlings [39–42].
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In addition to organic compounds, the nutritional availability reaction can occur by
producing secondary metabolites (SM), such as polyketides and peptides, which increase
soil fertility [42]. It is worth mentioning that the greater the ability to obtain resources from
the root system, the greater the development and survival of seedlings in the field [43].
Plants more efficient at absorbing water and nutrients can increase photosynthetic potential,
achieving higher root systems [44].
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4.2. Production of Organic Compounds, Secondary Metabolites, and Plant Hormones

The chemical signals released from the interaction between plant and Trichoderma
produce complex association responses [45]. However, the effects obtained depend on
the ability of Trichoderma strains to act on the production of chemical compounds, which
promote biochemical changes in plants (Table 1).

Table 1. Relationship between the production of chemical compounds by species of Trichoderma spp.
and functions that promote growth.

Species Chemical Production Activity References

T. asperellum;
T. harzianum;
T. viride;
T. koningii

Siderophores

Fe chelating agents, in this process, Fe3+

siderophores are recognized and absorbed by
plants, adopting a key role in the availability

of the micronutrient

[46–48]

T. harzianum Terpenes Provides signals to plants that trigger
changes in growth [49–51]

T. harzianum Metabolites of
isocyanate Positive impact on the symbiosis process [50]

T. harzianum;
T. koningii;
T. viride

Pyrones

6-pentyl-2H-Piran-2-one (6-PP): chemical
signaling via induction of auxin and ethylene
formation, which modulates root architecture

(formation of root hairs) Promotes seed
germination and seedling development

[52–54]

T. asperellum;
T. harzianum;
T. koningii;
T. viride

Synthesis of
phytohormones

High rhizosphere competence. Performs the
biosynthesis of indole-3-acetic acid (IAA),
capable of modifying the root architecture

and increasing root mass and rate of
absorption of nutrients by the plant

[23,55]

Furthermore, the production of chemical compounds is influenced by environmental
conditions, and temperature, humidity, and soil pH are determining factors, considering
that each species of Trichoderma produces different types of compounds and positively
affects plant growth [49]. The VOCs belong to several chemical classes: mono and sesquiter-
penes, alcohols, ketones, lactones, esters, phenols, thioesters, and cyclohexenes [56]. Fungi
can produce different types of VOCs used to promote plant growth [57]. This process
occurs from producing bioactive compounds and modulation of plant hormones, with
benefits to increase root volume, plant biomass, and productivity [58,59].

5. Promoting the Growth of Forest Species

The development of seedlings depends on the adequate management of essential
resources to plant functioning, and the phase of establishing of the seedlings has greater
vulnerability to restrictive and adverse conditions (biotic and abiotic stresses) [60]. The use
of potential microorganisms such as Trichoderma fungi can solve this problem and benefit
the development of forest seedlings with mechanisms of action that improve plant growth,
especially under adverse conditions. Under abiotic stress, Trichoderma benefits plant de-
velopment by producing secondary metabolites, hydrolytic enzymes, phytohormones,
and siderophores. Under biotic stresses, Trichoderma promotes biocontrol actions (para-
sitism, competition, and antagonism). In addition, members of this genus of fungi increase
nutritional acquisition (production of secondary metabolites, phosphate solubilization,
decomposition of organic matter) to promote greater availability of nutrients to plants.

Figure 3 demonstrates that root colonization begins from the interaction of chemical
signals between plant and fungus, composed of fixation, penetration, and root colonization,
intermediated by the production of metabolites [46]. For the fungus to be able to colonize
the roots, protein secretion must occur to loosen the plant cell wall and then facilitate
root penetration and intercellular growth, limited to the epidermal layer and the external
cortex [61]. The hydrophobic proteins, rich in cysteine, are involved in the initial bond with
the root surface [62]; subsequently, the action of the expansive enzymes allows the loosening
of plant cell walls through non-covalent interactions to maintain their integrity [63].
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As a mechanism of interaction, the plants provide sucrose to the fungi Trichoderma to
optimize their development and consequent root colonization. From this stage, after the
mediation by hydrophobic proteins occurs, the installation and adhesion of Trichoderma on
the plant root surface of host plants begins. These steps are important to the functioning
of cell communication processes, fungal morphogenesis, and adherence of hyphae to
hydrophobic surfaces [54,64].

Communication between forest seedlings and Trichoderma is complex and dynamic,
based on the exchange and perception of chemical signals [65]. The extensive dialogue
in the early stages of interaction releases the exudation of important compounds such
as volatile organic compounds, secondary metabolites, and plant hormones [66]. Such
substances greatly influence the seedling formation process, emphasizing the benefits from
the seed germination process to the emergence of seedlings and seedling formation with
high quality [7].

From there, the endophytic colonization begins, where the microorganism assists
the development and growth of seedlings through the emission of chemical signals that
allow the best plant development due to the symbiosis process. Consequently, shoot and
root biomass are improved; seedlings also have greater resistance and responses to stress
conditions [67,68].

Studies with the inoculation of Trichoderma in species of forest seedlings have shown
positive effects on its development. In seedlings of Acacia auriculiformis, inoculation with
strains of Trichoderma sp. increased plant total dry biomass compared to those not inoculated
with the fungus [69]. In the production of argan seedlings (Agrania spinosa), after root
colonization by Trichoderma, benefits were observed in the growth parameters through
greater seed germination potential, root development, and plant height [70].

VOCs regulate the hormonal concentration of seedlings, which reflects in higher
biomass production and yield through increased root volume [71], through the ability
to induce better redistribution of auxins in the roots, and growth of seedlings [72]. The
potential of SM infers significant gains in forest seedlings through increased seedling
production [73]. In Acacia mangium, the inoculation of T. viride improved seedling dry
matter, which can be explained by the higher absorption capacity of Fe by plants through
the production of siderophores, VOCs, and secretion of hydrolytic enzymes [74,75].
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Phytohormones (IAA, cytokinins, gibberellins) associated with SM synthesized by
Trichoderma allow the increase of plant height and root development, as observed in Camellia
sinensis [76]. In Bougainvillea spectabilis, soil treated with T. longibrachiatum stimulated
root production in cuttings through the production of indole-3-butyric acid (IBA) and
α-naphthalene acetic acid (NAA); such auxin regulators contribute to the development
of morphological characteristics of seedlings, with emphasis on root development [77]. T.
virens in oil palm seedlings (Elaeis guineensis) contributed to the increase in the production of
growth factors and phytohormones by both isolates and consequent effective growth [78].

Trichoderma strains exude SM in olive seedlings (Olea europaea), which increases height,
leaf area, stem diameter, and seedling clearance in nursery conditions [79,80]. One of the
most promising functions performed by secondary metabolites refers to the multiplication
of plant cells, in which the action performed by Trichoderma strains correlated with higher
rates of germination speed and germination percentages and factors for obtaining seedlings
with high morphological and physiological parameters [81].

The greater root development is one of the main effects provided by Trichoderma
sp. because the growth of seedlings is optimized through the greater capacity of root
exploration, which influences the wide capacity of absorption of macro and micronutrients
of the soil [82]. The development of seedlings is optimized by the proper use of macro and
micronutrients, with emphasis on nitrogen (N), phosphorus (P), potassium (K), and iron
(Fe), required in the seedling formation stage, through changes in the anchoring of the root
system or exudation of metabolites [83].

The root is the organ most susceptible to environmental variations, constituting a
barrier to the survival of seedlings [84]. Some species of the genus Trichoderma are capable
of excreting metabolites, auxin analogs, and other protein compounds around the root
system, promoting the increase of primary and secondary roots, as well as stimulating the
production of root hairs, which increase absorption of nutrients [85].

The fungi sequester the phosphate in the unavailable form in the soil through their
mycelium and then release it to the seedlings in the readily available form [86]. This mech-
anism was observed in Hevea brasiliensis, where Trichoderma promoted the solubilization of
insoluble phosphate into available phosphate due to the release of organic acid (citric acid),
which promoted the development of rubber tree seedlings in the nursery [87,88].

Stimulating the development of the root system, height, and stem diameter contributes
to the production of forest seedlings, with stem diameter in the seedling production
phase being one of the desirable factors for reducing seedling time in nurseries [89]. In
Euterpe oleracea seedlings inoculated with Trichoderma, there was interaction and consequent
increases in stem diameter, which explains a greater capacity for survival of seedlings in
the field [90].

Macro and micronutrients are involved in photosynthesis because such activity re-
quires a series of chemical and physiological steps related to the adequate supply of
nutrients [91]. As the interaction between Trichoderma and plant promotion occurs, seedling
photosynthesis and total water content of Quercus robur L. avoid the reduction of energy
during water transpiration [92]. In addition, reports are showing that photosynthetic ca-
pacity is high due to gene regulation developed by Trichoderma sp. to make the seedlings
more resistant to adverse conditions and achieve higher-quality indexes [93].

During the initial stage of development of forest seedlings, they require adequate
energy for greater efficiency in producing photoassimilates. During the growth of seedlings,
the energy requirement is increased [94]. Plants synthesize carbohydrates through pho-
tosynthesis and obtain the energy content necessary for the breathing process, which is
fundamental to the conduction of physiological activities for maintenance and growth of
seedlings [95]. These strategies corroborate the success in the silvicultural sector destined
to produce seedlings, providing favorable conditions to obtain more productive seedlings,
a decisive stage for the good development of forest stands.
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Practical Examples of Trichoderma in the Formation of Forest Seedlings

The use of Trichoderma spp. in soil treatment is revealed as an alternative of great
technological innovation, constituting a mechanism that promotes distinct gains in forest
seedlings’ development, quality, and growth. The effectiveness in promoting plant growth
comes from species capable of establishing lasting interactions with the plant, considering
that the association is highly variable, whether in the function of the fungus species,
development conditions, inoculum rate, or type of formulation [96]. Table 2 reports the
symbiotic association between different species of Trichoderma and woody species capable
of maximizing growth promotion.

Table 2. Relationship of growth promotion from the association between Trichoderma sp. and seedlings
of forest species.

Trichoderma sp. Forest Species Effects References

T. harzianum Abroma augusta Height and stem diameter [97]
T. harzianum;
T. lignorum;
T. koningii

Acacia mangium Height, stem diameter; biomass and
root volume [98]

T. asperelloides;
T. harzianum Bauhinia forficata Height, stem diameter, and

chlorophyll content [99]

T. asperelloides Cabralea canjerana Height, biomass, and root system [100]
T. harzianum Cedrela fissilis Height, biomass, and root system [101]

T. strigosellum E. urophylla Height, number of leaves, and
biomass [102]

T. asperellum Enterolobium
schomburgkii Height and stem diameter [103]

T. harzianum Malus hupehensis Biomass and root system [104]
T. asperellum Theobroma cacao Height and root system [105]

The increase in dry mass is associated with the highest percentage of survival of
seedlings at the time of transplanting, making seedlings tolerant to water restrictions,
mediated by the ability to change the environment and promote prolonged mutualistic
association [10,106]. The morphology of the seedlings directly affects their production
potential since both the growth in the shoot and the root architecture depend upon the
availability of nutrients in the soil [107]. The close relationship with plants ensures that
Trichoderma fungi, when colonizing the root system, promote changes in plant metabolism,
affecting plant growth and nutrition, the development of the root system, and the biocontrol
of pathogens [9].

The action of microorganisms allows obtaining seedlings with a root system and well-
developed shoot, which are determining factors for survival and desirable development
in the seedling production process [108]. Furthermore, the increase up to 200% in the
total plant biomass in inoculated plants indicates that the inoculation of Trichoderma is a
promising method to produce seedlings at the commercial level [109]. The advantages
of the use of potential microorganisms are due to the benefits at the physiological level,
such as the increase in the photosynthetic potential, greater efficiency, and absorption of
water and nutrients, which influence the arrangement of the morphological attributes of
the seedlings [100,110].

Currently, the need to reduce the use of agrochemicals is increasing in sustainable
agriculture. This plant–microorganism interaction is viable because, in addition to pro-
moting the productivity of forest seedlings, growth promoters allow adding value to the
product, making it more competitive and lower cost to the producer [55]. Remarkably,
plant growth-promoting substances ensure improvements in the seed germination process
and the development and quality of seedlings [8].

According to the morpho and physiological characteristics of the main forest species
cultivated in Brazil, synergism via interactions with beneficial microorganisms becomes
a useful tool for new microbial quality of the soil and forest production [111]. Since
plant responses to fungi actions are broad, it is necessary to evaluate different conditions
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conducive to plant–microorganism interactions to improve silvicultural techniques for
promoting seedling growth [112].

Promoting the growth of forest species through association with Trichoderma is shown
to be a viable alternative for the sustainable production of seedlings in Brazil, which is
capable of reducing the cost of production via less dependence on mineral fertilizers, has
lower risks of environmental contamination, as well as speeds up the process of permanence
in forest nurseries and possibly makes the seedlings more capable of being established in
the field, according to improvements in the root system.

6. Potential Microorganisms: Co-Inoculation Capacity

During the nursery phase (production of forest seedlings), several factors can influ-
ence positively or negatively the production capacity of plants, so it is essential to insert
viable technologies to increase plant production (Figure 4). The system of “consortium”
(combination of two or more microorganisms) segmented through the co-inoculation of
microorganisms is a valuable alternative in the seedling development stage [113].
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Figure 4. Capacity of microorganisms’ co-inoculation in the production process of forest seedlings.
Stages: (1) Nursery phase mediated for (2) determining factors (biotic and abiotic stress), (3) growth
stages in production seedlings co-inoculation ((A) better germination, (B) growth seedling, (C) root
development, (D) fortified root, appearance of secondary roots and root hairs), as a result, obtaining
seedlings with greater biomass, root system, strength and acclimatization in the field. Created
in Biorender.

Despite the positive effects on the production and growth parameters of arboreal
plants, biopromotion via double inoculation is variable, depending on the compatibility
between such microorganisms and the amount of inoculum applied to avoid competi-
tion. Furthermore, the co-inoculation with fungi and bacteria can promote an antagonistic
effect, which is undesirable in the silvicultural system production and sustainable develop-
ment [114,115].

The interaction process between plant and microorganism is complex, which reinforces
the need to evaluate the different effects of microbial consortium on plant development
and forest seedling production. In contrast, each species presents specific characteristics
and responses to interaction promoting additive/synergistic or antagonistic effects [77,116].
The beneficial effects of co-inoculation are observed in improvements of germination, vigor,
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root morphogenesis, photosynthetic capacity, and high biomass indexes, as well as enabling
soil maintenance and ecological balance [117,118].

The success of communication and interaction between plants and microorganisms
is observed in several species; in this sense, the evaluation of the potential of the process
of co-inoculation between fungi and bacteria is a promising tool for the development of
forest seedlings, as observed in the interaction between Ambispora leptoticha; Azotobacter
chroococcum and T. harzianum under large-scale nursery conditions increasing teak biomass
(Tectona grandis) [110]. In addition, in [119], some authors also obtained success for pro-
ducing teak seedlings under co-inoculation with mycorrhizal fungi and rhizobacteria.
In palm seedlings (Elaeis guineensis), the co-inoculation of Bacillus cereus and T. asperel-
lum increased root growth and promoted greater plant development through phosphate
solubilization [120].

Among the limiting factors to silvicultural development, the initial stages of seedling
formation are highlighted to avoid a low increase in biomass and restrictions in the root
system. Such factors have a direct association with the low nutrient content in the substrate
used for the growth of seedlings; considering such a restriction, studies revealed that the
co-inoculation of Rhizoglomus fasciculatum (arbuscular mycorrhizal fungus), Mortierella sp.
(phosphate solubilizing fungus), and Azospirillum brasilense (plant growth promoter bacte-
ria) promoted greater potential in the development and higher quality of seedlings [121].

Positive results were obtained through the consortium between microorganisms (R.
fasciculatus, A. chroococcum, B. coagulans, and T. harzianum) in the production of seedlings
of Dalbergia sissoo, where plants associated with microorganisms obtained high rates in
all growth parameters, with good establishment and vigorous seedlings in the field [122].
Through the multifaceted action of microorganisms, co-inoculation is characterized as a
promising method for the growth and development of seedlings [119].

The co-inoculation of mycorrhizal fungi (R. irregulares; Funneliformis mosseae and
Claroideoglomus etunicatum) and T. harzianum increased shoot and root systems of apple
trees, which led to a reduction in the need for nursery replanting, which are improve-
ments resulting from the action of microorganisms in soil quality [123]. The mechanisms
involved in promoting plant development are broad and have different facets under the
conditions of cultivation, cultivated species, and action of the microorganism (synthesis of
nutrients, phytohormones, mobilization of soil compounds), which influence and ensure
that seedlings can develop in good conditions [124].

There are several microorganisms used as inoculum in tree seedlings, such as my-
corrhizal arbuscular [125], growth-promoting bacteria [126], rhizobia [127], and Tricho-
derma [82]. These microorganisms improve root and shoot development and nutrient
content in plants. The advantage of inoculating Trichoderma is that this genus is associated
with plant growth, bioremediation, and the production of secondary metabolites.

7. Considerations and Future Perspectives

The inoculation of Trichoderma for seedling production in forest species promotes
several benefits to plant development; in addition to the low production cost, it is a simple
and effective practice, which stimulates root development, promotes greater nutritional
absorption capacity, and increases plant biomass, which are determinant for obtaining
more vigorous seedlings and greater economic yield.

Adopting beneficial microorganisms, such as fungi of the genus Trichoderma, is demon-
strated not only as a viable strategy to produce seedlings of forest species but also as a
sustainable alternative and recovery plan for degraded environments, from the considerable
reduction in the use of agrochemicals and industrial fertilizers.

Another major advantage associated with the promotion of forest species through
interaction with potential microorganisms is that most plant–microorganism interactions
are observed in annual species, with few studies in the forest sector. There is a gap
of understanding the different mechanisms of action of the symbiotic process, such as
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metabolic activity and mechanism of interaction with plants and other microorganisms, to
increase the use of potential microorganisms in the silvicultural sector.

Although the great relevance and capacity to promote growth, there are still questions
to be elucidated, such as the mechanisms involved in the solubilization of nutrients in
potential native forest species, which would possibly enable its large-scale production.

Information correlated with the action of microorganisms in the silvicultural sector is
still scarce, which requires greater attention.
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et al. Application of synthetic consortia for improvement of soil fertility, pollution remediation, and agricultural productivity:
A Review. Agronomy 2023, 13, 643. [CrossRef]

125. Zhang, Z.; Mallik, A.; Zhang, J.; Huang, Y.; Zhou, L. Effects of arbuscular mycorrhizal fungi on inoculated seedling growth and
rhizosphere soil aggregates. Soil Tillage Res. 2019, 194, 104340. [CrossRef]

https://doi.org/10.5902/1980509833322
https://doi.org/10.1016/j.ecoleng.2021.106317
https://doi.org/10.14483/2256201X.11744
https://doi.org/10.3390/jof8010015
https://doi.org/10.21475/ajcs.19.13.10.p2023
https://doi.org/10.21273/HORTSCI15970-21
https://doi.org/10.3390/plants10091964
https://doi.org/10.1007/s11056-012-9336-6
https://doi.org/10.1007/s11056-022-09944-8
https://doi.org/10.5296/jas.v9i2.18410
https://doi.org/10.1007/s40011-019-01163-0
https://doi.org/10.33448/rsd-v11i2.26184
https://doi.org/10.14808/sci.plena.2022.056201
https://doi.org/10.1002/9781119724995
https://doi.org/10.33448/rsd-v10i8.17515
https://doi.org/10.1016/j.biocontrol.2022.105100
https://doi.org/10.3389/fsufs.2021.617157
https://doi.org/10.3390/agronomy11122475
https://doi.org/10.3390/metabo12111100
https://www.ncbi.nlm.nih.gov/pubmed/36422239
https://doi.org/10.3390/microorganisms9091990
https://doi.org/10.47836/pjtas.44.1.09
https://doi.org/10.1093/forsci/fxab050
https://doi.org/10.1080/13416979.2021.1955439
https://doi.org/10.3390/agronomy11112355
https://doi.org/10.1016/j.micres.2020.126552
https://doi.org/10.3390/agronomy13030643
https://doi.org/10.1016/j.still.2019.104340


Microorganisms 2024, 12, 237 16 of 16

126. Zhang, P.; Dumroese, R.K.; Pinto, J.R. Organic or inorganic nitrogen and rhizobia inoculation provide synergistic growth response
of a leguminous forb and tree. Front. Plant Sci. 2019, 10, 1308. [CrossRef] [PubMed]

127. Chaín, J.M.; Tubert, E.; Graciano, C.; Castagno, L.N.; Recchi, M.; Pieckenstain, F.L.; Estrella, M.J.; Gudesblat, G.; Amodeo, G.;
Baroli, I. Growth promotion and protection from drought in Eucalyptus grandis seedlings inoculated with beneficial bacteria
embedded in a superabsorbent polymer. Sci. Rep. 2020, 10, 18221. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3389/fpls.2019.01308
https://www.ncbi.nlm.nih.gov/pubmed/31695714
https://doi.org/10.1038/s41598-020-75212-4
https://www.ncbi.nlm.nih.gov/pubmed/33106567

	Introduction 
	Fungi of the Genus Trichoderma: Beneficial Microorganisms 
	Interaction Process: Trichoderma spp. and Forest Species 
	Potential Mechanisms of Interaction 
	Solubilization and Availability of Mineral Nutrients 
	Production of Organic Compounds, Secondary Metabolites, and Plant Hormones 

	Promoting the Growth of Forest Species 
	Potential Microorganisms: Co-Inoculation Capacity 
	Considerations and Future Perspectives 
	References

