Table 6.
Performance metrics of the proposed CNN-based models for the hybrid dataset.
Dataset | Model | Accuracy | Precision | Sensitivity | Specificity | F1-Score | FPR |
---|---|---|---|---|---|---|---|
CNN | 92.26 ± 0.94 | 89.54 ± 1.69 | 94.69 ± 0.74 | 90.11 ± 1.44 | 92.04 ± 1.02 | 9.89 ± 1.44 | |
CNN+SVM | 94.24 ± 0.41 | 94.23 ± 0.42 | 94.25 ± 0.59 | 94.24 ± 0.4 | 94.24 ± 0.4 | 5.76 ± 0.4 | |
Hybrid | CNN+LR | 95.34 ±0.25 | 95.71 ± 0.34 | 95.01 ± 0.3 | 95.68 ± 0.33 | 95.36 ± 0.25 | 4.32 ± 0.33 |
Dataset | CNN+RF | 94.93 ± 0.38 | 97.34 ± 0.43 | 92.87 ± 0.65 | 97.21 ± 0.44 | 95.05 ± 0.36 | 2.79 ± 0.44 |
CNN+KNN | 90.43 ± 0.96 | 98.24 ± 1.05 | 84.99 ± 1.37 | 97.94 ± 1.16 | 91.13 ± 0.84 | 2.06 ± 1.16 | |
CNN+DT | 91.11 ± 0.42 | 90.56 ± 0.76 | 91.59 ± 0.86 | 90.67 ± 0.64 | 91.06 ± 0.41 | 9.33 ± 0.64 |