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Abstract: The microglia, displaying diverse phenotypes, play a significant regulatory role in the
development, progression, and prognosis of Parkinson’s disease. Research has established that
glycolytic reprogramming serves as a critical regulator of inflammation initiation in pro-inflammatory
macrophages. Furthermore, the modulation of glycolytic reprogramming has the potential to reverse
the polarized state of these macrophages. Previous studies have shown that Levistilide A (LA), a
phthalide component derived from Angelica sinensis, possesses a range of pharmacological effects,
including anti-inflammatory, antioxidant, and neuroprotective properties. In our study, we have
examined the impact of LA on inflammatory cytokines and glucose metabolism in microglia induced
by lipopolysaccharide (LPS). Furthermore, we explored the effects of LA on the AMPK/mTOR path-
way and assessed its neuroprotective potential both in vitro and in vivo. The findings revealed that
LA notably diminished the expression of M1 pro-inflammatory factors induced by LPS in microglia,
while leaving M2 anti-inflammatory factor expression unaltered. Additionally, it reduced ROS pro-
duction and suppressed IκB-α phosphorylation levels as well as NF-κB p65 nuclear translocation.
Notably, LA exhibited the ability to reverse microglial glucose metabolism reprogramming and
modulate the phosphorylation levels of AMPK/mTOR. In vivo experiments further corroborated
these findings, demonstrating that LA mitigated the death of TH-positive dopaminergic neurons and
reduced microglia activation in the ventral SNpc brain region of the midbrain and the striatum. In
summary, LA exhibited neuroprotective benefits by modulating the polarization state of microglia
and altering glucose metabolism, highlighting its therapeutic potential.

Keywords: Levistilide A; microglia; metabolic reprogramming; Parkinson’s disease

1. Introduction

Parkinson’s disease (PD) is a common neurodegenerative condition that predomi-
nantly affects individuals over the age of 65 and becomes increasingly prevalent with
advancing age. According to the World Health Organization, the global burden of PD-
related disability and mortality is escalating at a faster rate than any other neurological
condition. Currently, levodopa serves as the primary clinical treatment for PD, alleviating
its signs and symptoms. However, long-term use of levodopa can lead to motor disorders
and a decline in its efficacy [1]. Therefore, the development of innovative PD treatment
strategies is imperative.
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In the process of repairing nerve damage and treating neurodegenerative diseases,
microglia play a unique and crucial role. Microglia, which are immune cells in the cen-
tral nervous system, are considered to be macrophages in the brain and one of the first
responders to central nervous system injury. Following a brain injury, microglia become
activated and undergo a rapid transformation from a resting to an active state [2]. Activated
microglia secrete numerous cytokines, chemokines, growth factors, reactive oxygen species,
proteases, excitatory amino acids, and more, which can impact the survival of neurons [3].
Due to the complexity of their products, activated microglia are a “double-edged sword”
in neurodegenerative illnesses. Similar to peripheral macrophages, activated microglia can
be categorized as either “bad” M1 pro-inflammatory (classical activation) or “good” M2
anti-inflammatory and repair (selective activation) types based on their released cytokines
and functional status [4]. So, modulating microglial polarization from M1 to M2 has been
widely recognized as an effective strategy for the treatment of Parkinson’s disease (PD) [5].

“Metabolic reprogramming” describes the alterations in cellular metabolic processes
that occur in response to changes in the external microenvironment, exhibiting distinct
metabolic traits to furnish energy and essential biological compounds. In tumor cells, a
preference for generating energy through glycolysis is observed even under oxygen-rich
conditions, accompanied by suppressed oxidative phosphorylation. This phenomenon is
commonly referred to as the Warburg effect [6]. The reprogramming of glucose metabolism
serves to fuel the rapid proliferation of tumor cells and the synthesis of other biomolecules,
thereby conferring a growth advantage. Disrupting this metabolic reprogramming in
tumors has been shown to exert anti-tumor effects [7,8]. Recent studies have revealed the
presence of the Warburg effect in M1 pro-inflammatory microglia, macrophages, and other
immune cells. Although glycolysis is less efficient than oxidative phosphorylation in ATP
production, this shift enables M1-activated microglia to generate ATP more rapidly. This
rapid ATP production meets the acute energy demands of cells during inflammatory re-
sponses and facilitates the production of cytokines and reactive oxygen species. In contrast,
resting microglia and those exhibiting an M2 anti-inflammatory repair phenotype rely on
oxidative phosphorylation to provide a substantial and sustained supply of energy for their
normal physiological functions [9]. In the lipopolysaccharide (LPS)-induced acute lung
injury mouse model, mouse lung tissue and abdominal macrophages demonstrated height-
ened glycolysis and decreased levels of oxidative phosphorylation. Administration of the
glycolysis inhibitor 2-Deoxy-D-glucose (2-DG) or blockade of the mTOR/HIF-1α glycolytic
pathway hindered macrophage NLRP3 activation, ultimately curbing inflammatory factor
production and alleviating symptoms in mice with acute lung injury [10].

Angelica sinensis, a traditional Chinese medicine, is widely utilized in clinical settings
for its neuroprotective properties [11]. Levistilide A (LA, CAS No. 88182-33-6) is a charac-
teristic phthalide extracted from Angelica sinensis [12]. It has been observed that LA can
hinder endothelial cell activation and the expression of inflammatory cytokines, as well
as reduce NLRP3 expression in human umbilical vein endothelial cells and vasculitis rat
vascular tissue [13]. A recent study has shown that LA can reduce neuroinflammation by
inhibiting the JAK2/STAT3 signaling pathway, play a role in neuroprotection and improve
cognitive impairment in Alzheimer’s disease mice [14]. To our knowledge, the effect of LA
on microglial glycometabolic reprogramming and Parkinson’s disease remains unexplored.

The main pathological feature of Parkinson’s disease is that the death of dopaminergic
neurons leads to the denervation of the nigrostriatal pathway, resulting in the decrease in
dopamine in the striatum [15]. Because the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine
(MPTP), which is able to cross the blood-brain barrier, can induce the degeneration of
dopaminergic neurons, the MPTP-induced mouse Parkinson’s disease model is commonly
used for understanding the molecular mechanism of the disease and developing neuropro-
tective medicines [16]. Moreover, this model is easy to operate and cheap. This study aims
to investigate the potential effects of LA in mouse models of Parkinson’s disease induced
by MPTP and LPS-stimulated microglia. Our findings indicate that LA can regulate glucose
metabolism, modulate inflammatory responses, and exert neuroprotective effects.
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2. Results
2.1. LA Inhibits the Production of Inflammatory Cytokines NO, IL-6 and TNF-α in
LPS-Induced Microglia

We initially aimed to investigate whether LA has the potential to inhibit the production
of inflammatory cytokines in LPS-stimulated BV-2 cells. LA had no significant impact on
BV-2 cell viability at concentrations ranging from 0 to 10 µM, whether in the presence or
absence of LPS (p > 0.05, Figure 1A). After stimulating BV-2 cells with LPS for 24 h, the levels
of pro-inflammatory cytokines, including NO, IL-6, and TNF-α, were significantly higher
in the LPS group compared to the Control group (p < 0.001). The positive control drug,
minocycline, significantly inhibited the production of these cytokines. LA also inhibited
the production of these cytokines in a dose-dependent manner (Figure 1B,C, p < 0.05).
Similar results were observed in primary microglial cells (Figure 1D), consistent with those
observed in the BV-2 cell line.
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Figure 1. LA can inhibit the production of inflammatory cytokines NO, IL-6 and TNF-α in LPS-
induced microglia. (A) LPS and/or LA had no effect on cell viability after LPS stimulation of BV-2 
cells for 24 h, n = 6; (B,C) LA was able to inhibit LPS-induced NO, IL-6, and TNF-α production in 
BV-2 cells, n = 5; (D) LA was able to inhibit LPS-induced NO production in primary microglial cells. 
(E) LA inhibited the expression of proinflammatory cytokines mRNA in LPS-induced microglia; (F) 
LA does not inhibit anti-inflammatory factor mRNA expression vs. CON, ### p < 0.001,## p < 0.01; vs. 
LPS, * p < 0.05, ** p < 0.01, *** p < 0.001. Data are presented as the mean ± SD. LA: Levistilide A, LPS: 
lipopolysaccharide, MINO: minocycline. 
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Figure 1. LA can inhibit the production of inflammatory cytokines NO, IL-6 and TNF-α in LPS-
induced microglia. (A) LPS and/or LA had no effect on cell viability after LPS stimulation of BV-2
cells for 24 h, n = 6; (B,C) LA was able to inhibit LPS-induced NO, IL-6, and TNF-α production
in BV-2 cells, n = 5; (D) LA was able to inhibit LPS-induced NO production in primary microglial
cells. (E) LA inhibited the expression of proinflammatory cytokines mRNA in LPS-induced microglia;
(F) LA does not inhibit anti-inflammatory factor mRNA expression vs. CON, ### p < 0.001,## p < 0.01;
vs. LPS, * p < 0.05, ** p < 0.01, *** p < 0.001. Data are presented as the mean ± SD. LA: Levistilide A,
LPS: lipopolysaccharide, MINO: minocycline.

To further confirm the impact of LA on LPS-induced inflammatory factors in microglia,
we utilized real-time quantitative PCR to assess the expression of pro-inflammatory factors,
including iNOS, IL-6, TNF-α, and IL-1β mRNA. The results (Figure 1E) revealed that the
expression of these pro-inflammatory factors induced by LPS was significantly reduced
following treatment with the positive control drug minocycline or LA (p < 0.001). However,
when compared to the LPS group, LA did not effectively inhibit the expression of the M2
anti-inflammatory factors Arg1, IL-1Ra, IL-10, and YM1 mRNA (p > 0.05, Figure 1F).

2.2. LA Inhibits LPS-Induced ROS Production in Microglia

Upon microglia activation, a significant increase in reactive oxygen species (ROS)
production occurs within the cells. Elevated levels of ROS have been associated with
inflammation and neuronal cell death [17]. To evaluate the intracellular ROS levels, we
utilized the fluorescent probe DCFH-DA. Flow cytometry results (Figure 2A) revealed that
the intracellular ROS level was significantly higher in LPS-stimulated BV-2 cells after 24 h
compared to the Control group (p < 0.001). However, following LA treatment, the ROS level
in the LA group was significantly reduced (p < 0.001). Fluorescence microscopy results
supported these findings (Figure 2B).
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Figure 2. LA can inhibit LPS-induced ROS production in BV-2 cells. (A) Intracellular ROS content
was detected by flow cytometry after 24 h of LPS-induced BV-2 cells; (B) Fluorescence microscopy
images of BV-2 cells treated with LPS and/or LA for 24 h after incubation with the DCFH probe; vs.
CON, ### p < 0.001; vs. LPS, *** p < 0.001. Data are presented as the mean ± SD. LA: Levistilide A,
LPS: lipopolysaccharide.

2.3. LA Inhibits Phosphorylation of IκB-α and Nuclear Translocation of NF-κB p65

To investigate whether LA can hinder the nuclear translocation of NF-κB p65 and
the phosphorylation of IκB-α, we utilized cellular immunofluorescence techniques and
Western blot analysis. The Western blot results (Figure 3A,B) revealed that, following
LPS stimulation of BV-2 cells for 1 h, LPS increased the phosphorylation level of IκB-α
and caused the p65 subunit of NF-κB to translocate from the cytoplasm to the nucleus.
Notably, LA hindered this translocation process. These findings were further validated by
fluorescence microscopy images (Figure 3C). Collectively, these results suggest that LA can
inhibit the activation of NF-κB transcription factors.
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Figure 3. LA inhibits IκB-α phosphorylation and nuclear translocation of NF-κB p65. BV-2 cells were
treated with LPS and or LA for 1 h; (A) Western blot results showed that LA was able to inhibit IκB-α
phosphorylation; (B,C) The results of Western blot and fluorescence microscopy showed that LA
was able to inhibit nuclear translocation of NF-κB p65; vs. Control, ### p < 0.001, ## p < 0.01; vs. LPS,
* p < 0.05, ** p < 0.01. Data are presented as the mean ± SD. LA: Levistilide A, LPS: lipopolysaccharide,
MINO: minocycline.

2.4. LA Inhibits LPS-Induced Reprogramming of Microglia Glucose Metabolism

2-Deoxyglucose (2-DG) is a glycolysis inhibitor that has been reported to reduce
inflammatory responses by suppressing glycolysis levels in macrophages [18]. To further
explore the connection between glycolysis and microglia-mediated neuroinflammation, we
evaluated the impact of 2-DG on LPS-induced NO release in BV-2 cells. As demonstrated
in Figure 4A, treatment with 2-DG (2 mM) effectively inhibited LPS-induced NO release,
indicating that modulation of glycolytic reprogramming reversed the M1 polarization
state of microglial cells. Notably, when combined with LA, the co-treatment led to a more
significant suppression of NO production compared to the LA group alone.
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Figure 4. LA inhibits LPS-induced reprogramming of microglia glucose metabolism. (A) Effect of
2-DG on LPS-induced NO in BV-2 cell; (B) LA decreased ECAR and increased OCR in BV-2 cells
(n = 4); (C) LA reduced glucose uptake in inflammatory microglia, n = 4; (D) LA reduced the mRNA
expression of key glycolytic enzymes, n = 6; vs. CON, ### p < 0.001, ## p < 0.01, # p < 0.05; vs. LPS,
* p < 0.05, ** p < 0.01, *** p < 0.001, &&& p < 0.001; vs. LPS+2DG, $$$ p < 0.001. Mean ± SD, n = 6. Data
are presented as the mean ± SD. LA: Levistilide A, LPS: lipopolysaccharide.
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M1 and M2 microglia exhibit distinct metabolic patterns, with M1 microglia exhibiting
elevated glycolysis and reduced oxidative phosphorylation levels, while M2 microglia
display the opposite pattern with reduced glycolysis and increased oxidative phosphory-
lation [19]. Glucose is converted to pyruvate in the cytosol, which is further metabolized
into lactate, leading to extracellular acidification. Elevated glycolysis results in lactate accu-
mulation [20]. To investigate the impact of LA on glycolytic reprogramming, we utilized
the Seahorse XF 96 Energy Metabolism Assay System. The extracellular acidification rate
(ECAR) serves as a proxy for glycolysis levels. As shown in Figure 4B, LPS-stimulated
microglia exhibited elevated glycolytic capacity and reserve, consistent with previous
studies [21]. Notably, LA treatment reduced these levels, indicating that LA can mitigate
glycolysis in microglia.

The Real-time Oxygen Consumption Rate (OCR) serves as a metric for mitochondrial
function and represents the level of oxidative phosphorylation [22]. As demonstrated in
Figure 4B, LPS-stimulated microglia exhibited reduced OCR values, indicating a decrease
in oxidative phosphorylation. Notably, LA treatment reversed these effects, indicating that
LA enhances the level of oxidative phosphorylation.

Studies have revealed that as cells’ glycolysis capacity increases, so does their glucose
uptake [23]. Flow cytometry results (Figure 4C) indicate that LA treatment effectively
inhibited the LPS-induced increase in glucose uptake (p < 0.001).

Subsequently, we utilized real-time quantitative PCR to assess the expression of key
glycolysis enzymes. As displayed in Figure 4D, LPS stimulation upregulated the mRNA
expression of glycolysis enzymes such as GLUT-1, PKM2, HK-1, and HK-2 in BV-2 cells.
However, LA treatment significantly downregulated the expression of these enzymes.

2.5. Targeted Metabolomic Analysis of LA on LPS-Stimulated BV-2 Cells

Targeted metabolomics is to select some specific endogenous metabolites for ac-
curate quantitative analysis with high sensitivity and accuracy. We applied a targeted
metabolomics approach to detect changes in 19 glucose metabolism-related metabolites in
BV-2 microglia.

Principal component analysis (PCA) as well as orthogonal projections to latent structures-
discriminant analysis (OPLS-DA) methods were used to analyze metabolites among dif-
ferent groups of BV-2 cells. As shown in Figure 5A,B, there were significant differences in
metabolites between control, LPS and LA groups.

Figure 5C,D, show that after LPS stimulation of BV-2 cells, the contents of 2, 3-
diphosphoglyceric acid, 3-phosphoglyceric acid, 2-phosphoglyceric acid, pyruvate, citrate,
and fenugreek, tended to increase. This result was consistent with previous reports [24,25].
After the administration of LA, the levels of these metabolites were observed to decrease.
When LPS stimulated BV-2 cells, glycolysis increased, oxidative phosphorylation decreased,
and ATP levels subsequently decreased, aligning with previous reports [26]. However,
LA treatment reversed these effects, elevating ATP levels. These findings suggest that
LA can inhibit glycolysis product production while promoting oxidative phosphorylation
product synthesis.
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LPS group vs. LA group; (C) Hierarchical cluster analysis thermodynamic diagram; (D) Histogram
of differential metabolites vs. CON, ## p < 0.01, # p < 0.05; vs. LPS, * p < 0.05. Data are presented as
the mean ± SD. LA: Levistilide A, LPS: lipopolysaccharide.



Molecules 2024, 29, 912 10 of 19

2.6. LA’s Impact on the AMPK/mTOR Signaling Pathway

AMP-activated protein kinase (AMPK) serves as a crucial energy sensor in eukaryotic
organisms, regulating cellular energy metabolism. mTOR, a downstream target of AMPK,
is widely distributed in the cytoplasm of living organisms. AMPK activation leads to the
inhibition of mTOR phosphorylation, both of which play a role in the regulation of cellular
metabolic processes.

Western blot analysis revealed that following 2 h of LPS stimulation, AMPK phos-
phorylation was significantly reduced, while mTOR phosphorylation was significantly
increased (Figure 6A). However, LA treatment reversed these effects, significantly increas-
ing AMPK phosphorylation (Figure 6B, p < 0.001) and decreasing mTOR phosphorylation
(Figure 6B, p < 0.05) compared to the LPS group. These findings suggested that LA has a
regulatory effect on the AMPK/mTOR signaling pathway, potentially influencing cellular
metabolism and energy balance.
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(B) Effect of LA on AMPK/mTOR in BV-2 cells induced by LPS for 2 h. vs. CON, ## p < 0.01, # p < 0.05;
vs. LPS, * p < 0.05, ** p < 0.01, *** p < 0.001. Data are presented as the mean ± SD. LA: Levistilide A,
LPS: lipopolysaccharide.

2.7. The Conditioned Medium from LA-Treated Microglia Protects Neurons

Inflammatory cytokines secreted by activated microglia have the potential to induce
neuronal cell death. In our previous study, we observed that LA suppressed the LPS-
induced production of these pro-inflammatory factors. This raised the question: Could this
inhibitory effect of LA exert neuroprotective benefits? To address this, we examined the im-
pact of the conditioned medium from BV-2 cells on the survival of neuroblastoma SH-SY5Y
cells (Figure 7A). Notably, LA alone, at concentrations ranging from 0–5 µM, did not affect
the viability of SH-SY5Y cells (Figure 7B). However, when compared to the conditioned
medium from the LPS-stimulated group, the medium derived from microglia treated with
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both LPS and LA demonstrated a remarkable neuroprotective effect on SH-SY5Y cells
(p < 0.01, Figure 7C,D). These findings suggest that LA may confer neuroprotection by
modulating microglia polarization.
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Figure 7. The Conditioned Medium from LA-treated microglia protects neurons. (A) Experimental
process; (B) No effect of LA treatment alone on SH-SY5Y cell viability; (C) Microglia-conditioned
medium co-treated with LPS and LA had a significant neuroprotective effect on SH-SY5Y; (D) Mor-
phology of different conditioned culture treatments of SH-SY5Y cells. vs. CON, ### p < 0.01; vs. LPS,
** p < 0.01. Data are presented as the mean ± SD. LA: Levistilide A, LPS: lipopolysaccharide.

2.8. LA Protects Dopaminergic Neurons and Inhibits Activation of Microglia in MPTP-Induced
Parkinson Mice

Subsequently, we utilized the MPTP-induced mouse model of Parkinson’s disease to
assess the neuroprotective properties of LA in vivo (Figure 8A). As shown in Figure 8B,
on the first day following MPTP administration, mice in the MPTP group exhibited a
significant reduction in body weight (p < 0.05). After 5 days, the body weight of the MPTP
group and LA group had recovered.

To evaluate the impact of LA on dopaminergic neuronal damage and microglia activa-
tion in the MPTP-induced mouse model of PD, we examined the expression of tyrosine hy-
droxylase (TH), a specific marker for dopaminergic neurons, and ionized calcium-binding
adaptor molecule 1 (Iba-1), a sensitive marker for microglial activation. As demonstrated
in Figure 8C, TH expression was significantly reduced in the substantia nigra and striatum
of Parkinson’s mice (p < 0.05), while Iba-1 expression was elevated (Figure 8D, p < 0.05).
Administration of LA reversed these effects, leading to increased TH expression (p < 0.05)
and decreased Iba-1 expression (p < 0.01) in these brain regions. Western blot analysis
further confirmed these findings (Figure 8E).
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Figure 8. LA ameliorates dopaminergic neuronal damage and inhibits microglia activation in the
brain of Parkinson’s disease mice. (A) In vivo experimental procedure; (B) Changes in body weights
of mice; (C) Effect of LA on TH in the substantia nigra and striatum of Parkinson’s model mice;
(D) Effect of LA on Iba-1 in the substantia nigra and striatum of Parkinson’s model mice. In the red
squares are the microglia, which are magnified; (E) Western blot of TH and Iba-1 expression in the
substantia nigra of Parkinson’s model mice. vs. CON, # p < 0.05, ## p < 0.01, vs. MPTP, * p < 0.05,
** p < 0.01. Data are presented as the mean ± SD. LA: Levistilide A, LPS: lipopolysaccharide.

3. Discussion

The research has shown that LA can control ROS levels and inhibit tumor cell growth,
ultimately leading to tumor cell death [27,28]. Additionally, LA has been found to improve
memory deficits and cognitive decline in APP/PS1 transgenic mice with Alzheimer’s
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disease by inhibiting the production of inflammatory factors and reducing the deposition
of beta-amyloid protein [29]. Furthermore, Angelica-derived LA has been reported to
protect nerves and enhance the synthesis of the growth factor NGF [30]. These studies
collectively demonstrate the pharmacological properties of LA, including its anti-tumor,
anti-inflammatory, neuroprotective, and other beneficial effects. However, the impact of
LA on activated microglia and PD remains unexplored.

PD is a complex neurodegenerative disorder associated with a depletion of dopamine [31].
Currently, levodopa, dopamine agonists, and inhibitors of dopamine-degrading enzymes
are commonly used as symptomatic treatments for PD. Nevertheless, these therapeutic
strategies possess several limitations, including a limited long-term efficacy and an inability
to halt or reverse the progression of the disease [32].

Microglia, in their physiological state, play a crucial role in maintaining the brain’s
internal environment, development, and cognitive functions [33]. A remarkable feature
of microglia is their sensitivity to external stimuli, as changes in various microenviron-
mental factors can prompt rapid activation [34]. Activated microglia can be categorized
as either M1 pro-inflammatory or M2 anti-inflammatory types. While this classification
may simplify the diversity of microglia, it remains a valid concept, and numerous studies
have employed this classification to investigate new therapeutic strategies. M1 microglia
are capable of releasing a large number of damaging pro-inflammatory mediators, such as
IL-1β, TNF-α, IL-6, and NO, accompanied by mitochondrial dysfunction, which promotes
cellular oxidative stress, elevates the level of ROS, and directly contributes to neuronal
apoptosis and exacerbates local inflammation [35,36]. On the other hand, M2 microglia
display an anti-inflammatory and reparative phenotype, producing anti-inflammatory,
trophic, and tissue-repair-promoting factors [37]. They also remove cellular debris and
phagocytose neutrophils entering the brain, protecting neurons and promoting the migra-
tion of neural stem cells to ischemic zones to mitigate brain damage [38]. In the pathology
of PD, microglia-mediated neuroinflammation plays a pivotal role and is a primary mecha-
nism leading to the death of dopaminergic neurons. Therefore, the inhibition of microglia
activation represents a potential therapeutic approach for PD, aiming to reduce dopamin-
ergic neuron death [39]. In our study, notably, LA has been shown to inhibit the release
of inflammatory cytokines, ROS production, and NF-κB p65 nuclear transfer, exhibiting
neuroprotective effects both in vivo and in vitro. Interestingly, LA does not hinder the
expression of anti-inflammatory cytokines.

Recent research has demonstrated the crucial role of metabolic reprogramming in
the phenotypic transformation of microglia. In M1 microglia, the metabolic mode shifts
from oxidative phosphorylation to glycolysis. Although glycolysis does not generate as
much ATP as oxidative phosphorylation, it produces ATP rapidly, meeting the heightened
metabolic demands of microglial cell growth during inflammatory states, as well as support-
ing the production of cytokines and ROS. This rapid ATP production allows M1 microglia
to effectively respond to inflammatory challenges and propagate the immune response [40].
In a mouse model of perioperative neurocognitive impairment, it was observed that the
hippocampus of animals in the surgical group exhibited altered microglial activation and an
upregulation of M1 markers. Furthermore, surgical trauma was associated with a metabolic
shift from oxidative phosphorylation to glycolysis in the hippocampus. In contrast, the
pharmacological inhibition of glycolysis using 2-DG effectively mitigated the microglia
M1 phenotype and the expression of pro-inflammatory mediators. This intervention also
improved hippocampus-dependent cognitive functions, indicating a potential therapeutic
approach for perioperative neurocognitive impairment [41].

Our findings demonstrate that the glycolysis inhibitor 2-DG effectively inhibits LPS-
induced production of the inflammatory factor NO, aligning with previous reports [18]. The
NO inhibition was even more pronounced after the administration of LA. OCR and ECAR,
which are commonly used to represent the cellular capacity for oxidative phosphorylation
and glycolysis, were significantly elevated in the LPS-activated microglia, consistent with
the literature [42], while LA has the potential to reverse the metabolic mode shift observed
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in LPS-activated microglia. GLUT-1, PKM2 and hexokinase are key enzymes in glycolysis
and play important roles in glucose transport, pyruvate production and mitochondrial
stabilization, respectively [43]. Our findings indicate that LA significantly reduces the
glucose uptake rate in LPS-induced microglia, accompanied by a reduction in glycolytic
metabolite levels and a downregulation of key glycolysis enzyme genes. In summary,
LA may promote a shift in the metabolic state of M1 microglial cells from glycolysis to
oxidative phosphorylation.

The mTOR protein, serving as the central component of the cellular energy-sensing
system, is responsible for facilitating the glucose metabolism pathway. AMPK, the primary
sensor of energy status and regulator of metabolism in eukaryotic cells, phosphorylates
tuberous sclerosis complex-2 (TSC2) and enhances its GAP activity on the small G protein
Rheb (Ras homolog enriched in the brain), ultimately inhibiting mTOR phosphoryla-
tion [44]. We discovered that LA enhances the phosphorylation of AMPK and suppresses
the phosphorylation of mTOR, indicating that LA reverses microglia metabolic reprogram-
ming and inhibits their M1 phenotypic transformation through the AMPK/mTOR pathway.

To the best of our knowledge, no traditional Chinese medicine components have been
reported to alter the polarization state of microglia by modulating metabolic reprogram-
ming and providing a neuroprotective effect. This study fills this gap by demonstrating that
LA, a phthalide-like constituent isolated from Angelica sinensis, can effectively suppress
the phenotypic transformation of M1 microglia triggered by LPS. It also regulates the
reprogramming of microglial glucose metabolism in an inflammatory state, potentially via
the modulation of the AMPK/mTOR pathway. Furthermore, LA exhibits neuroprotective
effects in an MPTP-induced Parkinson’s disease model. These findings provide valuable
insights and data for future research into novel drugs for Parkinson’s disease and other
neurodegenerative disorders.

4. Experimental Procedures
4.1. Animals

Twenty-two SPF male C57BL/6N mice, all 8 weeks old, were acquired from Beijing
Charles River Biotechnology Co., Ltd. (Beijing, China). The animals were housed in
an environment with a controlled temperature of 24 ± 2 ◦C and a relative humidity of
35 ± 5%. They were provided with free access to food and water and were allowed a week
of acclimation before the administration of MPTP. All experiments were approved by the
Animal Care and Use Committee at Tianjin University of Traditional Chinese Medicine
(Animal Research Ethics approval number: TCM-LAEC2022022).

4.2. Drug

LA (CAS No. 88182-33-6) was purchased from the Chinese National Institute for the
Control of Pharmaceutical and Biological Products (Beijing, China). The purity was more
than 98%, which was determined by HPLC.

4.3. Cell Culture

The BV2 murine microglial cell line was cultured in Dulbecco’s modified Eagle’s
medium (DMEM, Gibco, Waltham, MA, USA) supplemented with 10% heat-inactivated
fetal bovine serum (Gibco), 100 U/mL penicillin, and 100 µg/mL streptomycin (VivaCell,
Shanghai, China). Primary microglia were derived from postnatal day 1–3 Wistar rat
brains as described previously [45]. The entire forebrain was harvested from the rats after
decapitation, digested with trypsin, and filtered through a 40 µm sieve to obtain a cell
suspension. The cells were then cultured in T75 culture flasks for 14 days. After 14 days,
the cells were purified on a shaker, and they could be used for subsequent experiments.

4.4. Cell Viability Assay, Detection of Nitric Oxide and Cytokines

The BV-2 microglia were seeded in 48-well plates at a density of 1.6 × 105 cells per well,
while the primary microglia were inoculated in 96-well plates at a density of 1 × 105 cells
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per well. The microglia were pretreated with LA for 30 min before being treated with LPS
and/or LA for 24 h. Cell viability was determined using the CCK-8 assay. The supernatant
from the cell cultures was used to measure the levels of NO and inflammatory factors.
NO was detected using the Griess method according to the manufacturer’s instructions
(Beyotime, Shanghai, China, S0021S). TNF-α and IL-6 were measured using commercial
Elisa kits (RD, St. Paul, MN, USA, MTA00B and M6000B).

4.5. RNA Isolation and Quantitative PCR

BV-2 cells were seeded in 6-well plates (8 × 105 cells/Well). After treatment for 8 h (for
inflammatory factors) or 24 h (for glycolysis-related enzymes), the mRNA expression was
detected using quantitative PCR. RNA was extracted following the instructions (Progema,
Madison, WI, USA, LS1040). The RNA quality was tested with A260/280. All the results
were ≥2.0, indicating that the purity of RNA was qualified. Then, 200 ng of the resulting
RNA was added to a 20 µL system for reverse transcription to cDNA. qPCRs were per-
formed in a 10 µL reaction with 0.5 µL cDNA and SYBR Premix (ABI, Waltham, MA, USA,
A25742), and the specific primer sequences were added (Table 1). Reaction conditions were
50 ◦C 2 min, 95 ◦C 2 min, (95 ◦C 15 s, 60 ◦C 1 min) × 40. Four sets of biological replicates
and four sets of technical replicates were measured in parallel. RT negative control was
also performed to monitor DNA contamination.

Table 1. Primer sequences of quantitative PCR.

Gene Primer Pair (5′-3′) Accession ID

GAPDH F: CTTCACCACCATGGAGAAGGC
R: GGCATGGACTGTGGTCATGAG XM_001476707.5

iNOS F: GGCAGCCTGTGAGACCTTTG
R: GCATTGGAAGTGAAGCGTTTC XM_006532446.3

TNF-α F: CGGGGTGATCGGTCCCCAAAG
R: GGAGGGCGTTGGCGCGCTGG NM_001278601.1

IL-6 F: CCAGAGATACAAAGAAATGATGG
R: ACTCCAGAAGACCAGAGGAAA NM_001314054.1

IL-1β F: CGCAGCAGCACATCAACAAGAGC
R: TGTCCTCATCCTGGAAGGTCCACG XM_006498795.3

IL-1Ra F: AAGCCTTCAGAATCTGGGATAC
R: TCATCTCCAGACTTGGCACA NM_001159562.1

Ym1 F:TCACTTACACACATGAGCAAGAC
R: CGGTTCTGAGGAGTAGAGACCA NM_009892.3

Arg1 F: GGAAGACAGCAGAGGAGGTG
R: TATGGTTACCCTCCCGTTGA NM_007482.3

IL-10 F: GCTCTTACTGACTGGCATGAG
R: CGCAGCTCTAGGAGCATGTG NM_010548.2

β-actin F: AGAGGGAAATCGTGCGTGACATCAA
R: ATACCCAAGAAGGAAGGCTGGAAAA NM_007393.5

HK1 F: TGCCATGCGGCTCTCTGATG
R: CTTGACGGAGGCCGTTGGGTT NM_010438.3

PKM2 F: AGGATGCCGTGCTGAATG
R: TAGAAGAGGGGCTCCAGAGG NM_011099.4

HK2 F: TCATTGTTGGCACTGGAAGC
R: TTGCCAGGGTTGAGAGAGAG NM_013820.3

GLUT-1 F: CAGTTCGGCTATAACACTGGTG
R: GCCCCCGACAGAGAAGATG NM_011400.3
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4.6. Flow Cytometry

BV-2 cells were seeded in 12-well plates (3 × 105 cells/well). After 24 h of LPS and/or
LA treatment, the cells were washed and collected. To detect ROS, cells were incubated
with DCFH probe (10 µM) for 1 h in the dark. For the assessment of glucose uptake capacity,
cells were treated with 2-NBDG (50 µM) for 1 h. After another PBS wash, the levels of ROS
and glucose uptake capacity were analyzed by flow cytometry.

4.7. EACR and OCR

To conduct an analysis of extracellular acidification rate (ECAR) and oxygen con-
sumption rate (OCR), BV-2 cells (1 × 104 cells per well) were examined using an XF-96
Extracellular Flux Analyzer (Agilent, Santa Clara, CA, USA). The ECAR was evaluated in
response to various stimuli, including 10 mM glucose, 1 µM oligomycin, and 50 mM 2DG
(all from Agilent, 103020-100). Additionally, ECAR was analyzed in response to 1.5 µM
oligomycin, 1 µM FCCP, and 0.5 µM rotenone/antimycin A, following the manufacturer’s
instructions.

4.8. Targeted Metabolomics Analysis

BV-2 cells were seeded in 100 mm dishes overnight and stimulated by LA and/or LPS
for 24 h. The cell precipitates were flash-frozen in liquid nitrogen. After the addition of a
50% acetonitrile water solution, the cells were sonicated for 30 min and centrifuged. Then,
to the cell was added 150 µL of 3-NPH (200 mM) and 150 µL of EDC (120 mM; containing
6% pyridine), and the reaction proceeded for 1 h at 40 ◦C in a water bath. The supernatant
was filtered through a 0.22 µm membrane and used for LC-MS/MS analysis. The mass
spectrometry conditions were as follows: Ion source: ESI ion source; Curtain Gas: 35 arb;
Collision gas: 7 arb; Ion spray voltage: 4500 V; IonSource Temperature: 450 ◦C; IonSource
Gas1: 55 arb; IonSource Gas2: 55 arb.

4.9. The Effect of Conditioned Medium on Neurons

BV-2 cells were seeded in 48-well plates (1.6 × 105 cells/well). After a 30 min drug
pretreatment, LPS and/or LA were added to the BV-2 cells and incubated for 24 h. The
supernatant of the culture medium was then collected. The culture medium of SH-SY5Y
cells was replaced with the corresponding conditioned medium and incubated for another
24 h. Cell viability was then assessed using the CCK-8 method.

4.10. Western Blotting

Cells were seeded in 6-well plates (8 × 105 cells/well). The total protein, cytoplasmic
and nuclear proteins were extracted after the cells were treated with LPS and/or LA for 1 h
or 2 h. Western blot analysis was then performed using appropriate primary antibodies
and horseradish peroxidase (HRP)-conjugated secondary antibodies, along with the ECL
chemiluminescence kit (Millipore, Darmstadt, Germany, WBKLS0100). All the primary
antibodies were purchased from CST company: β-actin (3700S), NF-κB p65 (8242S), IκB-α
(4812S), p-IκB-α (2859S), Lamin b1 (17416S), mTOR (29182S), AMPK (5831S), p-AMPK
(2535S), TH (58844S), and Iba-1 (17198S).

4.11. MPTP-Induced Mouse Parkinson Model

Mice were randomly assigned to three groups: Control (n = 6), MPTP (n = 8), and LA
(n = 8). To establish an acute MPTP mouse model, after injecting 250 mg/kg of probenecid
sodium intraperitoneally, MPTP (22 mg/kg) was intraperitoneally administered for the first
time 30 min later, and MPTP was injected every two hours for four times in one day [46,47].
LA dissolved in sterile corn oil was administered by intraperitoneal injection daily, starting
the day before MPTP injection and continuing for 7 days, at a dose of 10 mg/kg once a
day [14,48]. The conversion of human equivalent dose was 1.01 mg/kg. In the Control and
MPTP groups, mice received sterile corn oil injections according to their body weight and
administered intraperitoneally.
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4.12. Immunohistochemistry

Seven days post-administration, mice were anesthetized with pentobarbital sodium
and perfused. Brain tissues were harvested. The entire brain tissue was fixed in 4%
paraformaldehyde and dehydrated in sucrose solution. Frozen sections of mouse brain
tissue were prepared, and coronal sections with a thickness of 40 µm from the striatum to
the substantia nigra were selected for immunofluorescence staining. Brain tissue sections
were perforated with PBS containing 0.3% Triton X-100, then blocked. Rabbit primary
antibodies (TH, Iba-1, CST, 1:100) were added and incubated at 4 ◦C overnight. After
washing with PBS, goat anti-rabbit IgG-labeled fluorescent secondary antibody (1:1000)
was added and incubated for 1 h at room temperature in the dark. Photographs were taken
using a confocal fluorescence microscope with an excitation wavelength of 488 nm.

4.13. Statistical Analysis

All experimental data underwent tests for homogeneity of variance and normality.
The data were presented as mean ± standard deviation and analyzed using SPSS version
26.0. The Shapiro-Wilk test was performed to check whether the data values were normally
distributed, and variance homogeneity tests were used to detect homogeneity of variance.
In the case of homogeneous variance, an independent sample t test was used to compare
two groups of data, and a one-way analysis of variance LSD test was used to compare
multiple groups of data. In the case of heterogeneous variance, a non-parametric test was
adopted to compare two groups of data, and the TamhaneT2 test was adopted to compare
multiple groups. A p-value less than 0.05 was considered statistically significant.
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