
Citation: Alasmary, H.;

ScalableDigitalHealth (SDH): An

IoT-Based Scalable Framework for

Remote Patient Monitoring. Sensors

2024, 24, 1346. https://doi.org/

10.3390/s24041346

Academic Editor: Joel J. P. C.

Rodrigues

Received: 5 December 2023

Revised: 4 February 2024

Accepted: 16 February 2024

Published: 19 February 2024

Copyright: © 2024 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

ScalableDigitalHealth (SDH): An IoT-Based Scalable Framework
for Remote Patient Monitoring
Hisham Alasmary

Department of Computer Science, College of Computer Science, King Khalid University,
Abha 61421, Saudi Arabia; alasmary@kku.edu.sa

Abstract: Addressing the increasing demand for remote patient monitoring, especially among the
elderly and mobility-impaired, this study proposes the “ScalableDigitalHealth” (SDH) framework.
The framework integrates smart digital health solutions with latency-aware edge computing au-
toscaling, providing a novel approach to remote patient monitoring. By leveraging IoT technology
and application autoscaling, the “SDH” enables the real-time tracking of critical health parameters,
such as ECG, body temperature, blood pressure, and oxygen saturation. These vital metrics are
efficiently transmitted in real time to AWS cloud storage through a layered networking architecture.
The contributions are two-fold: (1) establishing real-time remote patient monitoring and (2) develop-
ing a scalable architecture that features latency-aware horizontal pod autoscaling for containerized
healthcare applications. The architecture incorporates a scalable IoT-based architecture and an inno-
vative microservice autoscaling strategy in edge computing, driven by dynamic latency thresholds
and enhanced by the integration of custom metrics. This work ensures heightened accessibility,
cost-efficiency, and rapid responsiveness to patient needs, marking a significant leap forward in
the field. By dynamically adjusting pod numbers based on latency, the system optimizes system
responsiveness, particularly in edge computing’s proximity-based processing. This innovative fusion
of technologies not only revolutionizes remote healthcare delivery but also enhances Kubernetes
performance, preventing unresponsiveness during high usage.

Keywords: autoscaling; AWS cloud; digital health; edge computing; Internet of Things (IoT);
Kubernetes; remote health monitoring

1. Introduction

The Internet of Things (IoT) serves as a global network interconnecting users, devices,
and services collectively termed “Things”. It is designed to facilitate information exchange
and enable monitoring, control, and calibration of devices on a worldwide scale [1]. With
its technological foundations, IoT finds diverse applications including smart cities, traffic
management, industry optimization, and crucially, healthcare [2].

In the healthcare paradigm, the IoT plays a pivotal role, particularly in the context
of personalized wellness plans, chronic disease management, and elderly care [3]. It
effectively empowers the monitoring of patients’ health statuses, ensuring adherence to
prescribed treatments and medications under the guidance of medical professionals [4].
Key components of the IoT-enabled healthcare framework encompass medical devices, vital
sign sensors, and diagnostic instruments, collectively forming a dynamic ecosystem [5].

Within this framework, IoT enables advanced functionalities such as Computer As-
sisted Diagnostics (CAD) and data-driven decision support systems, amplifying the capa-
bilities of healthcare providers [6]. Moreover, IoT-driven healthcare addresses the unique
needs of the elderly, individuals with disabilities, and those residing in remote areas with
limited access to medical facilities [7,8].

IoT-enabled healthcare’s transformative potential extends to substantial benefits in
cost reduction, enhanced quality of life, and comprehensive patient assessment [9]. This

Sensors 2024, 24, 1346. https://doi.org/10.3390/s24041346 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24041346
https://doi.org/10.3390/s24041346
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-6482-3968
https://doi.org/10.3390/s24041346
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24041346?type=check_update&version=3


Sensors 2024, 24, 1346 2 of 14

technology fosters improved interactions between healthcare professionals, patients, atten-
dants, clinics, and medical institutions, ultimately nurturing a holistic healthcare environ-
ment [10]. Furthermore, through IoT-enabled healthcare, proactive measures are taken to
detect chronic and infectious diseases at early stages, curbing their societal impact such as
COVID-19 [11]. Real-time emergency responses are also significantly bolstered, ushering in
a new era of timely decision-making [12].

The emergence of edge computing has not only revolutionized computational re-
sources but has also ushered in a transformative shift in various industries, providing
efficient and low-latency services [13,14]. However, this technological shift brings new chal-
lenges. Network latency becomes a crucial concern as computational processes move closer
to the edge, requiring careful management for optimal performance. Ensuring reliability
poses another challenge, given the distributed nature of edge systems with varying device
capabilities. Security concerns are heightened due to the decentralized architecture, de-
manding robust measures to protect data integrity. Addressing these challenges is essential
to establish a resilient edge computing framework [15,16].

As industries increasingly adopt agile microservices, replacing traditional architec-
tures, they also leverage containerized resources at the edge to optimize system effi-
ciency [17]. This approach resonates particularly well within the realm of IoT-driven
healthcare, where the seamless integration of microservices and containerization can am-
plify the monitoring and management of patient health statuses through applications [18].

However, as these advancements unfold, the importance of latency-sensitive work-
loads cannot be overlooked, especially when considering autoscaling strategies. While the
industry explores reactive, proactive, and machine learning-based approaches for scaling
decisions, the intrinsic relationship between latency and autoscaling efficacy is sometimes
underestimated [19]. In the context of IoT-enabled healthcare, this oversight could compro-
mise the real-time monitoring and emergency response capabilities that form the core of its
transformative potential. Hence, understanding and addressing the latency factor becomes
crucial to ensure the optimal performance of edge systems deployed in healthcare scenarios.

By integrating the cutting-edge concepts of edge computing and IoT, healthcare prac-
titioners, and technology experts can collectively build a robust ecosystem that not only
monitors patients’ well-being but also ensures swift and efficient decision-making. In the
subsequent sections, a more extensive examination is conducted to explore the synergistic
interplay between IoT-driven healthcare and edge computing, highlighting their combined
potential to revolutionize the healthcare landscape.

Several remote patient monitoring systems have been proposed in the literature; how-
ever, these solutions do have their limitations. One of the challenges is the lack of scalability,
in the architectures used by many of these systems. With the increasing demand for pa-
tient monitoring, these architectures struggle to handle the growing volume of patient
data in real time, which leads to bottlenecks and system failures. Also, it is crucial to
address the issue of responsiveness in real-time healthcare data transmission and process-
ing. Delays in receiving and analyzing data can impact the timeliness of interventions,
thereby affecting the ability of the system to offer insights promptly. As a result, these
scalability and responsiveness drawbacks negatively impact patient monitoring effective-
ness, potentially affecting patient outcomes and the quality of the care provided. A novel
ScalableDigitalHealth (SDH) architecture is introduced in this work to effectively tackle
the aforementioned challenges in remote patient monitoring by integrating IoT/wearable
devices and micro application autoscaling into a robust healthcare framework. The core
objective is to optimize SDH capabilities for remote patient monitoring. The architecture
seamlessly manages data acquisition, computation, and analysis, meeting complex IoT
performance criteria. It adapts to varying demands at the edge and end users by dynami-
cally scaling monitoring applications. The major contributions and novelty of this work are
as follows:



Sensors 2024, 24, 1346 3 of 14

• A scalable IoT-based architecture for remote health monitoring, incorporating a layered
framework for efficient data management, and a dynamic latency-driven microservice
autoscaling strategy.

• An innovative microservice autoscaling algorithm in edge computing, which adjusts
the number of pods based on endpoint latency, determined by dynamic latency thresh-
olds and enhanced by the integration of custom metrics and a Prometheus adapter.

• A more sophisticated and efficient system that optimizes Kubernetes clusters by
adjusting pod counts according to latency metrics, dynamically adapting to vary-
ing workloads, enhancing system responsiveness, and preventing unresponsiveness
during high usage.

This paper is organized as follows: In Section 2, a comprehensive review of related
work is presented. Section 3 outlines the proposed SDH framework for remote patient
monitoring, including the design, implementation, and integration of hardware/software
systems. In Section 4, the experimental setup and validation of real-time health monitoring
data on the AWS platform are detailed in Section 5, highlighting the attained results and per-
formance gains. Finally, Section 6 concludes this paper by summarizing the contributions
and outlining potential directions for future research in this domain.

2. Related Work

IoT refers to a networked system comprised of integrated sensors, actuators, con-
trollers, and communication devices that facilitate the collection, transmission, and process-
ing of data remotely. It has a wide range of applications in the healthcare system, mainly for
remote healthcare, treatment, and rehabilitation in some cases [20]. It does so by attributing
all active resources into a network to monitor health status such as detection, observation,
and teleoperation using the Internet [21].

2.1. Remote Patient Monitoring

There have been quite a few contributions reported in the literature; for instance,
in [22], the authors proposed a system for healthcare monitoring that utilizes bio-medical
sensors and gateway communication. Despite showcasing advanced techniques, the sys-
tem’s performance is commendable; however, the absence of robust security mechanisms is
a significant limitation. Nerella et al. [23] presented an IoT-enabled healthcare architecture
for monitoring critical patients in the ICU. Their system provides real-time recommenda-
tions and alerts based on vital sign fluctuations. Although the architecture has enhanced
ecological parameters and acquired necessary software and hardware resources, the au-
thors acknowledge the need for additional sensors to measure pressure and weight, which
somewhat limits its comprehensive applicability.

Wearable devices have steered new possibilities for biomedical IoT applications by
facilitating data acquisition and transmission for further analysis. Categorizing portable
patient observation systems into groups based on sensor types offers a structured approach.
The wearable sensors are capable of recording various parameters such as heartbeat, pres-
sure, photoplethysmography (PPG), and radio frequency (RF). While these wearables
exhibit promising potential for monitoring and intervention, the practicality and reliability
of such devices in different scenarios warrant further scrutiny [24]. In this regard, Ma-
jumder et al.’s approach [25] employs a multi-sensor wearable device for real-time cardiac
arrest analysis, utilizing machine learning algorithms and signal processing techniques.
This demonstrates a step forward in accurate diagnosis and timely alerts; however, the
specific algorithms and methodologies employed should be critically evaluated to ensure
their effectiveness across diverse cases. The insertion of sensors into clothing for continuous
monitoring, as proposed by Brezulian et al. [26], presents an interesting perspective. The
utilization of nasal thermistor sensors for respiratory rate determination adds a novel
dimension to monitoring techniques. The reliance on temperature changes for respiration
calculation may introduce challenges in accuracy, particularly in non-ideal conditions.
Wang et al.’s innovative solution [27] for measuring breathing rates in asthma patients



Sensors 2024, 24, 1346 4 of 14

introduces watermarking and signal enhancement for secure data transmission. While the
concept is intriguing, the practical implementation and potential drawbacks of watermark-
ing in a medical context deserve careful consideration. Despite the promising potential of
IoT-enabled devices, several studies [28] reveal concerns regarding reliability, traceability,
and security within the IoT framework for commercial blood pressure measurement. The
use of small, easily integrated sensors is highlighted as essential, but the feasibility of
maintaining accuracy and reliability while downsizing sensors remains a critical concern.

2.2. Application Scaling at the Edge

The landscape of autoscaling microservices in both traditional cloud and modern edge
computing contexts has gained significant attention due to the inherent constraints posed
by limited resources such as CPU, memory, and storage. The complexity is compounded
by the heterogeneity of edge devices, necessitating dynamic resource adjustments to ensure
system stability and performance [29]. The deployment of containers, as well as the
adoption of different scalability paradigms (vertical, horizontal, and hybrid scaling) across
various computational layers in edge environments, have aimed to address these challenges.
However, it is important to examine the existing approaches critically.

While the Horizontal Pod Autoscaler (HPA) has found its place in cloud environments,
its applicability and effectiveness in the context of microservice scaling for edge computing
remain questionable [30]. The intricate nature of edge scenarios demands a broader consid-
eration of metrics due to the diverse resource landscape across heterogeneous devices.

Past research endeavors have leveraged performance metric tools like Prometheus
to facilitate application development, deployment, and autoscaling in edge computing.
Novel contributions have sought to address container scaling and workload balancing
specific to the edge. Casalicchio’s study on performance measures for autoscaling, though
claimed to improve Quality of Service (QoS), must be scrutinized for its actual impact,
especially in real-world, dynamic scenarios [31]. Similarly, Ahmad et al.’s categorization of
container scheduling approaches, while comprehensive, does not necessarily guarantee
their effectiveness in addressing real-world bottlenecks and pitfalls [32].

The adaptation of HPA and its variants for autoscaling microservices in edge comput-
ing raises concerns about their efficacy and responsiveness. Nguyen et al.’s comparison
of Autoscaler responses to Kubernetes and Prometheus metrics warrants a closer look to
assess the practical significance of their findings [33]. The DHPA algorithm by Jiang et al. ac-
knowledges the limitations of standard HPA, yet its potential drawbacks, especially in more
complex edge scenarios, remain under-explored [34]. The dynamic multi-level autoscaling
approach proposed by TaheriZadeh et al. seems promising, but its comparative perfor-
mance with other state-of-the-art methods requires rigorous testing and validation [35].

Machine learning-based approaches for autoscaling have gained traction; however, a
critical evaluation of their practicality is needed. The Proactive Pod Autoscaler introduced
by Ju et al. claims to forecast workloads and scale proactively, but the feasibility of real-
time forecasting in edge contexts must be examined [19]. Buchaca et al. in [36] coined
the concept of a perceptron-based prediction mechanism which appears promising, but
the generalizability of their approach across different edge use cases should be assessed.
Similarly, the RL-based approach by Rossi et al. may excel in cloud settings, but its
applicability and performance at the edge demand thorough investigation [37].

In summary, while the literature presents a multitude of autoscaling approaches for
microservices in edge computing, several critical aspects warrant further investigation. The
existing methodologies often lack thorough testing in diverse, real-world edge scenarios,
and the applicability of machine learning-driven techniques must be evaluated under the
constraints of latency, resource scarcity, and dynamic workloads. A more rigorous and criti-
cal assessment is essential to ensure that proposed autoscaling mechanisms translate into
tangible benefits in the intricate and real-time edge computing-based healthcare framework.



Sensors 2024, 24, 1346 5 of 14

3. Proposed Methodology

We provide a comprehensive overview of our proposed methodology encompassing
architecture, key components, and necessary procedures, detailing how it achieves the de-
velopment of latency-aware autoscaling-based remote patient monitoring. Our architecture,
depicted in Figure 1, seamlessly combines three essential functional layers: the perception
layer, the network layer, and the application layer. The perception layer connects patients,
sensors, and IoT devices, gathering vital health data using IoT modules. These data are
then transmitted through the network to the AWS cloud. The network layer manages data
transmission, secure storage, and dynamic processing within the cloud ecosystem. Re-
sponsiveness is enhanced through latency-based Kubernetes Horizontal Pod Autoscaling,
improving the user experience of our mobile app. The application layer provides a user
interface for medical professionals, clinicians, patients, and caregivers. This empowers
them to access patient data, respond in real time, and interact with the system. Further
details about each layer and its components are provided in the subsequent sections.

ECG

Oximeter Body
Temperature

BP

Doctor

Gaurdian

Network Layer Application Layer

Nurse

Node Node

Perception Layer

Pod Pod Pod

Figure 1. System model of the proposed scalable digital health framework.

3.1. Perception Layer

The IoT devices and sensors at the perception layer record vital health data from the
patient’s body, transmitting them to the cloud, as depicted in Figure 1. This layer initially
gathers data from sensors, aggregating them in a Microcontroller Unit (MCU), and then
sends them to the smartphone via Bluetooth. The smartphone further transfers data to the
cloud via a gateway.

Equipped with an Arduino microcontroller, the perception layer integrates body
temperature, ECG, blood pressure, and oxygen saturation sensors linked to a smartphone
app. However, managing abundant sensor-generated data at the perception layer is
challenging because, for example, incorporating more sensors is hindered by data volume,
low-power smartphones struggle with extensive data, and data processing expenses rise
due to network congestion. To address this, our solution employs edge computing. As
depicted in Table 1, redundant data are evident in pulse and temperature sensor readings
taken every four milliseconds. Variable sample rates is assigned to sensors based on
importance, allowing more frequent readings for significant sensors like ECG. Moreover,
microcontroller-level edge computation identifies and discards redundant sensor data,
minimizing unnecessary data transmission.

Efficient IoT sensor data transfer for processing begins by transmitting them to the
smartphone app developed using the Flutter framework. Flutter, an open-source UI toolkit
that supports both iOS and Android, facilitates this communication via Bluetooth. To
manage data load, our approach involves secondary edge processing. This entails the
smartphone analyzing data and determining the necessity of immediate cloud transmis-
sion; otherwise, it is stored locally. For instance, transmitting safe body temperature
readings (97–99 °F or 36.11–37.22 °C) immediately is unnecessary. Local processing also



Sensors 2024, 24, 1346 6 of 14

eases the load on the cloud gateway. The smartphone facilitates module connections,
controlling data flow. Through distinct sensor frequencies and redundant data filtering
on the microcontroller and smartphone, our system adeptly manages high data volumes,
creating space for additional sensors.

Table 1. Temperature and pulse data collected using the IoT module.

Temp (F) Temp (C) Pulse Time

80 26.67 87 10 April 2023 16:20:10
80 26.67 87 10 April 2023 16:20:12
80 26.67 87 10 April 2023 16:20:16
80 26.67 87 10 April 2023 16:20:20
80 26.67 87 10 April 2023 16:20:23
80 26.67 87 10 April 2023 16:20:27
80 29.44 85 10 April 2023 16:20:31
82 27.78 85 10 April 2023 16:20:34
84 28.89 85 10 April 2023 16:20:38
86 30.00 85 10 April 2023 16:20:42
87 30.56 85 10 April 2023 16:20:45
88 31.11 85 10 April 2023 16:20:49
89 31.67 85 10 April 2023 16:20:53
90 32.22 85 10 April 2023 16:20:56

3.2. Network Layer

This layer, also known as the cloud layer, facilitates data management, collection,
storage, and processing. The data received from the perception layer are forwarded to the
cloud storage after initial processing. This layer consists of several modules, including
gateways, communication interfaces, AWS cloud, Kubernetes engine, and more.

In the AWS cloud, the system can receive data from the smartphone app using either
MQTT, a lightweight publish–subscribe protocol for IoT devices, or the lambda event
service. The proposed system selects the event service due to its efficient data processing,
microservices integration, and robust authentication.

Once data are received on the event server, the system authenticates and verifies them
using JSON Web Token (JWT), ensuring data source credibility. If needed, an extra layer of
security through encryption is applied. After verification, the system evaluates readings
to identify critical situations needing immediate medical attention. In such cases, health
representatives and caregivers are notified via the mobile application, or else the data are
sent to storage.

The framework classifies cloud storage as Relational Data Storage (RDS) and non-
relational storage. RDS instances hold patient records and recent analyses, while non-
relational storage, managed through a simple storage service (S3), stores vast IoT module
data, retrievable upon demand.

The cloud processes and analyzes the streamlined data from the mobile app, utilizing
simulated intelligence, ML algorithms, and visualization tools, enabling advanced diag-
noses and medical decision support for physicians. The system showcases primary visual
effects and comments to demonstrate framework effectiveness.

To optimize Kubernetes clusters, the system dynamically adjusts pod counts based on
latency metrics. The proposed algorithm calculates the necessary pod count adjustments
(P) for a target latency value (Ltarget), considering active pods, max and min number of
pods, and latency threshold values. A waiting period (τ) is introduced for stability. The
algorithm excels in adapting to varying workloads, enhancing Kubernetes performance.

In terms of the decision-making algorithm (Algorithm 1), the Threshold Latency
Value is collected and measured using the Custom Metrics API and Prometheus. The
system considers a situation of many Kubernetes nodes (swarm) and nodes with different
capabilities, where pods can generate different latencies.



Sensors 2024, 24, 1346 7 of 14

Algorithm 1 Latency-based Horizontal Pod Autoscaling with Custom Metrics API
Require: Ltarget: Target latency value
1: ActivePods: Set of currently active pods
2: MinPods: Minimum number of pods
3: ScalingThreshold: Threshold for scaling (e.g., percentage increase in latency)
4: CustomMetrics: Custom Metrics API for collecting and measuring latency values
5:
6: Initialize Custom Metrics API: CustomMetrics.initialize()
7: MaxPods = None
8: while True:
9: L = {}

10: for pod in ActivePods:
11: Li = getThresholdLatencyValue(pod)
12: L.append(Li)
13: end for
14: totalLatency = ∑(L)
15: averageLatency = totalLatency

ActivePods.length
16: if MaxPods is None:
17: MaxPods = determineMaxPods()

18: latencyChange =
(averageLatency−Ltarget)

Ltarget
× 100

19: call AggregateLatenciesAcrossNodes()
20: call CalculateSeparateLatencyThresholdsForEachNodeOrPod()
21: call TakeIntoAccountDifferencesInCapabilitiesAcrossNodes()
22: if latencyChange > ScalingThreshold and len(ActivePods) < MaxPods:
23: P = ⌈ActivePods.length × latencyChange

ScalingThreshold ⌉
24: P = min(P, MaxPods − ActivePods.length)
25: elif latencyChange < −ScalingThreshold and len(ActivePods) > MinPods:
26: P = ⌈ActivePods.length × −latencyChange

ScalingThreshold ⌉
27: P = min(P, ActivePods.length − MinPods)
28: else:
29: P = 0
30: end if
31: if P > 0:
32: call ScaleUp(P)
33: elif P < 0:
34: call ScaleDown(−P)
35: end if
36: call wait(τ)

The network layer facilitates Application-to-Network layer communication via API
gateways, linking lambda functions to gateways using JSON Web Tokens (JWTs) for Ap-
plication layer authorization. Upon successful authentication, specific requests trigger
relevant service invocation.

The system utilizes the Custom Metrics API to empower monitoring tools like Prometheus
to leverage application-specific metrics for the HPA controller. Network traffic metrics are
applied to improve latency and response time. The Custom Metric API metrics encompass
application statistics housed in Prometheus’ time series database and measurements from
a collector integrated into Kubernetes Custom Metrics API.

The objective is to scale pods based on endpoint latency, achieved through the adoption
of the Prometheus adapter via a Kubeapps Hub helm chart. The system contributes an HPA
that adjusts deployment scaling when the average response time surpasses a set threshold,
such as 50 ms.

The algorithm dynamically adjusts pod numbers based on latency, optimizing system
responsiveness as multiple users interact simultaneously. It efficiently scales pods to align
with observed latency, a methodology well-suited for edge computing’s proximity-based
processing. The framework maintains the application’s responsiveness, providing timely
healthcare services and adapting effectively to varying workloads and network conditions,
enhancing remote patient monitoring.



Sensors 2024, 24, 1346 8 of 14

3.3. Application Layer

The application layer serves as the bridge for doctors, health workers, and guardians
to use the system together. It includes web-based dashboards, physician, and guardian
smartphone apps, as illustrated in Figure 2. Through these interfaces, users access real-time
patient information. Medical staff may use it to visualize data and prompt alerts. This layer
acts as the link between the system and doctors, enabling real-time patient health updates
and healthcare data insights. The guardian app provides real-time patient health updates
and alerts for immediate attention. The dashboard empowers healthcare professionals
to monitor and diagnose patients, while also facilitating cloud-based analysis and quick
guardian notifications.

 

 

Figure 2. IoT devices registration via Flutter-based mobile app.

4. Experimental Setup

The proposed scalable framework for remote patient monitoring using a custom-built
solution that integrates IoT components and AWS cloud services is implemented. This
systematic approach ensures real-time data transmission, storage, and access for the IoT-
based remote health monitoring system. To provide a better understanding of the technical
aspects of the prototype, the principal technical specifications of the electronic elements
and modules used are summarized in Table 2.

The central microcontroller unit, Arduino UNO Board, orchestrates various sensors
and actuators, including the AD8232 ECG Sensor, LM35 Temperature Pulse Sensor, blood
pressure sensor, and MAX30100 Pulse Oximeter. These components are meticulously con-
figured (as illustrated in Figure 3) for precise data acquisition, enabling unique identifiers
(Card IDs) for differentiating patients and using the HC05 Bluetooth module operates at a
frequency of 2.4 GHz for secure communication with the Android app.

The ESP32 module is integrated with the Arduino UNO Board for IoT data transmis-
sion, collecting sensor data and securely transmitting them to the AWS cloud platform. The
proposed system selects the event service due to its efficient data processing, microservices
integration, and robust authentication. The AWS cloud services are leveraged for data
storage, management, and authentication, enabling real-time data transmission, storage,
and access for the IoT-based remote health monitoring system.



Sensors 2024, 24, 1346 9 of 14

Table 2. Technical specifications of electronic elements and modules.

Component Technical Specifications

Arduino UNO Board 16 MHz clock speed, 32 KB of SRAM, 1 KB of EEPROM, and
USB connectivity

AD8232 ECG Sensor 3-lead ECG sensor, 50 Hz noise rejection, and 2.5–3.3 V power supply

LM35 Temperature
Pulse Sensor

0–150 °C temperature range, 0.25 °C sensitivity, and 3–5 V
power supply

Blood Pressure Sensor 0–255 mmHg pressure range, I2C interface, and 5 V power supply

MAX30100
Pulse Oximeter

Pulse rate and SpO2 measurements, I2C interface, and 1.8–5.5 V
power supply

HC05 Bluetooth Module 2.4 GHz frequency range, 2 Mbps bitrate, and RS232 interface

ESP32 Module Dual-core 32-bit CPU, Wi-Fi and Bluetooth connectivity, and 3.3 V
power supply

AWS Cloud Services Amazon Web Services (AWS) IoT Core, AWS Lambda, AWS
DynamoDB, and AWS CloudWatch

Flutter-based
Mobile App

Open-source UI toolkit, supports iOS and Android, and
Wi-Fi connectivity

Prometheus Client Open-source monitoring and alerting toolkit, supports client libraries
and integrations, and various frequency ranges for metric collection

 

Figure 3. Hardware setup.

In addition, latency-based metrics into a remote patient monitoring Android appli-
cation using a Prometheus client are incorporated, focusing on enabling Kubernetes to
function effectively in a large-scale edge computing scenario with latency-aware Pod
autoscaling. This experimental setup investigates the implications of these metrics in a
microservice environment while connecting Kubernetes and Prometheus capabilities.

5. Results and Discussion

This section provides a detailed discussion on the outcomes of the proposed SDH
framework after rigorous experimentation. The experiments were conducted in a controlled
laboratory environment using a Kubernetes cluster (version 1.18.0) comprising a single Master
node and three worker nodes. In this setup, the data accumulated through the IoT module
including vital signs such as heart rate, blood pressure, and temperature were subsequently
transmitted to the cloud. Intelligent insights and recommendations including real-time push
notifications were generated at the cloud as a result of data analysis. Each monitoring session
lasted 6 h, with a total of 10 sessions conducted to assess the performance and validity of



Sensors 2024, 24, 1346 10 of 14

the proposed novel framework over time. The evaluation focused on simulations in the
laboratory settings analyzing the functionality and scalability. To evaluate the effectiveness of
the Latency Aware HPA, the impact on Pod generation was analyzed using the latency custom
metric. The Master node was equipped with a 4-core CPU and 8 GB RAM configuration,
while each worker node had a 4-core CPU and 4 GB RAM configurations.

To replicate edge nodes within the proposed scalable remote patient monitoring frame-
work and to keep track of latency metric values, multiple edge nodes were activated at
different time stamps with the remote patient monitoring application deployed on worker
nodes, accessible to edge nodes via the NodePort service.

In the context of latency-aware scalability and pod adjustments, significant insights
emerge from the observations, as depicted in Figure 4. The average latency values are
captured and plotted as a continuous line graph, whereas the number of pods with respect to
time stamps is shown in the green color bar plot. In Figure 4a, at time stamp 0 a fixed number
of five pods were initialized. After a few minutes, edge nodes were activated to launch the
smartphone application and subsequently a rise in the average latency values was observed,
as depicted in Figure 4b. As a result, four pods were automatically added and consequently a
drop in the average latency value could be seen. In order to further validate the effectiveness
of the proposed scalable framework, two of the active edge nodes were deactivated and as a
result a drop in the average latency values was observed and hence the framework scaled
down nine pods at time stamp 7, as depicted in Figure 4c. The fluctuations in the average
latency values were closely monitored, and at time stamp 25 another screenshot of the system
was captured representing the addition of four extra pods, as seen in Figure 4d.

The effect of constant number of active edge nodes was also examined, as can be seen
in Figure 4e; in the time stamp window around 30 and 36, the number of pods remained
constant at the value 10, highlighting a very minor change in the average latency values. The
experiment carried out over 6 h was closely monitored in 10 sessions and system performance
in terms of scaling up (pod addition), scaling down (pod deletion), and no change (pod
remain constant) was evaluated at different time stamps, as depicted in Figure 4a through
Figure 4j.

Collectively, the critical analysis of these scenarios underscores the algorithm’s dy-
namic adaptability in the face of varying latency dynamics. The observations illustrate
its capacity to strike a delicate equilibrium between accommodating performance and
sustaining the stability of the underlying system.

Moreover, to validate the effectiveness of the proposed SDH framework, an extensive
comparative analysis was carried out, bench-marking SDH against other state-of-the-art remote
healthcare solutions. Through this comprehensive assessment, the proposed SDH framework
for remote patient monitoring stands out as a robust and versatile solution, demonstrating
excellent performance based on key features and services, as detailed in Table 3.

Table 3. A comparative analysis of health monitoring systems featuring various capabilities.

References

Features

Monitoring Capabilities Real Time Remote
Configuration Scalability Communication

and Alerts
Personalized
Recommendations

Medicine
Reminder

Ref. [38] Heart Chronic Disease ✓ × ✓ × × ×

Ref. [39] Total Knee Arthroplasty ✓ × × ✓ ✓ ×

Ref. [40] Activities of Daily Living (ADLs) ✓ × × ✓ × ×

Ref. [41] Body Temperature,
Heartbeat, ECG ✓ × × ✓ × ×

Ref. [42] ADLs, ECG, Fall Detection ✓ × × ✓ × ×

Ref. [43] Heart Disease, Monitoring ✓ ✓ ✓ ✓ × ×

Ref. [44] Pulse, Body Temperature, Heart
Rate, Oxygen Saturation ✓ × × ✓ × ×

Proposed SDH Body Temperature, ECG, Blood
Pressure, Oxygen Saturation ✓ ✓ ✓ ✓ ✓ ✓



Sensors 2024, 24, 1346 11 of 14

 

(a) Number of pods initialized at Time Stamp 0 (b) Number of Pods Scaled Down by 4 pods at Time Stamp 3 

(c) Number of Pods Scaled Down by 9 pods at Time Stamp 7 (d) Number of Pods Scaled Up by 4 pods at Time Stamp 25 

(e) Number of Pods Scaled Up by 3 pods at Time Stamp 55 (f) Number of Pods Scaled Down by 2 pods at Time Stamp 75 

(g) Number of Pods Scaled Down by 4 pods at Time Stamp 100 (h) Number of Pods Scaled Up by 6 pods at Time Stamp 170 

(i) Number of Pods Scaled Up by 10 pods at Time Stamp 250

 
 (a) Number of Pods Scaled Up by 6 pods at Time Stamp 170 

(j) Number of Pods Scaled Down by 6 pods at Time Stamp 350

 
 (a) Number of Pods Scaled Up by 6 pods at Time Stamp 170 

Figure 4. Average latency fluctuations and scaling decisions at multiple time stamps.



Sensors 2024, 24, 1346 12 of 14

6. Conclusions and Future Work

In response to the rising demand for remote patient monitoring, particularly among
vulnerable populations like the elderly and mobility-impaired, this study introduced the
groundbreaking “ScalableDigitalHealth” (SDH) framework. By integrating smart digital
health solutions with latency-aware edge computing autoscaling, this research has provided
an innovative approach to remote healthcare. Leveraging IoT technology and application
autoscaling, SDH enables the real-time tracking of critical health parameters, anticipated
to change the dynamics of healthcare delivery by ensuring accessibility, cost-efficiency,
and rapid responsiveness to patient needs. In the perspective of future research directions,
some of the open issues need further exploration. One direction is enhancing the predictive
analytic capabilities within the SDH framework. This may be achieved by integrating
advanced machine learning algorithms that will empower the system to detect early signs
of health deterioration and proactively alert healthcare providers. Additionally, a user-
centric research is also vital, involving usability studies and user experience assessments to
tailor the SDH framework to diverse patient demographics. By continually advancing such
integrated healthcare solutions, patient-centric care will go beyond geographical barriers
and will empower both patients and healthcare providers.

Funding: This research was funded by King Khalid University under grant number RGP2/312/44.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The proposed dataset is private data and will be available upon request
for research purposes.

Acknowledgments: The author extends his appreciation to the Deanship of Scientific Research at
King Khalid University for funding this work through large group Research Project under grant
number RGP2/312/44.

Conflicts of Interest: The author declares no conflicts of interest.

References
1. Tian, S.; Yang, W.; Le Grange, J.M.; Wang, P.; Huang, W.; Ye, Z. Smart healthcare: Making medical care more intelligent. Glob.

Health J. 2019, 3, 62–65. [CrossRef]
2. Qian, Y.; Wu, D.; Bao, W.; Lorenz, P. The Internet of Things for smart cities: Technologies and applications. IEEE Netw. 2019,

33, 4–5. [CrossRef]
3. Kashani, M.H.; Madanipour, M.; Nikravan, M.; Asghari, P.; Mahdipour, E. A systematic review of IoT in healthcare: Applications,

techniques, and trends. J. Netw. Comput. Appl. 2021, 192, 103164. [CrossRef]
4. Tun, S.Y.Y.; Madanian, S.; Mirza, F. Internet of Things (IoT) applications for elderly care: A reflective review. Aging Clin. Exp. Res.

2021, 33, 855–867. [CrossRef]
5. Kadhim, K.T.; Alsahlany, A.M.; Wadi, S.M.; Kadhum, H.T. An overview of patient’s health status monitoring system based on

Internet of things (IoT). Wirel. Pers. Commun. 2020, 114, 2235–2262. [CrossRef]
6. Deepika, S.; Vijayakumar, K. IoT based Elderly Monitoring System. In Proceedings of the 2022 6th International Conference on

Trends in Electronics and Informatics (ICOEI), Tirunelveli, India, 28–30 April 2022; pp. 573–579.
7. Olmedo-Aguirre, J.O.; Reyes-Campos, J.; Alor-Hernández, G.; Machorro-Cano, I.; Rodríguez-Mazahua, L.; Sánchez-Cervantes,

J.L. Remote healthcare for elderly people using wearables: A review. Biosensors 2022, 12, 73. [CrossRef]
8. Al-Kahtani, M.S.; Khan, F.; Taekeun, W. Application of Internet of Things and sensors in healthcare. Sensors 2022, 22, 5738.

[CrossRef]
9. Arora, J.; Yomsi, P.M. Wearable sensors based remote patient monitoring using IoT and data analytics. U. Porto J. Eng. 2019,

5, 34–45. [CrossRef]
10. Duncan, H.P.; Fule, B.; Rice, I.; Sitch, A.J.; Lowe, D. Wireless monitoring and real-time adaptive predictive indicator of

deterioration. Sci. Rep. 2020, 10, 11366. [CrossRef]
11. Lavric, A.; Petrariu, A.I.; Mutescu, P.M.; Coca, E.; Popa, V. Internet of Things concept in the context of the COVID-19 pandemic:

A multi-sensor application design. Sensors 2022, 22, 503. [CrossRef]
12. Masud, M.M.; Serhani, M.A.; Navaz, A.N. Resource-aware mobile-based health monitoring. IEEE J. Biomed. Health Inform. 2016,

21, 349–360. [CrossRef]
13. Cao, K.; Liu, Y.; Meng, G.; Sun, Q. An overview on edge computing research. IEEE Access 2020, 8, 85714–85728. [CrossRef]

http://doi.org/10.1016/j.glohj.2019.07.001
http://dx.doi.org/10.1109/MNET.2019.8675165
http://dx.doi.org/10.1016/j.jnca.2021.103164
http://dx.doi.org/10.1007/s40520-020-01545-9
http://dx.doi.org/10.1007/s11277-020-07474-0
http://dx.doi.org/10.3390/bios12020073
http://dx.doi.org/10.3390/s22155738
http://dx.doi.org/10.24840/2183-6493_005.001_0003
http://dx.doi.org/10.1038/s41598-020-67835-4
http://dx.doi.org/10.3390/s22020503
http://dx.doi.org/10.1109/JBHI.2016.2525006
http://dx.doi.org/10.1109/ACCESS.2020.2991734


Sensors 2024, 24, 1346 13 of 14

14. Mao, Y.; You, C.; Zhang, J.; Huang, K.; Letaief, K.B. A survey on mobile edge computing: The communication perspective. IEEE
Commun. Surv. Tutor. 2017, 19, 2322–2358. [CrossRef]

15. Nencioni, G.; Garroppo, R.G.; Olimid, R.F. 5G multi-access edge computing: Security, dependability, and performance. arXiv
2021, arXiv:2107.13374.

16. Yu, W.; Liang, F.; He, X.; Hatcher, W.G.; Lu, C.; Lin, J.; Yang, X. A survey on the edge computing for the Internet of Things. IEEE
Access 2017, 6, 6900–6919. [CrossRef]

17. Park, H.; Kim, T.; Jin, Y.; Lee, S. IoT Edge Orchestration for Distributed DNN Service with Containerized Resource Allocation. In
Proceedings of the 2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA,
8–11 January 2022; pp. 483–484.

18. Abouaomar, A.; Cherkaoui, S.; Mlika, Z.; Kobbane, A. Resource provisioning in edge computing for latency-sensitive applications.
IEEE Internet Things J. 2021, 8, 11088–11099. [CrossRef]

19. Ju, L.; Singh, P.; Toor, S. Proactive autoscaling for edge computing systems with kubernetes. In Proceedings of the 14th IEEE/ACM
International Conference on Utility and Cloud Computing Companion, Leicester, UK, 6–9 December 2021; pp. 1–8.

20. Dwivedi, R.; Mehrotra, D.; Chandra, S. Potential of Internet of Medical Things (IoMT) applications in building a smart healthcare
system: A systematic review. J. Oral Biol. Craniofacial Res. 2022, 12, 302–318. [CrossRef]

21. Wong, J.; Tung, A.; Kurenkov, A.; Mandlekar, A.; Fei-Fei, L.; Savarese, S.; Martín-Martín, R. Error-aware imitation learning
from teleoperation data for mobile manipulation. In Proceedings of the Conference on Robot Learning, PMLR, Auckland, New
Zealand, 14–18 December 2022; pp. 1367–1378.

22. Vergin, R.S.M.; Alphonse, S.; Jani, A.L. Automated Health Monitoring System Using the Internet of Things for Improving
Healthcare. In Intelligent Interactive Multimedia Systems for e-Healthcare Applications; Apple Academic Press: Palm Bay, FL, USA,
2022; pp. 271–296.

23. Nerella, S.; Guan, Z.; Siegel, S.; Zhang, J.; Khezeli, K.; Bihorac, A.; Rashidi, P. AI-Enhanced Intensive Care Unit: Revolutionizing
Patient Care with Pervasive Sensing. arXiv 2023, arXiv:2303.06252.

24. Subrahmannian, A.; Behera, S.K. Chipless RFID sensors for IoT-based healthcare applications: A review of state of the art. IEEE
Trans. Instrum. Meas. 2022, 71, 1–20. [CrossRef]

25. Majumder, A.; ElSaadany, Y.A.; Young, R.; Ucci, D.R. An energy-efficient wearable smart IoT system to predict cardiac arrest.
Adv. Hum.-Comput. Interact. 2019, 2019, 1507465. [CrossRef]

26. Brezulianu, A.; Geman, O.; Zbancioc, M.D.; Hagan, M.; Aghion, C.; Hemanth, D.J.; Son, L.H. IoT-based heart activity monitoring
using inductive sensors. Sensors 2019, 19, 3284. [CrossRef]

27. Wang, J.; Lin, C.C.; Yu, Y.S.; Yu, T.C. Wireless sensor-based smart-clothing platform for ECG monitoring. Comput. Math. Methods
Med. 2015, 2015, 295704. [CrossRef]

28. Lamonaca, F.; Balestrieri, E.; Tudosa, I.; Picariello, F.; Carnì, D.L.; Scuro, C.; Bonavolontà, F.; Spagnuolo, V.; Grimaldi, G.; Colaprico,
A. An overview on Internet of medical things in blood pressure monitoring. In Proceedings of the 2019 IEEE International
Symposium on medical measurements and Applications (MeMeA), Istanbul, Turkey, 26–28 June 2019; pp. 1–6.

29. Taherizadeh, S.; Stankovski, V. Auto-scaling applications in edge computing: Taxonomy and challenges. In Proceedings of the
International Conference on Big Data and Internet of Thing, London, UK, 20–22 December 2017; pp. 158–163.

30. Wang, N.; Varghese, B.; Matthaiou, M.; Nikolopoulos, D.S. ENORM: A framework for edge node resource management. IEEE
Trans. Serv. Comput. 2017, 13, 1086–1099. [CrossRef]

31. Casalicchio, E. A study on performance measures for auto-scaling CPU-intensive containerized applications. Clust. Comput. 2019,
22, 995–1006. [CrossRef]

32. Ahmad, I.; AlFailakawi, M.G.; AlMutawa, A.; Alsalman, L. Container scheduling techniques: A survey and assessment. J. King
Saud Univ.-Comput. Inf. Sci. 2022, 34, 3934–3947. [CrossRef]

33. Nguyen, T.T.; Yeom, Y.J.; Kim, T.; Park, D.H.; Kim, S. Horizontal pod autoscaling in Kubernetes for elastic container orchestration.
Sensors 2020, 20, 4621. [CrossRef]

34. Jiang, C.; Wu, P. A Fine-Grained Horizontal Scaling Method for Container-Based Cloud. Sci. Program. 2021, 2021, 1–10. [CrossRef]
35. Taherizadeh, S.; Stankovski, V. Dynamic multi-level auto-scaling rules for containerized applications. Comput. J. 2019, 62, 174–197.

[CrossRef]
36. Buchaca, D.; Berral, J.L.; Wang, C.; Youssef, A. Proactive container auto-scaling for cloud native machine learning services.

In Proceedings of the 2020 IEEE 13th International Conference on Cloud Computing (CLOUD), Virtual, 18–24 October 2020;
pp. 475–479.

37. Rossi, F.; Nardelli, M.; Cardellini, V. Horizontal and vertical scaling of container-based applications using reinforcement learning.
In Proceedings of the 2019 IEEE 12th International Conference on Cloud Computing (CLOUD), Milan, Italy, 8–13 July 2019;
pp. 329–338.

38. Salman, O.H.; Aal-Nouman, M.I.; Taha, Z.K. Reducing waiting time for remote patients in telemedicine with considering treated
patients in emergency department based on body sensors technologies and hybrid computational algorithms: Toward scalable
and efficient real time healthcare monitoring system. J. Biomed. Inform. 2020, 112, 103592. [CrossRef]

39. Ramkumar, P.N.; Haeberle, H.S.; Ramanathan, D.; Cantrell, W.A.; Navarro, S.M.; Mont, M.A.; Bloomfield, M.; Patterson, B.M.
Remote patient monitoring using mobile health for total knee arthroplasty: Validation of a wearable and machine learning–based
surveillance platform. J. Arthroplast. 2019, 34, 2253–2259. [CrossRef]

http://dx.doi.org/10.1109/COMST.2017.2745201
http://dx.doi.org/10.1109/ACCESS.2017.2778504
http://dx.doi.org/10.1109/JIOT.2021.3052082
http://dx.doi.org/10.1016/j.jobcr.2021.11.010
http://dx.doi.org/10.1109/TIM.2022.3180422
http://dx.doi.org/10.1155/2019/1507465
http://dx.doi.org/10.3390/s19153284
http://dx.doi.org/10.1155/2015/295704
http://dx.doi.org/10.1109/TSC.2017.2753775
http://dx.doi.org/10.1007/s10586-018-02890-1
http://dx.doi.org/10.1016/j.jksuci.2021.03.002
http://dx.doi.org/10.3390/s20164621
http://dx.doi.org/10.1155/2021/6397786
http://dx.doi.org/10.1093/comjnl/bxy043
http://dx.doi.org/10.1016/j.jbi.2020.103592
http://dx.doi.org/10.1016/j.arth.2019.05.021


Sensors 2024, 24, 1346 14 of 14

40. Awais, M.; Raza, M.; Ali, K.; Ali, Z.; Irfan, M.; Chughtai, O.; Khan, I.; Kim, S.; Ur Rehman, M. An Internet of Things based
bed-egress alerting paradigm using wearable sensors in elderly care environment. Sensors 2019, 19, 2498. [CrossRef]

41. Abdulameer, T.H.; Ibrahim, A.A.; Mohammed, A.H. Design of health care monitoring system based on Internet of thing (IoT).
In Proceedings of the 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT),
Istanbul, Turkey, 22–24 October 2020; pp. 1–6.

42. Boukhennoufa, I.; Amira, A.; Bensaali, F.; Esfahani, S.S. A novel gateway-based solution for remote elderly monitoring. J. Biomed.
Inform. 2020, 109, 103521. [CrossRef]

43. Baljak, V.; Ljubovic, A.; Michel, J.; Montgomery, M.; Salaway, R. A scalable real-time analytics pipeline and storage architecture
for physiological monitoring big data. Smart Health 2018, 9, 275–286. [CrossRef]

44. Li, S.; Meng, L.; Liu, J.; Wang, R. Design of a dynamic monitoring system for patient health indexes based on mobile terminal.
Alex. Eng. J. 2021, 60, 4573–4582. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/s19112498
http://dx.doi.org/10.1016/j.jbi.2020.103521
http://dx.doi.org/10.1016/j.smhl.2018.07.013
http://dx.doi.org/10.1016/j.aej.2021.03.038

	Introduction
	Related Work
	Remote Patient Monitoring
	Application Scaling at the Edge

	Proposed Methodology
	Perception Layer
	Network Layer
	Application Layer

	Experimental Setup
	Results and Discussion
	Conclusions and Future Work
	References

