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Abstract: Research in field sports often involves analysis of running performance profiles of players
during competitive games with individual, per-position, and time-related descriptive statistics. Data
are acquired through wearable technologies, which generally capture simple data points, which in
the case of many team-based sports are times, latitudes, and longitudes. While the data capture is
simple and in relatively high volumes, the raw data are unsuited to any form of analysis or machine
learning functions. The main goal of this research is to develop a multistep feature engineering
framework that delivers the transformation of sequential data into feature sets more suited to machine
learning applications.
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1. Introduction

Technological advancements have made it possible to measure positions, motion,
and inertial forces related to human movements with several types of new instruments
within the field of wearable sensors. Due to their low cost, cutting-edge technology,
and easy portability, wearable sensors have been widely used in the last decade to assess
and analyse physical activity [1–3], game demands [4], and external loads in sports analyt-
ics [5–7]. The capability of wearable devices for assessing and measuring human physical
performances enables them to become a fixture in the near future of sports science.

In the case of GPS technology, these devices transmit the time of orbiting satellites
synchronised with GPS receivers on Earth using an atomic clock. By exploiting the signals
that the GPS sensor on Earth receives from at least four GPS-orbiting satellites, it is possible
to compute the position of the GPS receiver [8]. The validity and reliability of the GPS
sensor have been already assessed [9–11]. The data collected from the micro wearable
devices record the physical load expenditure of athletes during training sessions and games
and can be harnessed to assess players’ performances [12], prevent injuries [13,14], quantify
match running performances [15], and optimise rehabilitation training [16].

This study uses data collected during games of Gaelic Football (GF), a sport that
originated in Ireland, with unique rules that make it a combination between rugby and
soccer. Players can carry the ball in their hands but must bounce it to the ground or tap
it with their foot every four steps. It is possible to pass the ball with both hands and feet.
The goalpost is similar to rugby, and it is possible to score above the crossbar (one point) or
below it (three points). GF games are played by two teams of 15 amateur players. The size
of the pitch is about 130–150 m in length and 80–90 m in width. GF can be played at the
club (local) or county (regional) levels. County games last 70 min, with two halves of
35 min each.
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1.1. Problem Statement and Contribution

Studies on Gaelic Football aim to furnish comprehensive running performance profiles
for players engaged in competitive matches. This is enabled by wearable technologies,
which automate the capture of high volumes of information during most or all sporting
activities, such as training and matches. Despite the fact that this form of data harvesting
has been widespread for over a decade, the application of machine learning and deep
learning techniques is still in the embryonic stage. More complex analyses, such as the
prediction of players’ running performances, is not currently addressed. To date, player
running profiles have primarily been established through retrospective analysis of historical
data. Recent advancements in machine learning techniques have unlocked the potential
for forecasting forthcoming events and generating insights. However, automated data
acquisition as typically offered by GPS devices delivers data purely on the basis of the
location at a specific time, albeit at a very granular level. While some manufacturers will
offer to transform this into a more usable format (effort in terms of speed and distance), it
is not necessarily at a level suited to machine learning functions and, in some cases, suffers
from information loss due to the highly abstract nature of the report data [17].

In this research, we present a multistep framework to manipulate raw sensor values
with the objective of creating a feature set suited to predicting further actions or events
during game time analysis. In effect, it offers a more data-centric approach to decision
making in sports coaching and management. As part of this process, we articulate the
contribution of this work as follows:

• A methodology with a parameterisable ruleset for feature extraction from raw sensor
data. In effect, a per-second stream of locations is converted to a sequence of actions.

• An algorithm to convert a sequence of actions into an event where the event captures
movement from (close to) rest and a return to the same resting state.

• The application of existing research, covering typical in-game player workloads,
to offer a comparative validation for our feature set creation. As part of this validation,
a dimensional analysis of game/player workloads is presented by game (time), player,
or action.

• Finally, as a proof of concept for the application of machine learning to predict player
performances towards the end of the game, the first half of a selected game plus the
other previous games are used to predict the number of metres covered at high speed
for the second half, with a discussion as to how these machine learning functions
performed over the task.

1.2. Paper Structure

Section 2 provides a discussion of past feature engineering methods on sensor data and
past GF research on players’ running performances. Section 3 describes the data acquisition
and the multistep framework to obtain the Actions and Events datasets. Section 4.2 presents
the validation of the Actions dataset, a set of statistics on the players’ actions and events during
gameplay, and the prediction of forthcoming events. Concluding remarks are presented in
Section 6.

2. Related Research
2.1. Feature Engineering

Data collected by wearable sensors represent a time series comprising latitude, longi-
tude, and speed values. If properly analysed and processed, it is possible to extract valuable
information and insights [18]. Time series can be analysed directly, or it is possible to extract
features describing trends and variances [19]. A valid and effectual method for pattern
recognition in time series analysis is to define the time series with respect to the distribution
of data points, correlation properties, trends, and data spread [19]. The engineering of
the raw data for obtaining new transformed features is a common process in GPS data
analytics. The researchers in [20] proposed a transportation-mode classification method
based on combining feature engineering techniques and a Light Gradient Boosting Machine
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to discover seven kinds of transportation modes from GPS trajectory data. The original
trajectories were divided into sub-trajectories (sequences of GPS data points), where each
sub-trajectory represents a unique transportation mode. Then, on these sub-trajectories
were extracted the following features: the distance, average velocity, expectation velocity,
expectation acceleration, 95th percentile velocity, 95th percentile acceleration, minimum ve-
locity, variance velocity, heading change rate, stop rate, and velocity change rate. Working
on the same dataset, the authors in [21] used a different set of features for the classification.
In addition to the speed and acceleration, they computed the jerk, bearing, and bearing
rate for each data point. Therefore, for each sub-trajectory example, they extracted the min-
imum, maximum, mean, median, standard deviation, and 10th, 25th, 50th, 75th, and 90th
percentile for each of the specific features.

A follow-up study [22] improved the prediction results by adding additional features,
both statistical attributes (kurtosis, skewness, coefficient of variation, and autocorrelation
coefficient) and domain knowledge (stop rate, velocity change rate, and head change rate).
The new set of statistical features benefits the final prediction [22], but some of them are
slightly different measures even for the same concept (for example, the standard deviation
and coefficient of variation have a similar formula and record the spread of data). This
can lead to, for example, multicollinearity (an approximately linear relationship between
two or more independent variables) in the data, which can damage the effectiveness of
the model [23].

To recognise modes of driving railway trains from GPS data, the authors in [24]
derived multiple features from the speed of locomotives during routes (in addition to
some domain-specific features). The set of features can be grouped into global statistical
features (mean, standard deviation, mode, median, max three consecutive values, min
three consecutive values, value range, interquantile range, skewness, kurtosis, coefficient
of variation, autocorrelation coefficient, stop rate, velocity change rate, distance), local
statistical features (mean length of each decomposition class, length standard deviation of
each decomposition class, proportion of each decomposition class, change times), and time-
domain and frequency-domain features (median crossover rate, number of peaks, short-
time Fourier transformation).

2.2. Players’ Running Performance Research in Gaelic Football

In the last decade, sports institutions and teams developed a deep interest in data-
driven approaches, aiming to support decision makers in obtaining a competitive advan-
tage. Data obtained from wearable sensors can be exploited in several ways, from de-
scribing, planning, and monitoring external loads to injury prediction. External loads in
invasion field-based team sports (IFTSs) can be described by measures of total distance
covered (or in specific speed bands), accelerations, or metabolic power [25]. Such metrics
are the result of defined computation on data obtained via tracking systems (wearable
devices) worn by the players during training sessions or official games.

The authors in [15] analysed the match running profiles of GF players. They collected
data from 50 male GF players using a 4 Hz GPS sensor across 30 competitive games with
a total of 212 full-game datasets collected. The variables analysed were the following:
high-speed distance, sprint distance, mean velocity, peak velocity, and number of accel-
erations. The average match distance covered by the players was 8160 ± 1482 meters m
with 1731 ± 659 m covered at high speed. The sprint distance was 445 ± 169 m with 44
sprint actions on average per match. The peak velocity was 8.4 ± 0.5 m/s with a mean
velocity of 1.8 ± 0.3 m/s. The number of average accelerations completed per player was
184 ± 40. Significant differences between positions were found for total running distance,
high-speed running distance, and sprint distance, with midfielder being the position most
demanding for the variables total and high-speed running distance. The researchers found a
significant reduction in the high-speed and sprint distance between the first and second half.

In later work by the same authors [26], they aimed to identify the position and duration
of the running performance of GF players using a moving average window. The study
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was performed on 35 players across 32 competitive matches analysed with 300 full-match
play data samples using a 4 Hz GPS sensor. Players were grouped based on their position:
full-back, half-back, midfield, half-forward, and full-forward. The researchers tested ten
different lengths (1 to 10 min) for the moving average to analyse the recorded speeds.

The researchers in [27] quantified the running profiles of GF players according to
their position and evaluated the trend of physical performance during the games. The
average relative distance recorded was 92.4 ± 23.3 m per minute m/min, composed of
28.4± 10.2 m/min covered at a speed≥ 4 m/s (high-intensity running) and 9.9± 3.9 m/min
at a speed ≥ 5.5 m/s (very high intensity running). The distance covered at high-intensity
running was higher in half-backs, midfielders, and half-forwards compared to the full-backs
and full-forwards. The time window P1, grouping the first 15 min of the first half (0–15 min),
observed the highest amount of distance covered at each speed zones, with a linear decrease
during the windows P3 (40–55, first 15 min of the second half), P2 (15–30), and P4 (55–70).

The differences in running performance between GF positions have been investigated
by [28]. The running performance is dependent on the position on the pitch (p < 0.001).
Midfielders cover a greater amount of total and relative distances compared to the other
positions. Half-backs and half-forwards ran greater total distances compared to full-forward
and full-backs. Midfielders were also observed to cover a greater amount of distance at
high speeds compared to all other positions, while half-backs and half-forwards traversed
distances at high speeds more than the other remaining position groups. Sprinting distances
were covered more by half-forwards, followed by half-backs and midfielders.

Similar differences in running performance between different GF playing positions
have been confirmed in [29]. The authors found that the midfielders covered a significantly
greater distance than defenders and that the frequency of jogging, cruise running, striding,
and walking was greater in midfielders rather than in the forward positions [29].

The study [30] reported that GF players perform 166 ± 41 accelerations per game. The
high-speed running distance and very high speed running distance were reported to be
equal to 1563 ± 605 and 524 ± 190 m, respectively. The average distance covered during
acceleration is 267± 45 m, distributed at 12± 5 accelerations per 5 m epoch. The maximum
distance covered in acceleration is 296 ± 134 m.

2.3. The Concept of Movement Event in Sport Science Research

The concept of the movement event used in this research is based on the study [31],
which designed a new approach to detect recurrent movements in sports by analysing
positional data. Speed, acceleration, and angular velocity values were obtained from
sequential sequences of positional data and clustered with the k-means algorithm, in order
to create subgroups of values. Each action is composed of three values for the three
dimensions. Sequences of actions were compared, assessing similarities using the longest
common sub-string algorithm [31].

The authors in [32] proposed a framework for extracting movements from sequential
GPS data. Similar to [31,32], they combined the speed, acceleration, and direction of the
movement (turning angle) for defining a player movement description, utilising thresholds
for each movement descriptor in order to assign individual labels (letters). Each sequence
of movements starts and ends when a player is at a speed less than or equal to 1.2 m/s. The
researchers in [32] compute distances among movement descriptors using the Levenshtein
distance, which computes the number of required steps to transform one list of strings
into another.

Based on the concept of an event as a sequence of actions between resting states defined
in [31,32], this research satisfies the necessity of identifying profiles of events. Events are
analysed using frequencies, the number of actions, the average and max duration, and the
average and max distance covered.

Summary. Table 1 summarizes the key insights and contributions from past research
relevant to our study.
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Table 1. Summary table presenting the main contributions of related research.

Authors Year Data Contribution

Etemad et al. [21] 2018 GeoLife GPS dataset [33]
Framework based on feature extraction, noise

removal, and Random Forest to predict
transportation modes from GPS trajectories

Wang et al. [21] 2018 GeoLife GPS dataset [33]
Transportation mode classification method based

on feature engineering and Light Gradient
Boosting Machine

Zheng et al. [24] 2018
20,349 trajectories produced by 103 locomotives,
where each trajectory is composed of a sequence

of latitude and longitude coordinates

Methods for extracting driving segmented
standard deviation features combined with

classical features to improve modes of driving
railway train classification performances

Guo et al. [22] 2020 GeoLife GPS dataset [33]
A deep forest and trajectory global feature-based
model using only raw GPS data to recognise the

transportation modes

Malone et al. [15] 2016 50 male GF players during 30 competitive games
using a 4 Hz GPS sensor Match running profiles of GF players

Malone et al. [28] 2016 50 male GF players during 35 competitive games
using a 4 Hz GPS sensor

Comparison of the metabolic power demands
between positional groups and examination of

the temporal profile of elite GF match play

Cullen et al. [29] 2017 85 male U-18 GF players during 17 competitive
games using a 10 Hz GPS sensor

Evaluation of the physiological profiles and
activity patterns in club- and county-level

under-18 GF players relative to playing position

Ryan et al. [30] 2018 36 male GF players during 19 competitive games
using a 4 Hz GPS sensor Acceleration profile of elite GF match play

Gamble et al. [27] 2019 36 male GF players during five games using a
10 Hz GPS sensor

Running profiles of GF players for playing
position and evaluation of the trend of physical

performance during the games

Malone et al. [26] 2022 35 male GF players during 32 competitive games Position- and duration-specific running
performance of GF players

Sweeting et al. [31] 2017
12 elite international-level female netball during
four competitive games using a Wireless Ad Hoc

System for Positioning (WASP)

Method to discover the frequently recurring
movement sequences across playing positions

during matches using radio frequency data

White et all. [32] 2022 13 professional male rugby players during one
Super League match using a 10 Hz GPS sensor

Framework to identify sequential movement
sequences using GPS-derived spatiotemporal

data in team sports

We build on each of the three areas in the research described above, as we have devel-
oped a novel multistep framework, designed for the purpose of feature engineering raw
sensor data into multi-granular datasets, for the purpose of exploiting machine learning
functions to predict future events during game time. To the best of the authors’ knowledge,
this framework represents a pioneering approach directed towards the acquisition and
manipulation of features, to enable both machine learning applications and the analysis
of actions and events utilising sensor data within the field of sport analytics. In addition,
predictive modelling techniques are employed to forecast the high-speed distance of forth-
coming events during the second half of competitive games based on the acquired data
from the first half and the previous games.

3. Enrichment of Raw Sensor Data

In this section, we present a multistep method illustrated in Figure 1, which transforms
raw sensor data into a series of higher-level events, which are more easily analysable. Our
method is based on the concepts of actions and events, which deliver data more suited
to rich forms of analysis and a broad range of machine learning functions. In summary,
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for each second of the game, speeds are converted to one of six action labels: ’standing’,
’walking’, ’jogging’, ’running’, ’high-intensity running’, and ’sprinting’, according to veloc-
ity thresholds widely accepted and defined in the literature [34]. An event is considered to
be a collection of sequential actions, bookended by either ’standing’ or ’walking’ actions.
In summary, players are regarded as being relatively static before commencing into some
form of movement or sequence of actions. This feature engineering process is underpinned
by a set of rules or logic taken from domain experts and the existing literature. The values
shown in Table 2 represent six activity zones, which are standard across many sports,
making this feature extraction process widely generic. Furthermore, the adjustment of the
parameters or values within zones enables a customisation across sports, gender, and age.

Figure 1. Transformation methodology.

Table 2. Speed zones and parameters.

Speed (m/s) Speed Zone Speed Zone ID

xi ≤ 0.194 Standing 1
0.194 < xi ≤ 2 Walking 2

2 < xi ≤ 4 Jogging 3
4 < xi ≤ 5.5 Running 4
5.5 < xi ≤ 7 High-intensity running 5

xi > 7 Sprinting 6

3.1. Data Acquisition

The first step shown in Figure 1 is data acquisition, which refers to the generation of
data on devices strapped to players and the extraction of that data from each device.

For this study, data were collected during 11 competitive GF inter-county games
throughout the seasons 2019–2021. The players wore a micro GPS sensor device (STATSports
Apex 10 Hz, Northern Ireland, UK), placed on the upper back, within a vest that fitted the
body comfortably. Previous research assessed the accuracy and reliability of the specific
sensor involved [11]. The study claims that the 10 Hz Apex unit reported a small error of
around 1–2% of the distances measured in the experiments and that the unit could be used
with confidence to measure distance variables during training and match play [11].

The GPS sensor records 10 observations for each second for the variables latitude,
longitude, and speed (m/s). The raw data, shown in Table 3, were collected only when the
athletes were actively taking part in the game and were provided already filtered by the
STATSports software (version: 4.5.19).



Sensors 2024, 24, 1308 7 of 22

Table 3. Sample of raw data recorded by STATSports Apex 10 Hz sensor. The data shown have been
made by the authors to resemble the original data. The names of some columns in the header have
been shortened: latitude (Lat.) and longitude (Lon.).

Player ID Time Lat. Lon. Speed (m/s)

152 15:49:51.5 54.62311 −7.23798 5.60
152 15:49:51.6 54.99321 −7.25665 5.24
152 15:49:51.7 54.85332 −7.23923 5.01
152 15:49:51.8 54.61390 −7.29733 5.28

3.2. Aggregation (Temporal Rollup)

The Data Aggregation step (which we refer to as temporal rollup) is necessary as data
are sampled at too fine a level of granularity for our research purposes. Raw data files may,
for example, contain data sampled at 10 Hz (10 observations per second). For the scope of
this paper, a single observation per second provides a sufficient level of detail, which, in
effect, is a temporal rollup to 1 s values. Thus, the input to this step is the 10 Hz dataset
and the output is a dataset with one observation per second.

Our decision was to adopt the average values within each 1 s interval, as it provides a
good approximation for describing movement within that timeframe. The location (latitude
and longitude) is transformed to the centroid of the locations covered, while the variable
speed would be the average values during the second (Table 4).

Table 4. Sample of the aggregated data. The names of some columns in the header have been
shortened: latitude (Lat.) and longitude (Lon.).

Player ID Time Lat. Lon. Speed (m/s)

152 15:49:51 54.11398 −7.21719 5.36
152 15:49:52 54.99321 −7.49778 5.60
152 15:49:53 54.11334 −7.89912 5.14
152 15:49:54 54.34509 −7.21196 5.11

3.3. Feature Extraction

The 1 s interval data now serve as input to this second step where the goal is to further
aggregate the data: in this case, a rollup to the level of action. Each data point will no
longer represent 1 s of activity but an entire action, which will likely run over a number of
seconds. This is carried out using a set of speed thresholds demarcating the transition from
one movement type to another.

3.3.1. Parameter Definition

No standardised set of speed thresholds is available for IFTSs [35] to classify a player’s
movement. Speed thresholds suggested by [34], which are commonly used in IFTSs, were
therefore adopted. Each speed value xi (i = 1, 2, . . . , n, where n is the last second of the
game) recorded in the instant of time i is converted to an action using the labelled thresholds
(Table 2).

In addition, the acceleration is computed by subtracting each speed value from the
previous one. A sample of the dataset after this step is shown in Table 5.
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Table 5. Sample of the aggregated data with labelled actions. The names of some columns in the
header have been shortened: latitude (Lat.) and longitude (Lon.).

Player ID Time Lat. Lon. Speed (m/s) Action Acceleration (m2/s)

152 15:52:11 54.12311 −7.35743 5.42 4 -
152 15:52:12 54.11387 −7.19723 3.97 3 −1.45
152 15:52:13 54.23334 −7.29989 5.10 4 1.12
152 15:52:14 54.21387 −7.13780 5.07 4 −0.03
152 15:52:15 54.11390 −7.48109 4.99 4 −0.08

Algorithm 1 illustrates the DetectAction algorithm. This algorithm sequentially pro-
cesses the rows of a dataset related to one of the halves of a game played by a single
player. It effectively compresses similar actions into a unified row, simplifying a sequence
of consecutive actions. It computes various features on the identified actions, such as the
minimum and maximum values, the absolute energy (sum of squared values), the count of
values above the average, the sum of all values (sum over the time series values), the length
of the longest consecutive subsequence above the mean (longest strike), and the coeffi-
cient of variation ( standard deviation

mean ) for the variables speed and acceleration. Additionally,
the number of accelerations and decelerations are measured as the count of times the
acceleration values were ≥2 and ≤−2.

Algorithm 1 DetectAction algorithm
Require: N rows of dataset
Require: N ≥ 2
Require: xz action performed by the player at iteration z
Require: tz time of the game at iteration z

1: avg_speed← 0
2: avg_speed_list← []
3: start_time_list← []
4: end_time_list← []
5: y← current_action
6: z← 0
7: while i ≤ N do
8: if xi = y then
9: continue

10: else if xi ̸= y then
11: avg_speed← avg(xz, . . . , xi−1)
12: avg_speed_list[z]← avg_speed
13: start_time_list[z]← tz
14: end_time_list[z]← ti−1
15: z← z + 1
16: y← x_i
17: else if i = N then
18: avg_speed← avg(x_z, . . . , x_i)
19: avg_speed_list[z]← avg_speed
20: start_time_list[z]← tz
21: end_time_list[z]← ti
22: end if
23: end while

The algorithm also captures the time when the action occurred, the start and end
locations on the pitch, and the duration of the action in seconds. It is important to mention
that actions are recorded with a minimum duration set at 1 s.

Algorithm 1 exclusively displays the variables of average speed, starting time, and end-
ing time. The variables recording the starting and ending locations adhere to the rule of



Sensors 2024, 24, 1308 9 of 22

the starting and ending times, while the remaining variables (min, max, absolute energy,
longest strike, etc., both for speed and acceleration) follow the criterion of average speed.

Algorithm 1 iterates through the N rows of a dataset (Table 5) comprising the sequence
of the time, location, speed, action, and acceleration of a player during a game. At each
iteration i, the action performed by a player is indicated by the variable xi and the time
when the action occurs by the variable zi.

The first step of the algorithm is to initialise the required variables avg_speed, avg_-
speed_list, start_time_list, end_time_list, y, and z, which will measure the average speed
during the action, the list of such speeds, the time when the action begins and the time when
it ends, the current stored action, and the row when the action starts, respectively (1–6).
While iterating over each row of the dataset (which has a length equal to N) (7), if the current
performed action is equal to the current stored action, then it continues with the next row
(8, 9). If the two actions are different (10), then the average speed from the row when the
action starts to the current row is computed (11) and stored in the list of the speeds (12),
the starting time and ending time of the action are added to the corresponding lists (13, 14),
and the variables storing the row when the action starts (z) and the current action (y) are
updated (15, 16). If the row is the last row of the dataset (17), the algorithm computes the
average speed until this row (18), it stores the value in the list of the speeds (19), and it adds
the starting time and ending time of the action to the corresponding lists (20, 21).

Algorithm 1 requires the data points to be consecutive on a per-second basis. It thus
works on one half per time. It is suggested to apply it individually to each half of the game
for each player and subsequently concatenate the results.

A sample of the resulting dataset after this step is shown in Table 6 (some of the
features introduced in this section have been omitted).

Table 6. Sample of the aggregated data after the compression of similar actions. The names of some
columns in the header have been shortened: start latitude (Start Lat.), start longitude (Start Lon.), end
latitude (End Lat.), and end longitude (End Lon.).

Player ID Start
Time End Time Start Lat. Start Lon. End Lat. End Lon. Speed (m/s) Action Duration

152 15:53:51 15:53:55 54.123 −7.357 54.224 −7.351 5.36 4 4
152 15:53:56 15:53:58 54.224 −7.351 54.011 −7.391 3.97 3 2
152 15:53:59 15:54:04 54.011 −7.391 54.349 −7.650 4.98 4 5
152 15:54:05 15:54:11 54.349 −7.650 54.012 −7.655 3.83 3 6
152 15:54:12 15:54:14 54.012 −7.655 54.020 −7.657 4.51 4 4

3.3.2. Direction of Movement

In order to detect the direction of movement, the next step is the computation of
the turning angle from the position at time i (beginning of the action) and the position at
i + 1 (end of the action) [32] (i = 1, 2, . . . , n, where n is the last second of the game). The
turning angle is the angle you would need to turn from the starting direction to the ending
direction in order to reach the destination. For obtaining the turning angle, the bearing
for the two consecutive points should be computed and then subtracted. The bearing is
used to describe the direction or angle between two points, measured clockwise from the
magnetic north. It represents the direction you would need to travel in a straight line from
point A to point B, measured in degrees. There are different steps needed for computing
the bearing:

1. Compute X and Y [32]:

X = cos(θB) sin(∆L), (1)

Y = cos(θA) sin(θB)− sin(θA) cos(θB) cos(∆L), (2)
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where θ denotes the latitude, L denotes the longitude, A and B denote two consecutive
decimal coordinates, and ∆L denotes the difference between L at A and L at B.

2. Compute the bearing β [32]:

β = arctan 2(X, Y), (3)

3. The turning angle τ is obtained by subtracting the bearing computed on two successive
time points [32]:

τ = βi − βi−1, (4)

The numerical turning angle values are expressed as degrees from 0◦ to 360◦ and are
then converted to a label (forward, backward, right, and left) expressing the direction of
movement (Table 7)

Table 7. Direction of movement expressed as labelled turning angles.

Turning Angle (Degrees) Direction Direction ID

45 ≤ τi or τi ≥ 315 Forward 1
τi > 45 and τi < 135 Left 2
τi ≥ 225 and τi < 315 Right 3
τi ≥ 135 and τi < 225 Backward 4

3.4. Event Detection

As per our earlier definition in Section 3.2, an event is a sequence of actions that occur
between two resting states ’standing’ or ’walking’. Therefore, an event commences when
the player transitions out of a ’standing’ or ’walking’ state (speed ≤ 2 m/s) to performing
actions at higher speeds ’jogging’, ’running’, etc. and finally returns to a ’standing’ or
’walking’ movement (Figure 2). Each event can be of different lengths and compositions
but all start and end with ’standing’ or ’walking’ unless some unexpected interruption
occurs. This definition of an event is based on past research [31,32].

Figure 2. Event identification from the raw sensor data.

The DetectEvent algorithm (Algorithm 2) iterates through the N rows of the dataset
corresponding to one half of a player’s game (Table 6) to identify actions associated with
the same event.
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Algorithm 2 DetectEvent algorithm
Require: N ≥ 2
Require: xz action performed by the player at the iteration z

1: ys ← ’Standing’
2: yw ← ’Walking’
3: events_list← []
4: id_event← 0
5: current_state← 0
6: while i ≤ N do
7: if xi = ys or xi = yw then
8: if current_state = 1 then
9: id_event← id_event + 1

10: events_list[i]← id_event
11: end if current_state = 0
12: events_list[i]← id_event
13: current_state← 1
14: end ifxi ̸= ys and xi ̸= yw
15: events_list[i]← id_event
16: current_state← 0
17: end while

Algorithm 2 begins with the initialisation of variables: ys, yw, events_list, id_event,
and current_state, representing a variable equal to ’standing’, a variable equal to ’walking’,
the list of the events ids, the current event id, and the current state, respectively (1–5).
Current state is an indicator that contains 0 the first time the algorithm meets an action
equal to ’standing’ or ’walking’ or 1 if it has already met one. While iterating over the
dataset (6), if the current action x_i is equal to ’standing’ or ’walking’ (7), two situations can
occur. If the current state is equal to 1 (8), a new event starts: the id_event is increased by
1 (9), and the new value is added to the list of events (10). On the contrary, if the current
state is equal to 0 (11)), add the id_event to the list of the events (12) and switch the value
of the variable current state to 1 (13). If the current action x_i is different from ’standing’ or
’walking’ (14), add the current id_event to the list of the events (15) and set the current state
to 0 (16).

At the end of this step, each action is assigned to an event with a unique identifying
label (Table 8).

Table 8. Sample of the Actions dataset after events detection. The names of some columns in the
header have been shortened: player ID (P.ID), start second (Start Sec.), end second (End Sec.), start
latitude (Start Lat.), start longitude (Start Lon.), end latitude (End Lat.), end longitude (End Lon.),
direction (Dir.), duration (Dur.), distance (Dist.), and event ID (E.ID).

P.ID Start
Sec.

End
Sec.

Start
Lat.

Start
Lon.

End
Lat.

End
Lon. Speed Action Dir. Dur. Dist. E.ID

152 54 56 54.55 −7.35 54.11 −7.35 5.36 4 1 4 20.3 31
152 56 57 54.11 −7.35 54.13 −7.36 6.60 5 1 1 6.6 31
152 57 62 54.13 −7.36 54.33 −7.37 4.98 4 3 4 17 31
152 62 71 54.33 −7.37 54.52 −7.34 3.83 2 2 9 18.8 32
152 71 76 54.51 −7.34 54.55 −7.33 4.51 3 4 6 24.5 32

The final step in constructing the Events dataset involves the aggregation of actions
and action features into events. The Actions dataset is aggregated into the Events dataset by
grouping rows sharing the same event ID. Each row of the final Events dataset represents
an event performed by a player in a game.

Table 9 displays a sample of the resulting Events dataset. ’player ID’ indicates the ID
of the player; the ’event ID’ indicates the ID of the event; ’start_second’ and ’end_second’
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indicate the starting and ending seconds from the beginning to the game ’start_time’ and
’end_time’, expressed in Table 6 as a specific time in the format HH:MM:SS, have here been
converted); ’start_lat’, ’start_lon’, ’end_lat’, and ’end_lon’ indicate the starting and ending
locations of the event; ’avg speed’ and ’std speed’ indicate the average and the standard
deviation of the speed of the actions composing the event; ’duration’ indicates the duration
of the event; ’std duration’ indicates the standard deviation of the duration of the actions
composing the event; ’distance’ indicates the distance covered during the event; high-speed
distance’ indicates the distance covered at speed ≥5.5 m/s during the event; and ’unique
turning angles’ indicate the number of different directions of movement during the event.

The average and standard deviation has been calculated for the statistical features
derived from the speed and acceleration values of each action and presented in Section 3.3.1.
These features include the minimum and maximum values, absolute energy, count of values
above the average, sum of all values, length of the longest strike, and coefficient of variation.
Furthermore, the total count of accelerations and decelerations has been calculated for
each event.

Not all the collected features have been displayed in Table 9 due to space reasons.

Table 9. Schema of the Events dataset at the end of the multistep framework. The names of some
columns in the header have been shortened: player ID (P.ID), event ID (E.ID), start second (Start Sec.),
end second (End Sec.), avg speed (Avg Sp.), std speed (Std Sp.), duration (Dur.), standard deviation
duration (Std Dur.), distance (Dis.), high-speed distance (High-Speed Dist.), and unique turning angle
(U.T.A.).

P.ID E.ID Start
Sec.

End
Sec.

Start
Lat

Start
Lon

End
Lat

End
Lon

Avg
Sp.

Std
Sp. Dur. Std

Dur. Dis.
High-
Speed
Dist.

U. T.
A.

152 4 23 27 54.55 −7.35 54.11 −7.35 5.3 0.3 4 0 23.5 3.1 2
152 5 27 29 54.51 −7.31 54.11 −7.35 3.2 0.1 2 0 5.9 0 1
152 6 29 39 54.21 −7.31 54.11 −7.31 5.7 1.7 10 2.6 60 6.7 3
152 7 29 43 54.01 −7.01 54.18 −7.39 3.3 1.2 14 3.4 36.9 0 4
152 8 43 48 54.11 −7.42 54.16 −7.30 6.3 0.5 5 1.9 41.2 11.1 1

4. Statistical Summaries and Feature Set Validation

To validate the framework, metrics previously adopted in GF research are applied to
the Actions dataset, aiming to assess whether findings in this research align with those from
prior studies. Then, a statistical analysis of the data comprising the constructed dataset is
provided. Speeds, distances, actions, and events are analysed by halves or matches in order
to show trends, patterns, similarities, and differences.

Several statistical t-tests on the variables have been conducted to investigate differ-
ences between the first and second halves of games. Finally, three predictive models are
tested on the Events dataset to forecast the high-speed distance covered by players during
the second half of a selected game, based on the first half and the remaining games.

4.1. Actions Dataset Evaluation

In order to verify that the Actions dataset is a true reflection of the actual game, it would
be necessary to watch and record the movements of all 15 players in real time, a process that
is both impractical and would not scale. Instead, our decision was to compare the dataset
with the existing literature to ensure that our feature engineering process delivers a dataset
that is in line with existing analyses in terms of the overall volumes and intensity of games.
In this respect, we investigated if running profiles are coherent with previous findings in
GF research using the in-game profile of elite male Gaelic Football in [15]. The authors iden-
tified an average distance covered of 8160.11 ± 1482.02 m, with 1731.29 ± 659.76 m covered
at speed 4.72 m/s and 445 ± 169 m at speed 6.11 m/s. Similar values are observed in the
Actions dataset: the average distance identified is 8633.8 ± 1573.6 m, with 1453.6 ± 552.7 m
covered at high speeds of 4.72 m/s and 503.5 ± 205.1 m at a sprinting speed of 6.11 m/s.
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Consistent outcomes were observed even for both the average and peak speeds:
1.8 ± 0.3 m/s and 8.4 ± 0.5 m/s, respectively, in [15] and 2.8 ± 1.6 m/s and 8.4 ± 0.5 m/s
in this current research.

In a separate study conducted using the same data [36], the authors observed a reduc-
tion in the distance covered between the first and other quarters of the game: −4.1% with
the second, −5.9% with the third, and −3.8% with the fourth. They observed a reduction in
high-speed running distance (≥4.72 m/s) in the second (−8.8%), third (−15.9%), and fourth
(−19.8%) quarters when compared to the first quarter. This research found, in part, a similar
reduction in the distance covered between the first and other quarters of the game: −6.6%
with the second, −6.6% with the third, and −15.8% with the fourth. When comparing
the high-speed running distance between the first and other quarters, the reductions were
equal to −7.2% (second), −11.3% (third), and −17.1% (fourth).

The previous comparisons reveal a consistent analogy between this research’s findings
with those obtained by prior GF research. The marginal differences identified may be
attributed to the different sample sizes or players’ fitness levels.

4.2. Games: Half by Half Analysis

The goalkeeper has been omitted from the analysis due to the difference in physical
demands. The average speeds during the first and second halves are 2.84 ± 1.62 m/s and
2.73 ± 1.61 m/s, respectively. The t-test reports a statistically significant difference between
the two means (p-value: 1.89× 10−12).

The count, average, and standard deviation of the duration and maximum duration of
the aggregated actions are shown in Table 10. The mean count of actions for each game is
3945 ± 286. The average duration of the actions is 2.9 ± 0.1 s. The average of the maximum
duration of the actions is 25.2 ± 3 s.

The resulting p-value for the t-test on the count of actions is 0.004 (lower than the
chosen level of significance, 0.05), showing a statistically significant difference for the
number of actions in the two halves of the game, which is always higher in the first half.

Table 10. Half by half analysis: action count, average, and maximum duration, sorted by count
of actions.

Game ID Half Count Duration Avg (s) Duration Std (s) Duration Max (s)

893 1 4536 2.96 2.57 23
997 1 4308 2.88 2.59 22
788 1 4193 2.80 2.36 25
973 1 4165 2.83 2.47 26
869 2 4129 2.80 2.36 23
893 2 4083 2.89 2.53 26
811 1 4071 2.97 2.64 25
946 1 4018 2.81 2.41 23
889 1 3984 2.94 2.60 25
873 1 3983 2.83 2.48 24
997 2 3972 2.98 2.61 25
934 1 3919 2.95 2.59 23
811 2 3844 2.99 2.63 37
869 1 3806 2.79 2.34 25
788 2 3729 2.85 2.46 25
873 2 3677 2.91 2.49 23
838 1 3662 2.87 2.53 24
973 2 3614 2.85 2.45 25
946 2 3594 2.74 2.35 26
934 2 3502 2.89 2.50 26
889 2 3441 2.89 2.48 25
838 2 3417 2.86 2.61 29
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4.3. Analysis of Extracted Actions

An analysis of all labelled actions is presented in Table 11. The average number of
actions per game decreases as the speed increases: ’jogging’ (4400.5 ± 226.5), ’running’
(2402.5 ± 138.9), ’high-intensity running’ (827.9 ± 54.3), and ’sprint’ (155.1 ± 14.6).

Table 11. Count, average, and maximum duration and distance covered for each type of action during
the sampled games, sorted by average distance.

Action Game ID Count Duration Avg (s) Duration Max (s) Distance Avg (m) Distance Max (m)

Sprint

873 168 2.4 7 17.8 58.8
973 149 2.3 9 17.1 71.1
889 153 2.3 7 17.1 57.4
869 178 2.2 8 16.5 60.8
788 168 2.2 6 16.4 49.2
838 131 2.1 8 16.1 62.4
893 171 2.1 9 16.0 66.6
997 146 2.0 6 15.5 47.4
934 162 2.0 7 15.1 53.2
811 136 2.0 7 15.0 52.5
946 144 1.9 6 14.7 49.8

High-intensity running

869 911 2.2 11 13.6 68.2
889 820 2.2 12 13.3 70.8
997 868 2.2 13 13.2 79.3
811 784 2.1 11 13.1 71.5
973 837 2.1 14 13.00 86.8
893 906 2.1 10 12.8 65.0
838 726 2.0 10 12.6 63.0
873 836 2.0 10 12.5 63.0
946 780 2.0 10 12.4 60.0
934 781 2.0 10 12.3 64.0
788 858 2.0 11 12.1 67.1

Running

997 2589 2.3 21 10.9 96.6
893 2653 2.4 20 10.9 94.0
811 2417 2.3 24 10.8 112.8
973 2449 2.3 18 10.8 86.4
788 2451 2.3 22 10.6 110.0
869 2468 2.3 20 10.6 96.0
873 2337 2.3 16 10.6 76.8
889 2313 2.3 16 10.6 76.8
934 2256 2.2 16 10.4 76.8
946 2357 2.2 15 10.3 69.0
838 2138 2.2 14 10.1 61.6

Jogging

811 4578 3.5 37 10.5 107.3
934 4222 3.5 26 10.4 72.8
893 4889 3.4 26 10.3 85.8
889 4139 3.4 25 10.3 82.5
997 4677 3.4 25 10.3 77.5
838 4084 3.4 29 10.1 84.1
873 4319 3.3 24 10.0 74.4
973 4344 3.3 26 9.9 80.6
788 4445 3.3 25 9.8 80.0
946 4331 3.2 26 9.7 84.0
869 4378 3.2 25 9.6 70.0

A t-test has indicated the presence of a statistically significant difference in the mean
duration of ’high-intensity running’ actions between the first half (2.0 ± 0.1 s) and the
second half (2.2 ± 0.1 s). In reference to the other actions, the mean duration of ’jogging’,
’running’ and ’sprint’ actions are 3.4 ± 0.1, 2.3 ± 0.1, and 2.1 ± 0.2 s, respectively.
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A statistically significant difference has been identified through a t-test for the mean
distance per ’high-intensity running’ action between the first and second halves (12.4 ± 8.7
and 13.1 ± 9.6 m).

The remaining actions revealed similar outcomes when comparing the two halves.

4.4. Analysis of Events

Events composed only of the actions ’standing’, ’walking’, and ’standing’ and ’walking’
are removed from the current analysis.

The average number of events during the first and second halves are 1657.3 ± 106.7
and 1538.2 ± 94.9, respectively.

The highest number of events during the first half is 1937, with 7.1 ± 6.1 s of average
duration and 63 s of maximum duration for an event (Table 12). The highest for the second
half is 1669 with 7.1 ± 6.2 s of average duration and 72 s of maximum duration for an event.

The average number of actions per event is 2.55 ± 2.25, with 1 as the minimum and 21
as the maximum.

Table 12. Count of events, actions, average number and duration of actions in an event, and
maximum number and duration of actions in an event per half of the investigated games, sorted by
count of events.

Game ID Half Events
Count

Duration
Avg (s)

Duration
Max (s)

Distance
Avg (m)

Distance
Max (m)

H. S. Dist.
Avg (m)

H. S. Dist.
Max (m)

893 1 1947 7.0 48 25.4 189.5 3.3 117.4
997 1 1756 7.2 52 26.8 236.8 4.3 87.0
811 1 1708 7.2 63 26.4 216.7 3.7 86.5
869 2 1676 7.0 38 26.5 158.9 5.1 97.7
946 1 1668 6.9 38 25.2 148.2 3.8 86.9
973 1 1661 7.2 45 26.7 198.8 4.0 98.1
788 1 1654 7.3 44 27.0 199.0 4.1 89.0
997 2 1645 7.3 48 26.9 191.4 3.7 108.8
811 2 1637 7.2 52 26.0 190.4 3.6 80.2
889 1 1631 7.3 40 26.8 182.9 4.4 99.9
893 2 1604 7.5 54 28.1 214.7 4.8 113.5
788 2 1594 6.8 52 24.9 236.9 4.0 84.8
873 1 1590 7.2 38 26.8 182.7 4.6 82.5
869 1 1575 6.9 49 25.6 188.8 4.4 112.9
838 1 1568 6.8 48 24.8 188.9 3.5 82.4
973 2 1567 6.7 48 25.3 226.2 4.3 108.6
873 2 1559 7.0 49 25.7 190.2 3.8 82.5
934 1 1554 7.5 49 27.6 209.3 4.1 92.7
946 2 1482 6.8 45 24.8 179.0 3.7 93.5
838 2 1450 6.8 38 25.1 156.9 3.9 91.5
934 2 1428 7.2 44 26.5 163.5 4.0 70.6
889 2 1369 7.4 72 27.7 264.1 4.9 126.2

Figures 3–5 show the frequency of values for the features ’duration’, ’distance’, and
’high-speed distance’. The shape of the frequency distribution is similar for the three
investigated features, characterised by elevated frequencies at lower values and a visible
decline as values increase.
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Figure 3. Left: Frequency of events per duration. Right: Frequency of events per duration ≥ 30 s.

Figure 4. Left: Frequency of events per distance. Right: Frequency of events per distance ≥ 130 m.

Figure 5. Left: Frequency of events per high-speed distance. Right: Frequency of events per
high-speed distance ≥ 35 m.
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5. Case Study: Predicting High-Speed Actions

While the main focus of this work is on engineering feature sets from the raw sensor
data, it is useful to illustrate a case study of the types of possible analyses using the
new feature set. Here, we run a number of experiments to predict the high-speed distance
covered by players during games, comparing the results obtained by three different machine
learning models.

Knowing this metric in advance can be useful for sports coaches to manage players’
time on the pitch, for example, to avoid fatigue or even injuries. The challenge is to predict,
for each player, the high-speed distance covered per event during the second half of a target
game. Then, these predicted distances are summed to obtain the predicted total high-speed
distance per player.

The dataset used to complete this task is a transformation of the Event dataset (Table 9).
For each player, a sequence of 30 consecutive high-speed distance values is used as a new
set of features, and the variable to predict is the high-speed distance at the 31st position
(Table 13).

Table 13. Structure of the transformed dataset used for the prediction of high-speed distance (H.S.D.)
covered by players during the second half of a game. The target feature to predict is the variable 31st
H.S.D located at the end of the sequence.

P.ID 1st
H.S.D.

2nd
H.S.D.

3rd
H.S.D. . . . . . . . . . 29th

H.S.D.
30th

H.S.D.
31st

H.S.D.

152 0 0 0 . . . . . . . . . 3.2 0 5.1
152 0 0 0 . . . . . . . . . 0 5.1 0
152 0 0 15.4 . . . . . . . . . 5.1 0 0
152 0 15.4 0 . . . . . . . . . 0 0 21.3
152 15.4 0 2.6 . . . . . . . . . 0 21.3 0

To replicate a real-world scenario, each model predicts the high-speed distance values
for the second half of the last game in a sequence of games, using training using data from
the first half of the same game and all prior games in the sequence (in this case study,
10 previous games). The time series data of high-speed distance for the remaining games
plus the first half of the tested game are merged to form a unique time series. The first half
of the tested game is placed at the end of this time series, as shown in Figure 6. These data
constitute the training set for the predictive experiments.

Figure 6. The time series of high-speed distance for the remaining games are merged to form a unique
time series. The first half of the tested game is placed in the last position. These data constitute the
training set for the predictive experiments.

While the learning phase uses data from prior games together with the first half of the
target game, during the testing phase, the test set is the model’s predictions. This approach
is known as recursive forecasting. In this method, the model is trained on historical
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data, and rather than having a separate test set, it uses its predictions as inputs for future
predictions. This experiment simulates the real scenario of the second half distances being
forecast during the half-time break based on data from the first half and the previous games.

Assuming N as the number of events performed by player i during the first half,
validation can thus be described as follows:

1. The sequence composed of the last 30 high-speed distance values of the first half is
used as input (test set) by the model to generate the first prediction.

2. The sequence composed of the last 29 high-speed distance values of the first half plus
the first prediction of the second half is used as input by the model to generate the
second prediction.

3. Finally, the Nth prediction uses the previous N − 1 predictions. If N − 1 < 30,
the remaining inputs are taken from the final high-speed values in the first half.

At the start of the second half, the number of player events for the half is unknown,
and for the purpose of the experiment, we assume this number to be equal to the number
of events in the first half. Thus, the recursive prediction process is repeated as many times
as the number of events performed by the player during the first half.

It was decided to use customised models per player (as opposed to one model for
all player positions) by training and testing players separately. The players involved are
those who played during the first half of the tested game and played in at least one of the
previous games. The set of features used is the same for each model. Three separate models
were applied to solve the predictive task:

1. XGBoost [37] with the following hyperparameters: n_estimators, 100; learning_rate,
0.1; max_depth, 3; min_child_weight, 1; colsample_bytree, 1; subsample, 1; reg_alpha, 0;
reg_lambda, 1.

2. A Long Short-Term Memory Network (LSTM) formed by the following layers: Bidi-
rectional LSTM (unites = 64, activation = ’tanh’) [38], Bidirectional LSTM (unites = 32,
activation = ’tanh’), Dropout (0.20), LSTM (unites = 16, activation = ’tanh’), Feed For-
ward (units = 20, activation = ’relu’), and Feed Forward (units = 1, activation = ’linear’).
The optimiser used is ’Adam’ [39]; the learning rate and the number of epochs are
0.001 and 50, respectively.

3. A Convolutional Neural Network (CNN) formed by the following layers: one-
dimensional convolutional (filters = 64, kernel_size = 5, activation = ’relu’) [40],
one-dimensional convolutional (filters = 32, kernel_size = 3, activation = ’relu’), one-
dimensional convolutional (filters = 10, kernel_size = 5, activation = ’relu’), one-
dimensional MaxPooling (pool_size = 2) [41], Flatten, Feed Forward (40, activation
= ’relu’), Dropout (0.2), and Feed Forward (1, activation = ’linear’). The optimiser
used is ’Adam’; the learning rate and the number of epochs are equal to 0.001 and 50,
respectively.

The LSTM and CNN networks have been implemented in Keras [42]. The predicted
event-by-event high-speed distances are summed for each player. In this way, it is possible
to obtain the total predicted high-speed distance for the second half. Table 14 compares the
predicted value with the true distances covered at high speed for each player. Only those
players who played for the entire first and second halves are included. The goalkeeper has
been removed from the analysis.

The mean absolute error (MAE) measures the average absolute difference between the
predicted values and the actual target values and was used as it is less sensitive to outliers
than the root mean squared error. For each model, the MAE between the predicted and the
true high-speed distances, displayed in Table 14, has been computed. The MAE is equal to
141.7, 86.2, and 116.4 m for the XGBoost, LSTM, and CNN models, respectively. In short,
the LSTM model, to predict the total distance at high speed covered during the second half
of the tested game, makes, on average, an error of 86.2 m per player. The average distance
at high speed covered by the 10 analysed players during the second half of the game was
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358.4 m. On average, the LSTM model makes a percentage error of 24.1% on the total real
high-speed distance.

Table 14. Player by player predictions and true values for the total distance at high speed during the
second half of a randomly tested game using XGboost, LSTM, and CNN models defined in Section 5.
The values presented in the tables are expressed in metres.

Player ID Pred. H.S.D.
XGBoost

Pred. H.S.D.
LSTM

Pred. H.S.D.
CNN Actual H.S.D. True Number

of Events
Number of Events

Used for Pred.

146 381.9 528.3 344.0 543.6 211 196
152 633.3 422.3 878.5 367.5 180 176
163 642.8 432.1 281.9 285.3 76 126
194 474.5 368.0 249.8 281.8 116 150
201 240.9 340.5 370.2 341.9 199 193
220 336.7 590.1 378.2 341.9 234 286
229 239.5 422.7 355.2 292.8 265 282
236 498.4 335.9 252.3 457.0 234 244
244 519.0 446.1 340.8 405.8 189 222
278 141.3 284.9 288.2 266.6 180 175

The calculation of the MAE for each event is made impossible by the assumption of an
equal number of events between the first and second halves. Indeed, the number of events
in the second half (y test) is different from the number of events in the first half (y pred)
(Table 14).

We should make clear the limitations of this particular case study. The high-speed
distance in the second half could be estimated by fitness coaches by combining the average
speed and the peaks of the speed of players. However, our goal is to demonstrate the
possibilities using this novel feature set. As this is the first attempt to combine GPS data
and machine learning models to predict future high-speed distances, it represents an initial
baseline for future comparisons in this task.

6. Conclusions

The application of wearable sensor data to analyse the movements, actions, and posi-
tions of players for decision support is underused in terms of the potential exploitation of
data. The existing literature describes relatively conservative approaches in how wearable
sensor data are processed and applied. To the best of the authors’ knowledge, this is the
first framework-based approach to process raw GPS data into a feature set suitable for
supervised and unsupervised machine learning tasks in the sporting domain. The overall
process comprises a number of distinct steps. A temporal rollup to 1 s values is performed
by computing the centroid of the locations and the average speed in the 10 observations
per second. The average speed is subsequently converted to action labels, which are well
understood in the literature. Consecutive rows showing the same actions are aggregated,
and several features are computed to form the Actions dataset. The DetectEvent algorithm
uses the Actions dataset to group actions into a single event by collecting summary features,
to build the Events dataset.

The Actions dataset was validated by comparison with metrics presented in the
related literature. A machine learning case study was developed using the Events dataset
to show one potential application of the feature engineering methodology. The problem of
predicting the high-speed distance covered by players in the second half of a game based
on past games and the first half is a new idea, and while this represents a relatively simple
study, it represents a baseline for future improvements.

It is important to highlight that this work provides a relatively small case study
demonstrating the effectiveness and comparative capabilities of machine learning models.
Future research is deliberately planned to enhance the selection, training, and evaluation
of machine learning models to ensure the accuracy and stability of the models. Using the



Sensors 2024, 24, 1308 20 of 22

dataset created by the work presented here, we are currently focusing on graph-based
machine learning for predicting high-speed and distance events late in games; ensemble
learning models to predict the future sequence of actions; and anomaly detection functions
to detect unusual event sequences within games.
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