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Abstract

Computational power and big data have created new opportunities to explore and understand the 

social world. A special synergy is possible when social scientists combine human attention to 

certain aspects of the problem with the power of algorithms to automate other aspects of the 

problem. We review selected exemplary applications where machine learning amplifies researcher 

coding, summarizes complex data, relaxes statistical assumptions, and targets researcher attention 

to further social science research. We aim to reduce perceived barriers to machine learning by 

summarizing several fundamental building blocks and their grounding in classical statistics. We 

present a few guiding principles and promising approaches where we see particular potential for 

machine learning to transform social science inquiry. We conclude that machine learning tools are 

increasingly accessible, worthy of attention, and ready to yield new discoveries for social research.

1. Introduction

Advances in statistics and machine learning have the potential to rapidly expand the toolkit 

available to social scientists. The pace of change will depend on how social scientists 

weigh the costs and benefits of adopting new tools. Our review emphasizes four benefits to 

adoption: machine learning can amplify researcher coding, summarize complex data, relax 

some statistical assumptions, and target researcher attention. But many social scientists have 

yet to adopt machine learning tools. One reason machine learning methods have appeared 

infrequently thus far may be the appearance of high adoption costs, such as the time needed 

to learn new methods and the difficulties that arise when interpreting a complex model. Yet 

the increasing availability of open-source software and pedagogical materials means that 

these costs are quickly falling. One aim of our review is to contribute to the reduction in 

these costs by making new methods accessible; in this respect, we build on the excellent 

guidance provided by other recent review papers (e.g., Molina and Garip 2019; Grimmer et 

al., 2021; Athey and Imbens 2019). A theme of our review is that the benefits of machine 

learning are likely to substantially outweigh the costs over time.

*Corresponding author. Direct correspondence to Ian Lundberg, Cornell University, Department of Information Science, 223 Gates 
Hall, 107 Hoy Road, Ithaca, NY 14853, ilundberg@cornell.edu. 

Appendix A. Supplementary data
Supplementary data to this article can be found online at https://doi.org/10.1016/j.ssresearch.2022.102807.

HHS Public Access
Author manuscript
Soc Sci Res. Author manuscript; available in PMC 2024 February 24.

Published in final edited form as:
Soc Sci Res. 2022 November ; 108: 102807. doi:10.1016/j.ssresearch.2022.102807.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Related to assumed costs, some social scientists may have a preconception that the adoption 

of machine learning methods requires a qualitative shift away from classical statistical 

methods. A second theme of our review is that there is no such qualitative shift. While 

the fields of “statistics” and “machine learning” have at times differed in their emphasis on 

various aspects of data analysis (Breiman, 2001b), many of the key advances occur when 

these perspectives are brought together. What unites these fields is far greater than what 

divides them. For example, a generalized linear model is a standard statistical tool. Yet 

one could say that such a model “learns” a set of coefficients from data. A Least Absolute 

Shrinkage and Selection Operator (LASSO) version of that regression “learns” which of 

the covariates should enter the prediction function. As one moves from methods considered 

“classical statistics” toward methods considered “machine learning,” one axis of change is 

away from imposed structure and toward a greater role for the data in learning. But this is 

a difference of degree rather than a difference of kind. Indeed, when a social scientist uses 

a statistical method, they can conceptualize that method as a specific case of a machine 

learning tool (perhaps a highly structured version). We emphasize these connections and 

ground our review in classical statistics.

Hesitancy about the use of machine learning also stems from concerns that these methods 

are “black box,” involving many parameters that are difficult to interpret. This concern 

may loom especially large among social scientists who are familiar with estimating 

regression models, placing the coefficients in a table, and interpreting those coefficients. 

Two responses address this concern. First, some machine learning (ML) methods (e.g., 

ridge regression) still involve coefficients. A second (and more radical) response is that 

social scientists’ comfort with “interpretable” regression coefficients is often misplaced. For 

example, researchers might interpret the coefficient as the “effect” of a particular variable. 

But such an “effect” may not correspond to any causal effect in the absence of additional 

assumptions. And if those assumptions hold, any machine learning prediction function can 

yield a similarly interpretable average effect estimator: predict the outcome for all units as 

observed, add one to the key predictor and make another prediction, difference the two, and 

average. Both approaches rely on the same causal assumptions, and under those assumptions 

both can yield an interpretable estimate of an average effect. An advantage of some machine 

learning methods is that the statistical assumptions may be more credible (e.g., allowing 

additional interaction terms). This example illustrates a general point: a researcher who is 

precise about the quantity to be estimated can often engineer a machine learning approach to 

yield an interpretable estimate of that quantity.

A final hesitancy may stem from the belief that social science should be theory-driven, and 

machine learning seems to be data-driven. This hesitancy is misplaced; machine learning 

in social science requires both theory and data. To answer social science questions with 

supervised machine learning, a researcher typically begins by arguing theoretically for 

the importance of the quantity to be estimated and then for the credibility of required 

assumptions. Only then can the data speak to the theory-driven question. With unsupervised 

learning, the quantity to be estimated may emerge from the data, but then the researcher 

makes a theoretical argument to label and interpret what has been learned. In either case, 

both theory and data play essential roles.
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Our argument proceeds as follows. We first emphasize several benefits of machine learning 

by reviewing its use in existing social science research. Having motivated machine learning 

from its applicability in social science, we then provide a pedagogical introduction to 

some of the central building blocks of machine learning. We place special emphasis on 

their connection to standard statistical approaches. Third, we discuss some frontiers of 

machine learning research which are increasingly fruitful for social science research. Finally, 

we conclude with a discussion of how machine learning can contribute to social science 

knowledge moving forward.

2. What you can do with machine learning: Exemplary applications in 

social science

Machine learning is already yielding new insights within social science. We illustrate 

this point by discussing select papers published from 2016 to 2021 in a set of journals 

drawn from sociology, political science, and economics.1 We do not review all uses of 

machine learning in these journals, nor do we review all classes of machine learning 

methods. Instead, we highlight cases that illustrate high-level ways that machine learning 

can transform the research process for measurement, estimation, discovery, and dimension 

reduction. Table 1 points toward introductory texts on these topics. The end of this section 

closes with a word of warning: while there is much that machine learning can do, there are 

also aspects of research (e.g., causal claims) for which machine learning is useful only in 

combination with assumptions about data that cannot be observed (e.g., counterfactuals).

2.1. Measurement: Supervised machine learning can amplify researcher coding

One characteristic of the digital age is the high volume unstructured text, audio, and video 

data. These data pose a challenge for measurement: it is not straightforward to convert them 

into a small set of categories or numeric summaries relevant to a research question. In 

small samples, researchers can carry out measurement by hand coding: examine the data and 

manually label. Yet hand coding becomes prohibitive in massive digital samples. Supervised 

learning methods can amplify the researcher’s judgment: the researcher manually labels a 

random sample, uses an algorithm to learn patterns mapping the high-dimensional data to 

the low-dimensional labels in that training sample, and then predicts the unknown labels in 

the much larger population (see Fig. 1).2

For example, King et al. (2017) studied government involvement in the social media 

ecosystem in China. They examined 43,757 social media posts made by individuals 

employed by the Chinese government to spread propaganda. This volume of digital data 

would be extremely costly to analyze by hand. Instead, the authors drew a random sample 

of 200 posts and hand-coded them into a set of categories chosen by the authors (e.g., 

1We specifically searched for applications in American Sociological Review, American Journal of Sociology, American Political 
Science Review, American Economic Review, and Social Science Research. We also searched three methodological journals: 
Sociological Methodology, Political Analysis, and Econometrica.
2Unsupervised methods can also be used for measurement (e.g., topic models, Blei et al., 2003). With unsupervised measurement, 
the researcher does not manually code any cases and all cases are labeled by the algorithm. Unsupervised dimension reduction is 
summarized in Sec 2.2. Here we emphasize supervised methods because of the clear distinction between domain expertise (defining 
the categories) and algorithmic amplification (labeling many cases).
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whether the post engages in arguments about the Communist party). Using these 200 posts, 

they learned the statistical patterns linking the words used in the posts (high-dimensional 

predictors) to the categories defined by the researchers (low-dimensional labels). Finally, 

they estimated the prevalence of each category in the entire set of 43,757 posts (using a 

pre-established procedure available in open-source R software; see Hopkins and King 2010 

and Jerzak et al., 2022). Roughly 80% of the posts did not engage in arguments about the 

Communist Party but instead simply involved cheerleading for China and for the Party. This 

descriptive evidence was made possible by researcher expertise (defining the categories of 

posts and labeling a sample) amplified by the power of machine learning (labeling in a 

massive data set).3

In a sociological application, Friedman and Reeves (2020) explored patterns of cultural 

distinction in recreational activities by studying the lives of 71,393 British elites over the 

19th and 20th centuries who appeared in Who’s Who, a book cataloguing their lives. They 

manually coded 600 entries into three categories of recreational activities—aristocratic, 

highbrow, or ordinary—and then used supervised learning to estimate the prevalence of 

each type of recreation in the full set of 71,393 entries. The authors then summarized how 

patterns of elite portrayal of their recreational activities changed over time, an exercise 

which was only possible by combining researcher decisions (categorizing text into these 

three categories) amplified to a new scale by machine learning.

Beyond text, new forms of audio and visual data also become amenable to analysis through 

a strategy of amplified researcher coding. Knox and Lucas (2021) observe that political 

scientists transform audio files of political speech into transcripts. But they emphasize that 

doing so discards information such as vocal tone and flow of speech. Instead, the authors 

analyzed a sample of audio files from Supreme Court hearings. They manually labeled some 

speech patterns as demonstrating skepticism, and then they developed methods to predict 

skepticism in unlabeled utterances as a function of the audio profile of those utterances. 

Similar to the study of audio data, supervised learning methods developed for computer 

vision (Szeliski, 2010) could amplify the analysis of images in social science. For example, 

Cantú (2019) studied fraud in a Mexican election by examining 53,249 images of vote tally 

sheets. They labeled a random sample of 900 images for whether alterations were present. 

By amplifying that coding to the full set using a convolutional neural network classifier, 

Cantú (2019) revealed the extent of fraud.

Sometimes, the human coding necessary for supervised machine learning already exists and 

does not have to be carried out by the researcher. Gentzkow et al. (2019) worked with the 

text of Congressional speeches, which are already labeled by party, and used this labeled set 

to learn a one-dimensional reduction of the text to a continuous score for the degree to which 

a given piece of text was typical of one party versus the other. The algorithm allowed them 

to track this score over time in Congressional speeches. Zhang and Pan (2019) identified 

protest events in 9.5 million Chinese social media posts using a classifier trained on a subset 

of text and image data that was already hand-coded by activists. The use of a pre-labeled 

3In a study with similar structure, Su and Meng (2016) manually categorized the topics of 1,000 messages from citizens to Chinese 
provincial officials and then used supervised learning methods to make predictions for the topics in the full set of 207,554 messages.
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set can save researcher time but also can bring the costs of validating the human labels and 

assessing the generalizability of the potentially non-random training sample.

Amplified human coding is powerful because it draws on the strengths of both machine 

learning and social science. The social scientist excels at defining categories: taking a 

high-dimensional predictor x  (text, audio, or video data) and mapping that observation into 

a category y among a few discrete choices constructed for the theoretical question. The 

machine learning algorithm excels at the amplification task: given training samples, learn the 

patterns in those samples and predict for new cases. Machine learning tools thus amplify a 

human labeling task to apply at a new scale.

2.2. Dimension reduction: Unsupervised machine learning can summarize complex data

In contrast to supervised learning, there exist other unsupervised settings (see Fig. 2) which 

do not begin with labeled outcomes. Instead, they take a high-dimensional input (e.g., text 

data) and reduce that to a low-dimensional summary (e.g., topics). The key to success in 

unsupervised learning is first for the researcher to formalize what would make a pattern 

interesting. Then, an algorithm searches for those patterns. Finally, the researcher draws on 

theory to interpret the result and argue for its usefulness. We join past reviews (e.g., Molina 

and Garip 2019) in taking the division between supervised and unsupervised methods to be 

an important distinction within machine learning.

One example for unsupervised learning is the latent Dirichlet allocation algorithm (LDA, 

Blei et al., 2003), an unsupervised method to take documents (the unit of analysis) and 

convert the words they contain (a high-dimensional predictor) into a set of topics discovered 

inductively (low-dimensional labels). Each topic is a vector of probabilities over word 

frequencies, and the algorithm learns the topics to maximize the probability of the observed 

word frequencies in the documents subject to regularization by Bayesian priors. LDA is 

entirely inductive—the researcher never labels a training sample. Like many methods for 

discovery, LDA implicitly assumes a definition of what is “interesting” in data: a topic is 

interesting to the degree that it captures a distribution of words which recurs across many 

documents. Yet whether this algorithmic definition produces topics which are substantively 

useful in social science is a determination that falls to the human researcher, who should 

examine each topic and argue for its substantive meaning (Grimmer and Stewart, 2013). For 

example, sociologists often use topics learned inductively as measures of culture (Mohr and 

Bogdanov, 2013; DiMaggio et al., 2013; Bail, 2014). This path forward is promising but also 

entails risks, because there is no guarantee that an algorithm operating on word frequencies 

will arrive at a meaningful definition of a cultural category. For this reason, unsupervised 

methods to summarize text data always place the burden on the researcher to justify their 

chosen interpretation and validate the utility of the topics learned (Grimmer and Stewart, 

2013; Ying et al., 2021; Grimmer et al., 2022). LDA thus illustrates a key idea that applies 

more broadly to unsupervised methods: while these methods may appear to inductively 

discover insights from the data alone, they actually involve extensive theoretical work on the 

part of the researcher to justify and interpret the result.

High-dimensional data exist in many social science settings beyond text as data. For 

example, Frye and Trinitapoli (2015) examine the sequence of events that precede sexual 
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intercourse for young women in Malawi. Each respondent’s data consist of an ordered set 

of experiences they had with their partner leading up to sex—events such as giving presents, 

meeting to chat in private, talking about contraception, and getting married. Although all 

respondents worked from the same set of possible events, the sheer number of unique 

experience trajectories makes it difficult to generate theory from the raw data alone. Instead, 

Frye and Trinitapoli (2015) defined a distance between the experience trajectories of every 

pair of women, based on the number of insertions, deletions, and substitutions needed to 

convert one woman’s trajectory into that of the other woman. The authors then used a 

hierarchical clustering algorithm to inductively place the observed relationship trajectories 

into five clusters. While the raw data are insurmountably large for theory generation, the 

low-dimensional set of clusters reveals commonalities and differences across these inductive 

groupings. The authors highlight differences across clusters such as typical length of the 

sequence of events, whether marriage precedes sex, and the inclusion or exclusion of 

socially embedded experiences such as attending a community event together. The data 

reduction is largely data-driven, yet it supports a heavily theory-driven interpretation of the 

meaningful differences that appear across the learned clusters. The problem is analogous to 

how LDA produces a data-driven reduction of complex textual data into a small set of topics 

which requires theory-driven interpretation. Unsupervised methods for sequence analysis are 

thus similar to unsupervised methods for text as data: they convert high-dimensional data to 

a low-dimensional representation, thus enabling new theorizing about that low-dimensional 

summary. This interplay between data and theory corresponds to a promise of unsupervised 

learning more generally.

2.3. Estimation: Supervised machine learning can relax statistical assumptions

While both supervised and unsupervised learning hold promise in social science, supervised 

learning is particularly straightforward as a plug-in substitute in settings where researchers 

might have used parametric regression. Given a set of predictors X  and an outcome Y
chosen for conceptual reasons, machine learning can help with the step of estimation: 

learning the statistical mapping from X  to Y . In classical statistics, this step would involve 

choices such as whether to include interactions and squared terms. In machine learning, this 

step might involve consideration of nearest neighbors, random forests, and other methods to 

pool information across units. A machine learning perspective to estimation grounds these 

choices in empirical evidence: choose the estimator that fits the data well. The use of model 

fit to select an estimator has long been standard in social science (e.g., in the field of social 

mobility, see e.g. Hauser et al., 1975, 1983). Machine learning methods lean particularly 

heavily on empirical evidence for model selection, often assessing candidate estimators by 

their ability to predict the outcomes of out-of-sample cases not used for learning the model. 

Doing so not only yields empirically-grounded modeling choices, but it may also improve 

the predictive power of the estimated model.

For example, Dube et al. (2020) scraped data on Human Intelligence Tasks (HITs) posted 

online on Amazon Mechanical Turk (MTurk), including tasks such as placing labels on 

images or completing short questionnaires. Before deciding whether to complete a task, 

workers could see information about the financial reward offered for completion as well 

as other aspects of the task. The authors studied the causal effect of the reward amount 
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on the duration of time that the HIT remained posted before achieving its desired number 

of responses, taken as a metric of how quickly workers signed up and completed the task. 

But there was a problem: whether each worker chose to complete a task might also have 

been a function of other aspects of that task, such as the title, keywords, and time allotted 

by the requester. Those variables produced confounding, so that the marginal association 

between reward amount and posted time arose only in part due to a causal effect of reward 

amount. The authors assumed that the measured variables blocked all confounding, which 

is a conceptual rather than a statistical assumption (Pearl, 2009; Imbens and Rubin, 2015). 

But under that assumption, the authors needed to predict the outcome as a function of 

the treatment and confounders. To do so, Dube et al. (2020) use double machine learning 

(Chernozhukov et al., 2018) to adjust for confounding by learning an ensemble that averages 

over several learning algorithms to predict the treatment (reward amount) and the outcome 

(duration of posting). This machine learning strategy thus handles difficult statistical choices 

automatically, allowing the authors to focus their attention on the definition of the research 

question and the conceptual choices about variables to include so that causal assumptions 

will be valid.

As another example, researchers may seek to draw inference about a population using a 

non-representative sample. Gelman and Little (1997) proposed to accomplish this task by 

a parametric method: estimate a multilevel model for the survey responses as a function 

of measured variables (e.g., race, age), predict the outcome in each subgroup defined by 

those variables, and post-stratify by the known population distribution of the predictors. 

The validity of this procedure relies not only on an identification assumption (ignorable 

sample inclusion within strata of covariates), but also on the assumed functional form of 

the regression model. Bisbee (2019) relaxed the latter assumption with a nonparametric 

machine learning approach (Bayesian Additive Regression Trees, Chipman et al., 2010). 

This extension illustrates a key principle: once researchers make conceptual assumptions 

about the relevant variables, nonparametric machine learning methods can be used in place 

of classical models to learn statistical patterns with flexible functional forms.

2.4. Discovery: Supervised machine learning can target researcher attention

Supervised machine learning can involve a complex mapping between predictors and the 

outcome. How to summarize that mapping may not be straightforward—the researcher 

could focus on many aspects of the learned relationships. Supervised learning for discovery 

automates the process of finding the interesting patterns in the data. We discuss discovery 

with two examples: the causal effect of a high-dimensional treatment and the heterogeneous 

causal effects of a binary treatment across a high-dimensional set of pre-treatment variables.

Conjoint experiments in political science assess how participants’ perceptions of a 

hypothetical candidate respond to a series of randomized attributes about that candidate 

(Hainmueller et al., 2014). In one concrete example, Breitenstein (2019) presented voters 

with profiles of hypothetical mayoral candidates and randomly varied signals of the 

candidates’ sex, party affiliation, experience qualities, economic performance under their 

leadership, and evidence of corruption. The space of possible treatment conditions is high-

dimensional, with 2 × 4 × 2 × 2 × 3 = 96 unique profiles possible by combining these 
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attributes. The randomized design identifies the average potential outcome under each of 

the 96 treatment conditions, but absorbing that much information would be difficult for 

a reader: a low-dimensional summary of the effects is needed. Breitenstein (2019) used 

ordinary least squares to produce a low-dimensional summary: the average effect of each 

component of the profiles, marginalized over the other components. But this is far from the 

only possible summary. In a reanalysis, Incerti (2020) used a decision tree to search for 

combinations of randomized signals that interact to produce particularly disparate effects. 

Decision trees recursively split the data into subsets where outcomes are increasingly 

homogeneous, pointing toward new interactive estimands discovered inductively from 

the data: voters were most likely to support a non-corrupt politician’s profile (72% in 

support) but also demonstrated high support for profiles involving corruption as long as the 

candidate was of the same party as the respondent and had a history of good economic 

performance under their leadership (67% in support). Meanwhile, a corrupt candidate of a 

different political party from the respondent garnered only 36% support. This substantively 

interesting interactive partition emerged inductively from the data. Importantly, both the 

original study and the re-analysis yielded valid and useful findings. This illustrates how 

machine learning can take existing evidence and marshal it in new ways to reveal new 

insights, in this case targeting researcher attention toward treatment combinations with 

particularly interesting outcomes.

In other settings, there is one binary treatment T  and a high-dimensional set of confounders 

X . The conditional average causal effect τ(X ) might take unique values at each value of the 

confounders. With so many average causal effects that could be reported, a question arises: 

for which population subgroups should we report the average causal effect? A researcher 

could pre-register a hypothesis comparing the average causal effect across two subgroups 

motivated by theory, such as racial categories. But the researcher may not know a priori 

which strata of confounders will show interesting effect heterogeneity. Machine learning 

with sample splitting provides a principled solution in this setting: discover interesting 

subgroups in a training sample and then estimate their effects in a new test sample. For 

example, Athey and Imbens (2016) developed causal trees, an extension of decision trees 

specifically designed to uncover effect heterogeneity. In one application, Brand et al. (2021) 

assessed variation in the effects of college completion on low-wage work. They found 

that college completion reduced low-wage work most for individuals whose mothers had 

less than a high school degree, who grew up in large families, and who had low social 

control. Not only does the use of causal trees allow researchers to uncover subgroups not 

previously considered, it also transparently depicts the analyses that led researchers to focus 

on particular subgroups. When a researcher chooses manually to highlight the outcomes of 

a particular subgroup, it is difficult to know how they came to that decision. When a causal 

tree highlights a particular subgroup, the algorithm that determines the highlighted result is 

fully transparent.4

4Causal trees do not always discover effect heterogeneity. Sometimes, they reveal a surprising lack of effect heterogeneity. Handel 
and Kolstad (2017) analyzed a randomized health intervention and found almost no evidence of heterogeneity across the measured 
variables. Davis and Heller (2017) found that a randomized youth intervention in Chicago had roughly the same effect on arrests in all 
subpopulations studied. In general, a lack of evidence for effect heterogeneity does not mean that effects are constant for everyone, but 
only reveals a lack of evidence for heterogeneity as a function of the measured variables.
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2.5. A word of caution: Machine learning, causal inference, and policy

To make the most of machine learning, social scientists must recognize what it can and 

cannot do. In particular, machine learning can describe the world as it exists but does not 

inform policy (what would happen under an intervention to change the world) in the absence 

of additional assumptions. Often, one needs an assumption that the statistical association 

between two variables derives from a causal relationship rather than from confounding. 

This assumption may go under various names, such as unconfoundedness or conditional 

independence of the potential outcomes from treatment assignment (Imbens and Rubin, 

2015; Pearl, 2009; Hernán and Robins, 2021).

To illustrate causal assumptions, we first discuss an example from Kleinberg et al. (2015) 

about carrying an umbrella in the rain. When it rains, the people who carry an umbrella 

remain dry. Consider two explanations: (1) those who like carrying umbrellas are really 

good at dodging between raindrops and (2) an umbrella causes a person to stay dry. 

Explanation (1) corresponds to confounded treatment assignment—if this explanation were 

true, then handing an umbrella to an umbrella-less person would not keep them dry because 

they still would not know how to dodge the raindrops. Explanation (2) corresponds to a 

causal effect—handing an umbrella to an umbrella-less person will cause them to be dry. 

Causal claims require us to exclude the confounding explanations in favor of a causal 

explanation—often called an assumption of unconfoundedness.

Kleinberg et al. (2015) address the question of when to carry an umbrella. They argue 

that carrying an umbrella is a “prediction policy problem” where one only needs to predict 

whether it will rain in order to inform policy (whether or not to carry an umbrella). We 

would argue that the reason this is such a good example of a prediction policy problem is 

because the causal structure of the problem is so very straightforward: we all agree that 

carrying an umbrella causes people to stay dry, rather than that those who carry umbrellas 

are good at dodging raindrops.

But in other settings, the unconfoundedness assumption is not nearly so straightforward. For 

example, Chalfin et al. (2016) consider whether firing some police officers and replacing 

them with other officers could reduce the rate of police shootings in Philadelphia. For this 

policy, the central question is causal: if we took a given encounter between a police officer 

and a civilian but counterfactually changed the officer involved, would the probability of 

a police shooting decrease? The question is difficult to answer. Perhaps (1) some officers 

shoot more because they are assigned to particularly dangerous encounters or (2) some 

officers shoot more because they are simply more prone to shooting in any given encounter. 

The former is a confounded explanation—if Officer A moved to Officer B’s encounters, 

their rate of shooting would change to match that of Officer B. The latter is a causal 

explanation: which officer is involved causes a difference in the rate of shooting. The authors 

coin the term “task confounding” for scenario (1). To conclude that differences across 

officers are caused by differences in the officers rather than the tasks, the authors assume 

the absence of task confounding. Under this causal assumption, Chalfin et al. (2016) draw 

a causal conclusion: firing the 10% of officers with the highest propensity to shoot and 

replacing them with officers of average propensities to shoot would reduce shootings by 
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4.81 percent. Importantly, while the authors emphasize the use of predictive modeling, the 

conclusion rests critically on a causal assumption (the absence of task confounding).

In both the umbrella problem and the officer shooting problem, we want to know about 

outcomes that would be realized under a counterfactual treatment. Would I have stayed dry 

if I had remembered my umbrella? Would I have stayed alive if I had encountered Officer 

A instead of Officer B? But we only get to see one of the outcomes (Holland, 1986), thus 

requiring an assumption about the distribution of unobserved outcomes. In the umbrella 

problem, this assumption is highly plausible. In the officer shooting problem, it is much 

less clear. In general, the more we can confidently assume about the causal structure of a 

problem, the more we can rightfully focus on the predictive side of the problem. And when 

our causal assumptions are doubtful, it becomes all the more important to give them close 

attention. One of the most exciting areas of machine learning is its intersection with causal 

inference; for reviews and introductions, see Athey and Imbens (2017), Athey and Imbens 

(2019), Van der Laan and Rose (2018), and Brand et al. (2022). Broadly, the dichotomy 

between prediction problems and causal problems is misleading: new tools for prediction are 

best deployed in tandem with careful attention to underlying causal assumptions.

3. Conceptual building blocks: The statistical foundations of machine 

learning

To realize the benefits discussed above does not require years of training in machine 

learning. Rather, researchers trained in classical statistics already possess knowledge of the 

fundamental building blocks that support machine learning. This pedagogical section links 

machine learning to classical statistics by presenting a set of core concepts: task clarity, the 

bias-variance trade-off, data-driven estimator selection, interpretation, and tasks involving a 

new (and possibly counterfactual) target population.

3.1. Task clarity: Define a precise goal

Every statistical problem begins with a task—the goal that we hope to accomplish. For 

instance, we might wish to make predictions in a particular setting or estimate a mean in 

some population. A precise statement of the task is essential in all quantitative research, 

and it takes on renewed importance in the context of machine learning, which can often 

be tailored specifically to the task at hand. For example, consider a task which has been 

well-studied in both statistics and machine learning: drawing inference about a target 

population from a sample. We discuss this task from two perspectives: estimation of 

unknown population parameters and prediction of out-of-sample cases.

Suppose a researcher studies academic performance for students nested within classrooms. 

Each student i has a test score Y i capturing their academic performance. We would like to 

understand how test scores vary across classrooms,

θj = E Y i ∣ Ji = j

(1)
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where Ji = j means we are taking the expectation among students in classroom j. 
Equivalently, we can conceptualize θj as a prediction rule: if we see a new student in class j, 
we would predict that student’s unknown test score to be θj (Fig. 3).

If we observed all students in every classroom, we could calculate each θj directly by the 

classroom mean. If we only observe a random sample of students, then we need an estimator 

for this unknown parameter. For instance, we could estimate by the sample mean,

θ j
Mean = yj = 1

Sj
∑

i ∈ Sj

Y i

(2)

where the term beneath the summation sign indicates that we are summing over all students i
in the sample Sj from classroom j. The sample mean is a consistent and unbiased estimator, 

yet it may not be the optimal estimator in a finite sample. We discuss this issue in the next 

section.

Estimation of class-specific means is a useful example because it bears resemblance to 

both statistics and machine learning. Social scientists and statisticians could easily study 

this problem without conceptualizing it as a machine learning problem. Yet it also contains 

several hallmarks of machine learning. Machine learning estimators often involve a very 

large set of parameters to be estimated (e.g., many classes) and apply in settings where the 

sample size seems large (e.g., many students) but in fact is small given the large number 

of predictors (e.g., few students in each classroom). Prediction and estimation are in one 

sense mathematically identical: if you only know the class identifier and you want to guess 

with low mean squared error the test score of a previously-unseen student (prediction for 

an individual), then the best you can do is to choose the population mean score in that 

class (which requires estimation for a population subgroup). Yet the emphases in the two 

cases often differ. For example, if test scores vary considerably within each class, then you 

might accurately estimate the class mean while making poor predictions for each individual 

student. One can achieve good estimation despite poor prediction. Yet the mathematical 

connection between the two nonetheless means that tools designed for prediction may be 

useful for estimation, and vice versa.

3.2. The bias-variance trade-off: Choose a biased estimator

Continuing the example of students in classrooms, suppose that the sample size Sj  in 

class j is small (e.g., 5 students). In this case, the sample mean may be a poor estimator 

of the population mean in the classroom because the sample size is so small. For every 

statistical and machine learning estimator, a first-order concern is how well we can expect 

that estimator to accomplish our task. We want to choose an estimator which will be 

close to the truth on average when applied to hypothetical samples we could take from 

the population. Counterintuitively, to produce an estimator which is close to the truth on 

average, one might be well-advised to choose an estimator which has low variance but is 

slightly wrong on average—a biased estimator. Many of the best statistical estimators and 

nearly every estimator that would be considered “machine learning” accepts some bias in 
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order to improve performance. To make the most of machine learning, social scientists will 

need to come to appreciate the benefits that bias can bring. We illustrate this point through 

an example which is standard in statistics: a hierarchical linear model (HLM).

To better estimate the classroom mean in a small sample, the researcher could add a 

shrinkage term to produce a hierarchical linear model estimator (Bryk and Raudenbush, 

1992),

θ j
HLM = yj −

1
nj

σj
2

1
nj

σj
2 + δ2 yj − y

Shrinkage Term
(creates bias)

(3)

where σj
2 is the empirical variance of test scores across students within class j, δ2 is the 

empirical variance of classroom-level mean test scores across all classrooms, and y is the 

mean test score in the entire sample.5 The multilevel estimator θ j
HLM

 is a partial pooling 

estimator because it pools information from class j together with other information about 

the mean test score in the sample overall. The consequence of partial pooling is that the 

estimator for each class is biased toward the overall mean—the greater the shrinkage, the 

more the bias. Yet shrinking toward the overall mean also yields the benefit of reduced 

variance. Fig. 4 shows that the amount of shrinkage in θ j
HLM

 is the amount that minimizes 

the expected squared error of the estimator: across repeated samples, the average squared 

distance between the estimated mean and the truth.

The notion of accepting some optimal amount of bias in order to reduce the variance of an 

estimator is an idea that is much broader than multilevel models. In particular, the expected 

squared error of any estimator can be decomposed into components corresponding to bias 

and variance.

Bias‐Variance Trade‐Off: E (θ − θ)2

Expected Squared Error

= (E(θ) − θ)2

Bias Squared
+ E (θ − E(θ))2

Variance

(4)

If we want our estimator to be close to the truth on average (low expected squared error), 

then it is often worthwhile to accept some bias in order to reduce the variance of the 

estimator.

The bias-variance trade-off is especially relevant in settings where the variance of an 

unbiased estimator is high. High-variance estimators are common when the number of 

parameters to be estimated is large (e.g., many class-specific means), because the amount of 

5This estimator is sometimes called the Best Linear Unbiased Predictor, although that name is misleading because the estimator is 
biased.
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data relevant to each parameter (e.g., the students in a particular class) may be small even if 

the overall sample size is very large. Beyond the setting of students in classrooms, the bias-

variance trade-off plays a central role in other statistical problems characterized by large 

sample sizes but also many parameters to be estimated, such as in small-area estimation 

(Rao, 2003). In machine learning, the bias-variance trade-off is especially important because 

machine learning estimators often involve many parameters, such that variance is a serious 

concern even in big-data settings. Machine learning estimators resolve this problem by 

accepting some bias in order to reduce variance and improve expected squared error. Social 

scientists applying these methods should be comfortable with this acceptance of bias just 

as they are already comfortable with bias in classical statistical settings, such as multilevel 

models (Bryk and Raudenbush, 1992) or any setting in which we regularize estimates to 

reduce variance. The existence of bias should not be a barrier to the adoption of machine 

learning.

3.3. Data-driven estimator selection: Automate what can be automated

Analytic choices abound in quantitative social science. For example, the choice of a model 

specification is a central question in classical statistics. Researchers have traditionally 

approached this question by some combination of conceptual argument paired with 

empirical metrics of model fit, such as R2. A machine learning perspective transfers the 

weight of these choices in the direction of empirical evidence. To the degree that data can 

inform the choice of estimator, machine learning approaches allow the data to speak.

Fig. 5 illustrates data-driven estimator selection in a simulated setting. The predictor variable 

X is related to the outcome Y  by a complicated conditional mean function, as is likely 

to be the case in many realistic settings. Not knowing this function in advance, the 

researcher might consider several possible estimators with different assumed functional 

forms (e.g., various OLS specifications) or different procedures to learn the functional 

form from the data (e.g., a regression tree and a Generalized Additive Model). A social 

scientist might report the results of all these specifications. Despite the inclusion of machine 

learning estimators like regression trees, this overall research approach could be considered 

“classical” in the sense that it involves choosing the estimator or estimators for conceptual 

rather than data-driven reasons. An approach more inspired by machine learning might 

instead seek to empirically score the performance of the estimators in order to make a 

data-driven choice. The metric by which an estimator is evaluated is often called a loss 
function, which formalizes what it means for an estimator to perform poorly (and by 

extension, what it means to perform well). For instance, one loss function would take an 

estimator θ S estimated in a sample S and score it by its mean squared error when predicting 

new observations from the population.

Loss Function:ℒ θS = Ei: i ∉ S θS xi − yi
2

(5)

In practice, we do not observe the full population and thus must rely on an estimate ℒ() of 

the loss function. Suppose we take our sample S and randomly assign observations into two 
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equally-sized samples: a training sample STraining and a test sample STest (Fig. 5 Panel C). We 

then learn the prediction function in the training sample and estimate the loss function in the 

test sample.

Estimated Loss Function:ℒ θS = 1
STest

∑
i ∈ STest

θSTrining xi − yi
2

(6)

Finally, we can choose the estimator for which the estimated loss function ℒ θ S  is as 

close as possible to zero. In the simulated example of Fig. 5, this procedure selects the 

Generalized Additive Model estimator. In this setting, it is visually apparent in Fig. 5 

Panel B that this is the best estimator. But in non-simulated settings, the true conditional 

mean function (the gray curve in Fig. 5 Panel B) is unknown and out-of-sample predictive 

performance can still help the researcher choose an estimator which comes as close as 

possible to that unknown function.

While data-driven estimator selection is a hallmark of machine learning, it is also in full 

alignment with standard statistical procedures. Social scientists already compare models 

by empirical scores such as R2, likelihood ratios, the Akaike information criterion (AIC, 

Akaike, 1973), the Bayesian information criterion (BIC, Schwarz 1978), and numerous other 

scores. Each of these can be interpreted as a loss function for data-driven model selection. 

When carried out within machine learning, the loss function is typically evaluated on data 

not used to estimate the model in order to assess the ability of the model to generalize to new 

observations.

We have taken care to distinguish the true loss function ℒ() from the estimated loss 

function ℒ() because the estimated loss function may be statistically uncertain, especially 

if it evaluated on a small sample. An estimator which is inferior in the population may 

outperform another estimator in the test sample because of the chance of which cases from 

the population happen to appear in the test sample. One way to improve the precision of ℒ()
is to conduct cross validation, a procedure in which the full sample S is partitioned into a set 

of k folds S1, …, Sk, each of which plays the role of STest in turn.

Cross‐Validated Estimate: ℒCV θS = 1
k ∑

f = 1

k

Average over
k folds

1
Sf

∑
i ∈ Sf

θ Sf′ f′ ≠ f xi − yi
2

Average squared error in fold Sf

from estimates that pool all other folds

(7)

Cross-validation has long been used in statistics (e.g., Stone 1974) and is common in 

machine learning today. There are two advantages of cross-validation over a single split 

into training and test samples. First, each fold-specific error estimate is trained on a 

sample with a fraction k − 1
k  of all observations. For large k, the training sample size in 

each cross-validated fold thus approximates the full sample size |S|, which is useful if the 
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researcher will ultimately draw inference by training a model on the full sample. Second, in 

cross-validation all observations play the role of the holdout at some point, which potentially 

improves the statistical precision of the estimated loss function.

Both sample splitting and cross validation yield a signal about the empirical merits of 

various candidate models. One word of caution is that those signals can themselves be noisy. 

We might like to know how Model A and Model B would perform when predicting an 

arbitrarily large set of previously-unseen observations. But we estimate their out-of-sample 

performance using an actual sample, just as one would estimate a population mean from 

a sample. And just as a population mean estimated in a sample ought to be accompanied 

by a confidence interval, a mean squared error estimated in a sample perhaps also ought 

to be accompanied by a confidence interval. Regardless of whether one reports confidence 

intervals for model performance metrics, one should be aware that those metrics themselves 

have statistical uncertainty arising from sampling. Just because Model A is best in our 

observed out-of-sample data does not necessarily imply that Model A would be best if 

assessed on an entire population of out-of-sample data, even if our sample comes from the 

same data generating process as that population.

3.4. Interpretation: Report the target estimate, not a model parameter

A barrier to the adoption of machine learning methods is that they are “black box.” That 

is, researchers perceive a loss of interpretability if they use these methods. This barrier 

may loom particularly large for social scientists who ordinarily summarize their models by 

tables of regression coefficients, which is not possible for many machine learning methods. 

We emphasize two responses to this concern. First, for machine learning methods there 

exists a single-number summary analogous to a regression coefficient: the average partial 

effect. Second, social scientists’ comfort with regression coefficients may be misplaced: 

coefficients are more difficult to interpret than some may believe.

A regression coefficient is easy to present: it summarizes a relationship between two 

variables with a single number. Fig. 6 Panel A presents a simulated example with 10 

data points, where the relationship between the predictor X and the outcome Y  could be 

summarized by the slope of a regression line: β = 1.061. Conventionally, one might say that 

a unit increase in X is associated with a 1.061 increase in Y . By the assumption of a line, 

the slope 1.061 applies to every data point, regardless of the value of X. But what if the line 

is a poor approximation? Fig. 6 Panel B presents a smooth curve estimated by a thin-plate 

spline (Wood, 2017). Unlike a regression line, no single coefficient summarizes the shape of 

the thin-plate spline. Yet we can arrive at a summary which is analogous to the regression 

coefficient. At each data point, estimate the slope of the curve at that data point. Then, 

average over all data points. In this example, the average partial effect estimate is 1.513, 

substantially higher than the regression coefficient. Beyond smooth curves, the notion of 

an average partial effect or average first difference applies broadly as a tool to summarize 

prediction functions. Take a key predictor, add a small Δ to each data point, record the 

average change in the predicted values, and divide by Δ to yield an estimate of the average 

responsiveness of the outcome per unit change in the key predictor. Almost any prediction 
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function can thus be summarized with one number which is as interpretable as a regression 

coefficient.

Importantly, an average partial effect from a flexible estimator may actually correspond 

more closely to what researchers aim to know. The heuristic interpretation of a regression 

coefficient—on average over units, the change in Y  for a small change in X—corresponds 

to the average partial effect but may not correspond to the regression coefficient. In 

our example, the pattern is nonlinear and the data are skewed, with a higher density of 

observations at lower values of X. The regression coefficient is heavily influenced by the 

sparsely-populated high values of X (where the slope is flatter) while most of the data is 

in the densely-populated low values of X (where the slope is steeper). Thus, the regression 

coefficient is closer to 0 than the slope averaged over points where the data exist. When 

a line is a poor approximation to a statistical pattern, an average partial effect may better 

correspond to the quantity that social scientists want. More generally, the approach above 

can generalize to multivariate settings where other variables are held constant, in which one 

can make predictions at the observed values of confounders X  while examining the average 

partial effect of a change in a treatment variable T .

Average partial effects offer single-number summaries of statistical patterns analogous to 

regression coefficients. But there is a further reason why the familiarity of regression 

coefficients should not hold us back: familiar interpretations of regression coefficients are 

often misleading in two ways. First, it is rare that an entire table of regression coefficients 

is interpretable. When a regression model includes as predictors a treatment variable as well 

as pre-treatment covariates sufficient to block confounding, then only the coefficient on the 

treatment is interpretable in causal terms—the coefficients on the pre-treatment covariates 

are not causal effects at all. Second, even the coefficient on the treatment may be misleading 

if the assumed functional form is incorrect. Fig. 7 gives a simple example. Suppose we 

are interested in the causal effect of precipitation on outdoor exercise. We sample 5,000 

residents on random days in January in each of two locations: Vail, Colorado and Phoenix, 

Arizona. We then record whether it precipitated on the day in question and whether they 

engaged in outdoor exercise. When it does not precipitate, 50% of respondents in each city 

exercise outdoors. When it does precipitate, the outcomes are very different. In Vail, the 

precipitation is snow and outdoor exercise jumps to 90% as residents hit the ski slopes. In 

Phoenix, the rare days of precipitation are rain and residents stay indoors: only 10% exercise 

outside. Assuming that location is the only confounder of precipitation in this example, we 

could say that precipitation increases outdoor exercise by 40 percentage points in Vail but 

reduces it by 40 percentage points in Phoenix. Because the two balance out, the average 

causal effect in our sample is zero.

Now suppose that we estimate an OLS regression model with precipitation and city entered 

additively as predictors. The model would be misspecified due to the omission of an 

important interaction: the effect of precipitation is very different in Vail and in Phoenix. 

With this interaction omitted, the coefficient on precipitation does not estimate the average 

causal effect. In fact, the resulting estimate suggests that precipitation increases outdoor 

exercise by 18 percentage points. The reason the coefficient is much closer to the Vail effect 
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than to the Phoenix effect is because an OLS coefficient in this setting estimates a weighted 

average causal effect with weights proportional to the variance of the treatment variable 

(precipitation) within strata of the confounders (city, see Elwert and Winship 2010, Brand 

and Thomas 2013, and Aronow and Samii 2016). Because it precipitates on 48% of days 

in Vail but only 10% of days in Phoenix, there is more information about the effect of 

rain in Vail. OLS therefore maximizes efficiency by placing 76% of the weight on Vail and 

only 24% of the weight on Phoenix, so the coefficient is much closer to the effect in Vail. 

This example is extreme—the treatment variance and causal effects both differ dramatically 

across strata. While the problem may be smaller in other settings, it remains the case 

that regression coefficients do not estimate average causal effects in the absence of strong 

faith in the assumed functional form. Further, one can avoid this problem by estimating a 

more flexible model including the interaction term. The average causal effect could then 

be estimated by a discrete version of the average partial effect: take every observation, 

predict the outcomes under precipitation and no precipitation, difference, and average over 

the sample. That procedure is equally valid for regression and machine learning strategies, as 

long as the underlying causal assumptions (required for both) are valid.

More broadly, the appeal of regression coefficients is that these model parameters might 

equal the quantities of interest under simplifying assumptions. That is no longer the case 

with machine learning estimators, which may not involve coefficients. Yet if one assumes 

that many regression models were misspecified to begin with, then coefficients were not 

guaranteed to correspond to the quantities of interest. Machine learning therefore presents an 

opportunity to estimate a realistic model, complete with interaction terms and nonlinearities 

which would complicate the interpretation of regression coefficients. Then, one can use 

the model to predict the data needed to estimate the target quantity, thus producing an 

interpretable estimate of the target parameter.

3.5. A return to task clarity: Prediction in new populations and prediction for causal 
inference

Our first conceptual building block was task clarity—being precise about the goal of the 

quantitative exercise. To re-emphasize the importance of task clarity, we now turn from 

standard out-of-sample prediction tasks to a range of more complex tasks. We discuss two 

settings that demonstrate the importance of task clarity: prediction in a new target population 

(where statistical patterns may differ from the training population) and prediction for causal 

inference.

To consider prediction in a new target population, suppose we study a cohort of students 

entering Statsville West High School in 2017. For each student, we observe many variables 

about academic performance in 8th grade and we observe whether they drop out of high 

school over the next four years. Using a machine learning algorithm, we learn a function 

to predict high school dropout. Impressed by our model, the principal of Statsville West 

suggests that for the entering cohort of 2022 we predict the likelihood of dropping out for 

each student, so that the principal can target extra counseling resources to those students. 

Perhaps the principal of Statsville East High School also hears about our model and wants to 

deploy it in that context as well. For each of these use cases, there is a danger: the population 
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that entered Statsville West in 2017 is not the same as the population entering in 2022, 

and is surely different from the population entering Statsville East in 2022. The mapping 

between the predictors and the outcome in these new populations may not be the same as the 

mapping in the original population on which the algorithm was learned (i.e., Statsville West, 

entering in 2017). The problem of Statsville West and Statsville East is ubiquitous across 

real applications of machine learning. Researchers routinely learn things in one context in 

the past, and then apply what they have learned in the future and possibly in new contexts. 

To use statistics and machine learning responsibly, one must be aware when there is a leap 

when we extrapolate to a new target population (see Fig. 8).

Prediction in a new target population is especially relevant for causal inference (Fig. 9). 

Suppose the principal of Statsville West had already implemented a program to offer extra 

counseling to some students in the 2017 entering cohort. After observing whether those 

students dropped out, the principal wants to predict whether those who did not receive the 

program would have benefited if the program had been available to them. But those who 

did not receive the extra counseling are by definition not part of the learning population 

from whom we drew the sample. In fact, it is impossible to sample people who did not 

receive counseling and observe the outcome they would have realized if they had received 

the counseling (i.e., this is the fundamental problem of causal inference, Holland 1986). To 

learn about what would have happened if other students had received extra counseling, the 

principal is necessarily requiring the researcher to make predictions in a new population. 

Absent additional assumptions, prediction for causal questions always involves a target 

population which is different from the learning population. Only by an assumption can we 

generalize from the learning population to the target population (Hartman et al., 2015; Pearl 

and Bareinboim, 2011; Stuart et al., 2015; Xie, 2013). For instance, we might assume that 

the potential outcome under treatment Y i 1  follows the same distribution among the treated 

units as among the untreated units, within each subpopulation defined by a set of predictor 

values. By this assumption, any mapping X i Y i(1) learned in the learning population will 

still be valid in the target population.

Yet even in the best-case scenario, causal inference for policy prescriptions often involves 

an additional leap to a new target population (see Fig. 10). Suppose the principal randomly 

assigned counseling to students entering Statsville West in 2017. But then, the principal 

wants to use these results to justify the expansion of counseling support for the cohort 

entering in 2022. Despite strong internal validity for the causal effect estimate in the 

2017 cohort, the principal still must leap to a new population to deploy the policy in the 

2022 cohort. The leap from the training population to the target population is therefore 

particularly relevant to causal policy prescriptions.6

In fact, there is often a trade-off between internal and external validity, where one can study 

a population less like the target population in a randomized design (high internal validity) 

6The assumption to draw causal inference in the target population is Y (0), Y (1) ⊥ P, S, T ∣, where P  indicates membership in 

the learning versus target population, S indicates inclusion in the sample of cases, T  indicates treatment assignment, and X  denotes 
the vector of pre-treatment predictors. One setting where this would hold is if the target population is the learning population and S
and T  are randomly assigned.
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or a population more like the target population in an observational study (high external 

validity). Perhaps the Statsville principal has a randomized experiment from a very old 

cohort that entered in 2000 and an observational study on the cohort that entered in 2017. 

It would not be clear which study would be more informative for a policy prescription 

applying to the cohort entering in 2022. Every study has limitations, and the leap from a 

learning population to a different target population is a limitation of which one must always 

be aware.

4. The future: Guiding principles and promising approaches

We proceed cautiously in predicting how machine learning will be used in the future. In this 

section, we nonetheless offer a few guiding principles and approaches which we believe hold 

promise for resolving particular issues in social science research. These guiding principles 

are relevant to both descriptive and causal claims, but our discussion often emphasizes the 

relevance to causal claims because we see an especially promising space of applications in 

that domain.

4.1. Resolving p-hacking: The promise of automated model selection

The replication crisis raises questions as to the validity of common quantitative social 

science research practice (Freese and Peterson, 2017; Simmons et al., 2011). A key source of 

concern is the practice in which researchers iterate between model fitting and interpretation 

until arriving at a chosen specification which is reported to the reader. This procedure 

creates many opportunities for a well-meaning researcher to select the model for which the 

results most align with the researcher’s preexisting beliefs (Gelman and Loken, 2014). The 

(possibly unintentional) practice of choosing an estimator based on the results undermines 

the validity of p-values and confidence intervals, which are designed under the assumption 

that the researcher follows a single procedure that would be applied the same way in any 

hypothetical sample.

Machine learning may seem to amplify this problem: with more candidate estimators, 

researchers who stay the course will simply have more opportunities to select their preferred 

result. Yet automated model selection offers a way out of this problem. Before analyzing 

the data, researchers can specify a single decision rule for choosing among many candidate 

estimators. For instance, we might choose the one with the lowest cross-validated mean 

squared error. By defining the decision rule before viewing any results, researchers can 

remove the danger of choosing a result based on their preferred specification. Beyond 

selection of the single best model, there are numerous possible decision rules to combine 

several candidate learners into one aggregate prediction function, including stacking 

(Wolpert, 1992), boosting (Schapire and Freund, 2012), and Bayesian model averaging 

(Raftery et al., 1997). One promising ensemble method is Super Learner (Van der Laan et 

al., 2007), which accepts a dataset and a set of candidate learners as arguments and returns 

a single prediction function which is a weighted average of those learners with weights 

learned through cross-validation. Super Learner is available in open-source software for R, 

both in the SuperLearner package (Van der Laan et al., 2007) and in the sl3 package 

(Coyle et al., 2021) which is part of the tlverse.
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An important caveat to automated model selection is that not all analytical choices can, 

or should, be automated. The choice of a target quantity requires an argument from 

the researcher about why that target quantity would matter for theory (Lundberg et al., 

2021). For causal target quantities in observational data, the set of variables needed for 

adjustment cannot be chosen from data because the choice necessarily involves unobserved 

counterfactual quantities; the set of variables must instead be chosen by argument about 

the underlying causal model (Pearl, 2009). For example, a variable that is a consequence 

of the treatment may itself affect the outcome. Yet, such a variable should not be held 

constant when estimating the average causal effect of the treatment, because conditioning on 

it would block a causal pathway from the treatment to the outcome and may unblock other 

non-causal pathways. Our theory about the causal ordering of the variables, not statistical 

evidence, informs the decision to exclude this covariate from the adjustment set.

There exist some settings where empirical evidence can inform the causal model—for 

example, if a pre-treatment variable is independent of treatment given other confounders, 

then that variable may not be needed for confounding adjustment.7 But as a general 

principle, the choice of adjustment variables is often better decided by theoretical 

argument rather than empirical evidence. Two pieces of the research process—defining the 

question and defending assumptions about counterfactuals—rest heavily on the researcher’s 

conceptual argument. The piece which can be more easily automated involves questions 

about estimation, such as whether or not an interaction between two predictors should 

be included (Brand et al., 2021).8 For a given research question and a given set of 

variables, a researcher who defines a decision rule can use data to automate the choice 

of a prediction function using those variables. By doing so, the researcher removes some of 

the opportunities for p-hacking.

4.2. Resolving approximate models: The promise of an agnostic perspective

Researchers often begin by assuming a model. All statistical properties (parameter 

definitions, standard errors, confidence intervals, etc.) are then valid only by the assumption 

that the model is correct. Yet social scientists and statisticians have long accepted that “all 

models are wrong” (Box, 1976:792). If we believe that all models are wrong, then under the 

standard perspective all statistical properties of those models are thus unreliable as well. One 

resolution to this conundrum is a more balanced perspective known as an agnostic approach: 

any statistical analysis is understood as an approximation to more complex phenomena. For 

example, past work in this perspective has formalized the statistical properties of ordinary 

least squares as a best linear approximation to a nonlinear or interactive function (see e.g. 

Lin 2013; Buja et al., 2019a,b; Aronow and Miller 2019). From an agnostic perspective 

the question is not whether we have the correct model, but rather whether one can provide 

evidence and argument that the chosen model is likely to usefully approximate the target 

quantity of interest (see Grimmer et al., 2021). A researcher who defines this target quantity 

7Imbens and Rubin (2015) Ch. 13 discusses an iterative procedure for selecting confounders based on their statistical relationship with 
the treatment. The Stata package ITPSCORE (Moore et al., 2021) implements this type of iterative propensity score specification. 
Researchers still select the input variables. With ITPSCORE, researchers can choose to bypass allowing the algorithm to eliminate 
any input covariates. For a LASSO-based approach to variable selection, see Belloni et al. (2014).
8The Imbens and Rubin (2015) iterative procedure and ITPSCORE (Moore et al., 2021) also selects higher order and interaction 
terms.
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or estimand outside of the model can then begin to reason about the relative merits of 

various approaches (Lundberg et al., 2021).

While the agnostic perspective is not new, it gains new importance with machine learning 

methods. With many machine learning methods, it is difficult to argue on conceptual 

grounds that the learned function is “correct.” For example, while one could reason about 

the relative merits of an assumed functional form for ordinary least squares, it is more 

difficult to reason conceptually about whether a random forest has been given a large enough 

sample to arrive at a “correct” representation of the response surface. These types of flexible 

learners have asymptotic guarantees, but one never knows if one’s sample is large enough 

to lean heavily on those guarantees. Here the notion of a useful approximation becomes 

essential: for at least some target quantities, one can marshal evidence about out-of-sample 

predictive performance to indirectly support the claim that the chosen algorithm will yield a 

good approximation to the target quantity.

The agnostic approach is related to a difference in worldview between classical statistics and 

machine learning. Classical approaches often emphasize the conceptual merits of a model, 

relying heavily on the assumption that the model generates the observed data. Machine 

learning approaches may never seek to learn the true model, but rather emphasize empirical 

evidence that the model performs well at a given task. In fact, Donoho (2017) argued that 

the “secret sauce” of machine learning is to precisely specify a task, open that task to all 

approaches, and select the best algorithm by a well-defined metric involving out-of-sample 

prediction. The best algorithm performs the task well, and it may or may not accurately 

represent the entire process that generated the data (Breiman, 2001b).9 Of course, what it 

means to “perform well” is part of the definition of the task, and is subject to researchers’ 

theoretical and normative choices. Social scientists may benefit from adopting elements of 

an algorithmic machine learning perspective. One element of that perspective is an agnostic 

approach: instead of seeking the correct model, we seek an approximation for which there 

is good reason or empirical evidence to expect the empirical properties that are desirable for 

our research question.

4.3. Resolving extrapolation: The promise of local estimators

Extrapolation is an ever-present danger in globally parametric models like ordinary least 

squares.10 Extrapolation occurs when a data point to be predicted is far from the mass of 

the training data, so that the predicted value may depend heavily on the assumed functional 

form (e.g., a line). Another side of the problem is influence. Influence is the converse, when 

a training point far from the mass of the data heavily shapes the fitted prediction function. 

Extrapolation and influence are two consequences with the same source: the assumption of 

global parametric models (e.g., the assumption of a line). Local estimators offer a solution to 

the problem: only allow each unit j to contribute to the estimate for unit i to the degree that 

9As an example of the algorithmic modeling culture, data scientists often emphasize algorithms as a set of procedures applied to data 
and the conditions under which those procedures perform well. See for example Wu et al. (2008).
10As used here, a globally parametric model is one where information is shared along an assumed functional form such that statistical 
patterns in one part of the space are taken to be informative about patterns in a very far removed part of the space. For instance, 
ordinary least squares is a globally parametric model where the pattern at the lowest values of a predictor informs the estimated pattern 
at the highest values of that predictor via the assumption of linearity, thus producing a substantial possibility of extrapolation.
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unit j is “near” to unit i. For every local estimator, the central question is what it means for 

two units to be “near” each other. New advances in local estimation are thus most powerful 

paired with conceptual social science argument for the chosen definition of “near.”

Propensity score matching for causal inference is one example of a local estimator (Imbens, 

2015; Morgan and Harding, 2006). Suppose we know the probability of treatment pi (also 

known as the propensity score) given the values of confounding variables for unit i. If unit 

i is treated, we might estimate the potential outcome under control Y i 0  by the outcome 

of the untreated unit j with propensity score pj closest to unit i. This is a local estimator 

because only the nearest untreated unit contributes to the estimate for unit i. Propensity score 

matching is a nearest neighbors estimator (Fix and Hodges, 1989): the unit or units nearest 

to the focal unit contribute to the estimate.

Nearest neighbors and other local estimators depend crucially on the definition of “near.” 

There are many ways to define what it means to be near. In propensity score matching, the 

distance between any pair of units may be defined as the difference in their probabilities 

of treatment pi − pj, which is a univariate summary of the difference in their confounder 

sets X i and X j. Or we could also define nearness as a function of the confounders X i

and X j directly, as is the case for Manhattan distance (sum of absolute differences over 

all covariate values), Euclidean distance (sum of squared differences), or Mahalanobis 

distance (a generalization of Euclidean distance which incorporates the covariance among 

X , Mahalanobis 1936). For each of these distances, one can define a local estimator by 

averaging across units which are “near” the focal unit by the chosen distance metric.

The definition of nearness is consequential: units that are “near” by one metric may be 

far apart by another metric.11 Future research with local estimators will need to reason 

carefully about the definition of “near” that is relevant to the problem at hand. For instance, 

the covariate balancing propensity score (CBPS) (Imai and Ratkovic, 2014) modifies the 

propensity score to optimize balance along the covariates. Entropy balancing (Hainmueller, 

2012) optimizes matches such that first, second, or higher moments of the covariates are 

similar across matched units. No distance metric is inherently superior to another outside of 

a specific application—they are all different definitions of what it means to be “near.”

Machine learning tools offer new ways to define the distance between any pair of 

observations. Random forests (Breiman, 2001b) are one example. A random forest is an 

algorithm which repeatedly (1) randomly samples a subset of predictors from the data, 

(2) randomly samples observations from the data with replacement, and (3) partitions the 

resulting sample into a set of “leaves” which are cells defined by the predictor variables 

and for which the outcome Y  is relatively homogeneous. Each iteration produces a tree, 

and the average of all the trees is a forest. As highlighted by Lin and Jeon (2006), the 

random forest can be interpreted as a weighted nearest neighbors estimator, where units i

11In fact, when the predictor set X  is high-dimensional (i.e., containing many unique values), it is possible that every unit is in some 
sense quite far from all other units. In causal inference, this can create a setting where arguably there is no untreated unit which is 
comparable to any given treated unit (D’Amour et al., 2021).
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and j are “near” to each other proportional to the frequency that they fall in the same leaf. 

The connection is powerful because it connects random forests (a machine learning tool) 

to a setting well-studied in classical statistics (weighted means). Wager and Athey (2018) 

exploit this connection to derive asymptotically-valid confidence intervals for estimates from 

random forests, drawing on results from classical statistics (Hájek, 1968; Hoeffding, 1948). 

The notion of random forests as adaptive nearest neighbors estimator generalizes to many 

problems (Athey et al., 2019), such as using random forests to define nearness for weighted 

local linear regression (Friedberg et al., 2021).

Local estimators hold great promise for future social science research. The barriers to 

adoption are low: many of the advances discussed above are implemented in open-source R 

software, including cbps for the covariate balancing propensity score (Fong et al., 2021), 

ebal for entropy balancing (Hainmueller, 2014), ranger for random forests (Wright and 

Ziegler, 2017), and grf for generalized random forests (Tibshirani et al., 2018). The open 

task for social scientists is to motivate the chosen definition of “near” with respect to their 

substantive problem.

4.4. Resolving poor convergence: The promise of targeted learning

Flexible machine learning estimators such as random forests can approximate unknown 

conditional mean functions E(Y ∣ X ) without the strong parametric assumptions common to 

classical methods like generalized linear models. Yet flexibility comes at a cost: the rate 

at which adaptive estimators converge toward the conditional mean is slower than the rate 

achieved by parametric methods. Targeted learning (Van Der Laan and Rubin, 2006; Van 

der Laan and Rose, 2018) resolves this convergence problem. While one cannot generally 

achieve fast convergence for the full conditional mean function, it is often possible to target 

the estimator and achieve fast convergence rates for a low-dimensional parameter of social 

science interest.

For concreteness, suppose we are interested in the population-average potential outcome 

E(Y (t)) that would be realized if a treatment variable T  were assigned to the value t. We 

make the causal assumption that a set of measured variables X  is sufficient to block all 

confounding, and we proceed by predicting the outcome Y  as a function of the treatment T

and confounders X . Our causal target parameter can be rewritten as a particular aggregation 

of a statistical function.
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(8)

The target E(Y (t)) is just one number. But the internal conditional expectation E(Y ∣ T = t, X )

is high-dimensional because the confounders X  have many unique values. For this reason, 

a flexible machine learning estimator of E(Y ∣ T = t, X ) may achieve good properties only at 

an extremely large sample size.

Targeted learning (Fig. 11) is a strategy to improve performance by incorporating the 

ultimate target into the process: the full response function E(Y ∣ T = t, X ) is only relevant 

to our question insofar as we ultimately will aggregate over X  to estimate the target 

parameter. Begin by estimating a prediction function g(T , X ) ≈ E(Y ∣ T , X ) to predict 

outcomes. Ultimately, we would like to make predictions for all units under the (possibly 

counterfactual) treatment T = t. Yet here is a problem: suppose a stratum X = x  of the 

confounders contains only a few treated units (T = t) but also contains many untreated 

units (T ≠ t). A naive prediction function will not optimize for prediction in this stratum, 

because few treated units are observed in the stratum. Yet, in the target population this 

stratum may be very important because it is home to many untreated units. Ideally, we would 

modify the prediction function g(T , X ) to place greater weight on accurate prediction in 

the spaces of T, X  where we will be making predictions. A targeted learning estimator 

achieves that ideal by incorporating a model for the conditional probability of treatment 

m(t, X ) ≈ P(T = t ∣ X ). For each unit with factual treatment T = t, the inverse 1
m(t, X )

 is a 

weight which captures the prevalence of units like this one in the target population relative to 

their prevalence in the available sample. There are many methods to incorporate the inverse 

probability of treatment to improve performance for an estimated parameter, including 

augmented inverse probability weighting (Robins et al., 1994; Robins and Rotnitzky, 1995) 

and double machine learning (Chernozhukov et al., 2018).12 In targeted learning, the inverse 

probability weight is used as a covariate in a new regression model to predict the outcome, 

with the initial prediction included as an offset term (a known intercept). To the degree that 

12Appendix Fig. 13 presents double machine learning (Chernozhukov et al., 2018), and Appendix Fig. 12 presents targeted learning 
for a continuous outcome to support direct comparisons with double machine learning.
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outcomes trend upward or downward as a function of the inverse probability of treatment, 

that trend can be corrected to produce a new prediction function optimized for prediction in 

the counterfactual target population.

Targeted learning should be more widely applied in social science due to its several 

advantages. First, the applicability of machine learning in social science is limited by 

the need for massive samples for flexible estimators to perform well. Targeted learning 

brings down this barrier by improving convergence for the target parameter (in this case, 

E(Y (t))). Second, targeted learning is superior to other methods such as augmented inverse 

probability weighting (Robins et al., 1994; Robins and Rotnitzky, 1995) and double machine 

learning (Chernozhukov et al., 2018) because targeting (Step 4 in Fig. 11) can involve a 

generalized linear model with a link function (e.g., logit). Thus, targeted learning never 

makes predictions outside the support of the outcome variable. Third, targeted learning 

comes with statistical guarantees of consistency and asymptotic normality (Van der Laan 

and Rose, 2018). Finally, targeted learning is accessible: for common target parameters, the 

tlverse suite of R packages supports this approach.

5. Conclusion

Machine learning creates abundant opportunities in social science. Where researchers 

might have coded a few documents by hand, we can now amplify that coding to tens 

of thousands of documents. Where researchers might have summarized a vast dataset 

by a set of coefficients, we can now use methods for discovery to target attention 

toward interesting patterns we may have missed. Where researchers might have assumed 

a regression specification, we can now learn interactions and nonlinearities directly from the 

data.

Social science is an inherently human endeavor. A researcher has to carefully consider 

what questions to ask, how data have been measured, and what assumptions are needed 

to answer those questions. Machine learning empowers researchers to do more; it does 

not replace us. The most effective uses of machine learning are likely to be in settings 

where social scientists can define a clear aspect of the problem to usefully outsource to 

an algorithm. One subfield that has already seen this synergy is causal inference, where 

researchers use argument to translate causal questions to statistical parameters (Pearl, 2009) 

before outsourcing the estimation of those parameters to flexible machine learning tools 

(Van der Laan and Rose, 2018). Machine learning is likely to have the most impact on 

problems for which researchers successfully partition the human and machine components 

of research.

Aspects of machine learning are not really new, since at its foundation it is just new 

developments in statistics. After all, the basics are the same: variables, assumptions, and 

patterns in data. Yet we have argued throughout this manuscript that there are advantages 

to machine learning that extend beyond traditional approaches. Indeed, technological 

improvements increasingly render machine learning tools attractive alternatives to classical 

methods. Conversely, some social scientists may perceive that the technical barriers to using 

machine learning remain too high to surmount. Yet barriers to adoption are plummeting with 
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accessible, open-source software. We predict that the benefits will rapidly outpace the costs 

to widespread adoption of machine learning tools.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Supervised machine learning for measurement amplifies researcher coding.
One setting which is particularly promising for machine learning exists when social 

scientists have many observations, each of which contains some high-dimensional predictor 

set x i (e.g., the text of document i) but the researcher is interested in some low-dimensional, 

unobserved categorization Y j (e.g., the topic of document i, here represented by colors). A 

researcher who manually codes a random sample of the observations into categories can 

use machine learning tools to amplify that coding by predicting for the full population. (For 

interpretation of the references to color in this figure legend, the reader is referred to the 

Web version of this article.)
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Fig. 2. Unsupervised machine learning inductively summarizes complex data.
In some settings, each observation contains a high-dimensional feature set x i (e.g., 

unstructured text data) with no labeled outcomes. Unsupervised machine learning reduces 

those features to a low-dimensional representation z i. Clustering is one example. The 

representation could be a scalar (e.g., assignment to a cluster) or a vector (e.g., a set 

of probabilities over many possible clusters). With unsupervised methods, the resulting 

representation depends entirely on the objective function that the algorithm seeks to 

optimize. Unsupervised learning can discover representations of data automatically, but 

the researcher must then validate those representations and argue for their substantive 

usefulness.
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Fig. 3. Task clarity: Out-of-sample prediction.
A well-studied machine learning task involves a random sample  taken from a target 

population, where the goal is to learn a prediction function to predict the outcomes of new 

samples from that same target population. For instance, we might use classroom indices to 

predict the test scores of individual students who were not observed in the training sample.
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Fig. 4. Simulation: Balancing the bias-variance trade-off.
In this simulation, there are 100 classes with class-level mean test scores normally 

distributed with variance 3. Within classes, student scores are normally distributed with 

variance 10. In each of 100 simulated samples, we estimate from a sample of 5 students 

from each class. The estimator partially pools the class-specific mean with the overall mean 

according to a shrinkage factor: θ j
(shrinkagefactor) = yj − (shrinkagefactor) yj − y . A shrinkage factor 

of 0 involves no pooling so that the estimate is the sample mean within each class, and a 

shrinkage factor of 1 involves complete shrinkage so that the estimate for every class equals 
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the overall sample mean. A hierarchical linear model selects a shrinkage factor equal to the 

variance of the within-class means divided by that variance plus the variance of the means 

across classes. The center dashed line takes those variances as known and shows that the 

multilevel shrinkage minimizes the expected squared error. To create each curve, we first 

calculate the statistic over simulations within classes, and then we report the average of the 

statistic over all classes.

Lundberg et al. Page 35

Soc Sci Res. Author manuscript; available in PMC 2024 February 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. Simulation: Data-driven estimator selection.
We consider six estimators: OLS with linear, log, quadratic, and cubic specifications, a 

regression tree following defaults in the rpart package (Therneau et al., 2015), and a 

Generalized Additive Model (GAM, Wood, 2017) following defaults in the mgcv package. 

Visually, the GAM comes closest to the true response function (Panel B). Panel C depicts 

how we randomly assigned observations to two equally-sized subsamples: the train set and 

test set. We then estimated each function on the train set and estimated its mean squared 

error when predicting the new cases in the test set. Panel D shows that the GAM achieves 
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the best performance. This exercise illustrates a building block of machine learning: instead 

of arguing conceptually for a particular estimator (e.g. OLS with a particular form), 

empirically evaluate the performance of many candidate estimators.
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Fig. 6. Partial effects: The interpretability of regression is not lost.

In this simulation, the true curve is the quadratic function Y = 1 − (1 − X)2 . The predictor 

values x1, …, x10 are spaced on an exponential scale. The true average partial effect is greater 

than the OLS coefficient estimate because the data are denser at the far left of the plot, 

where the slope is steeper, but the points at the far right of the plot have high leverage over 

the OLS estimate. The estimated curve is a thin-plate spline estimated by the gam function 

in the mgcv package in R (Wood, 2017). The simulation illustrates that a key benefit of 

OLS—a single-number summary of a relationship—is also available for flexible machine 
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learning methods. Further, machine learning methods can yield superior estimates of the 

average partial effect.
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Fig. 7. A regression coefficient is hard to interpret.
An apparent barrier to the adoption of machine learning is the perceived interpretability 

of standard regression models. Regression coefficients may seem familiar, but they are not 

as easy to interpret as many scholars may believe. As one example, the coefficient of a 

misspecified OLS model cannot be interpreted as the average causal effect, even when that 

model includes all confounding variables. For a longer discussion, see Elwert and Winship 

(2010), Brand and Thomas (2013), and Aronow and Samii (2016). In the example above, the 

probability of January precipitation in each city is true; all else is simulated.
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Fig. 8. Caution: Prediction in a new target population.
A standard machine learning task is to learn about a target population using a sample 

of cases selected at random from that population. In practice, however, algorithms are 

often deployed to make predictions in new populations from which no training cases were 

available. For example, a function to predict high school dropout learned in a cohort entering 

high school in 2017 might be used to target resources to at-risk students entering high school 

in 2022. But if the mapping between the predictors and outcome changes across cohorts, 

that prediction function may no longer be useful. To the extent that prediction functions are 

learned in one population and applied in a new target population, the validity of predictions 

may be uncertain.
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Fig. 9. Causal inference: A task that involves a new target population.
Suppose we observe a set of units who receive a treatment of interest (e. g., extra counseling 

in high school). After learning a prediction function in a sample of treated units, we wish to 

predict the outcome that untreated units would have realized if they had received treatment. 

For instance, we might predict whether those who did not receive counseling would not 

have dropped out if they had received counseling. Causal questions of this form require 

assumptions because in the absence of a randomized treatment it is impossible to draw a 

simple random sample from the target population.
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Fig. 10. Causal inference for policy prescriptions: A particular leap to a new target.
Suppose there is a learning population of n units, each of whom has a potential outcome 

that would be realized under the control condition Y i 0  and under the treatment condition 

Y i 1 . Suppose we take a random sample from the learning population and then randomly 

assign treatments to units in that sample. For each unit in the sample, we observe one of the 

two potential outcomes. Under randomization, a prediction function learned in the observed 

data can be used to make predictions in the learning population. But when designing policy, 

we generally want to predict treatment effectiveness in a new population who have not yet 

received the treatment. To predict in a new target population, we would have to additionally 

assume that the same data generating process holds in the target population as in the learning 

population. In observational settings, machine learning can be used for causal inference if 

the assumptions of random sampling and random treatment assignment are credible within 

subgroups defined by the observed predictors X  .
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Fig. 11. Targeted learning with a binary outcome.
An important advantage of targeted learning (Van der Laan and Rose, 2018) over double 

machine learning (Chernozhukov et al., 2018) is that targeted learning can accommodate 

a link function (the logit in steps 3 and 4) which can guarantee that predicted values fall 

within the support of the outcome. For targeted learning with a continuous outcome, see 

Supplemental Fig. 12. For double machine learning, see Supplemental Fig. 13.
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Table 1
Where to go next: Introductory material for interested readers.

These are a few of the growing number of pedagogical introductions to machine learning, many of which are 

accompanied by software packages in R or Stata.

Category Reference R package Stata package

General references

 Statistical foundations Hastie et al. (2009)

Efron and Hastie (2016)

Bishop (2006)

 Bayesian perspective Murphy (2012)

Measurement

 With text Grimmer et al. (2022)

Hopkins and King (2010) readme

Jerzak et al. (2022) readme2

 With audio Knox and Lucas (2021) communication

 With images Szeliski (2010)

Dimension reduction

 For text analysis Roberts et al. (2014) stm

Blei et al. (2003) topicmodels

Estimation

 For smooth functions Wood (2017) mgcv

 For interactive functions Breiman (2001a)

Wright and Ziegler (2017)

Wright and Ziegler (2017) ranger

Cerulli (2020) r_ml_stata_cv

 For penalized generalized linear models Friedman et al. (2010) glmnet

Wurm et al. (2017) ordinalNet

StataCorp (2021) lasso

Townsend (2017) elasticregress

Related topics

 Causal inference Van der Laan and Rose (2018) tlverse

Imbens and Rubin (2015)

Hernán and Robins (2021)

Pearl (2009)

Pearl and Mackenzie (2018)

Textor et al. (2011) dagitty

Athey and Imbens (2016) causalTree

Athey et al. (2019) grf

Brand et al. (2021) htetree

Ahrens et al. (2018) pdslasso
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Category Reference R package Stata package

Ferwerda et al. (2017) krls krls

 Quantification of uncertainty Efron and Tibshirani (1994) bootstrap

 Visualization Wickham (2016)Healy (2018) ggplot2

 Social science reviews Grimmer et al. (2021)

Brand et al. (2020)

Athey and Imbens (2019)

Molina and Garip (2019)

Mullainathan and Spiess (2017)
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