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Abstract

Attention network theory proposes three distinct types of attention—alerting, orient-

ing, and control—that are supported by separate brain networks and modulated by

different neurotransmitters, that is, norepinephrine, acetylcholine, and dopamine.

Here, we explore the extent of cortical, genetic, and molecular dissociation of these

three attention systems using multimodal neuroimaging. We evaluated the spatial

overlap between fMRI activation maps from the attention network test (ANT) and

cortex-wide gene expression data from the Allen Human Brain Atlas. The goal was to

identify genes associated with each of the attention networks in order to determine

whether specific groups of genes were co-expressed with the corresponding atten-

tion networks. Furthermore, we analyzed publicly available PET-maps of neurotrans-

mitter receptors and transporters to investigate their spatial overlap with the

attention networks. Our analyses revealed a substantial number of genes (3871 for

alerting, 6905 for orienting, 2556 for control) whose cortex-wide expression co-

varied with the activation maps, prioritizing several molecular functions such as the

regulation of protein biosynthesis, phosphorylation, and receptor binding. Contrary

to the hypothesized associations, the ANT activation maps neither aligned with the

distribution of norepinephrine, acetylcholine, and dopamine receptor and transporter

molecules, nor with transcriptomic profiles that would suggest clearly separable net-

works. Independence of the attention networks appeared additionally constrained by

a high level of spatial dependency between the network maps. Future work may

need to reconceptualize the attention networks in terms of their segregation and ree-

valuate the presumed independence at the neural and neurochemical level.
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1 | INTRODUCTION

Attention prioritizes the processing of goal-relevant over less relevant

information which ensures adaptive behavior in information-rich

environments (Cowan, 1999; Posner & Fan, 2008). Attention network

theory (ANT) distinguishes between three different types of attention:

(i) alerting attention, which is the initiation of a state of heightened

alertness in anticipation of upcoming stimuli; (ii) orienting attention,
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which is the shift of the attentional focus to prioritize information processing

at a particular spatial location, and (iii) control attention, which is the selec-

tive amplification of relevant aspects of a stimulus when irrelevant informa-

tion is present (Posner & Dehaene, 1994; Posner & Petersen, 1990). At the

brain level, each type of attention is supported by distinct and distributed

set of cortical and subcortical regions: the three attention networks alerting,

orienting, and control (Petersen & Posner, 2012).

A core tenet of ANT is the presumed independence of the three

attention networks. This independence is thought to arise from disso-

ciating effects of large neuromodulatory systems: alerting is modu-

lated by norepinephrine, orienting by acetylcholine, and control by

dopamine (Posner & Rothbart, 2007). While the relevance of all three

neuromodulators in attention is well established (Noudoost &

Moore, 2011; Robbins, 1997), the evidence for the assumed dissocia-

tion and specificity in regard to the three attention networks is less

conclusive. Experimental work with the ANT (Fan et al., 2002), a

behavioral protocol to assess the efficiency of all three attention net-

works simultaneously, was unable to detect influences of the potent

acetylcholine agonist nicotine on any of the three attention networks

(see McCormick, 2022, for review). Furthermore, direct manipulations

of the noradrenergic system by blocking the norepinephrine reuptake

impact orienting attention but not alerting and control (Reynaud

et al., 2019), while indirect measure of locus coeruleus activity suggest

an involvement of norepinephrine in all three attention networks

(Gabay et al., 2011; Geva et al., 2013). Only for dopamine, the evi-

dence is more favorable, with clear demonstrations of increased dopa-

mine release during task performance (Badgaiyan & Wack, 2011) and

dissociating effects in patients with Parkinson's disease whose cardi-

nal symptom is dopaminergic impairment (Yang et al., 2022). It needs

to be noted, however, that many studies have used rather indirect

approaches to the neuromodulators and that neuroimaging work has

been able to detect neuromodulation at the brain level in the absence

of behavioral effects (Ikeda et al., 2017; Thienel et al., 2009).

The distal causation of these neuromodulatory effects is likely of

genetic origin (Green et al., 2008). In line with the behavioral genetics

literature (Polderman et al., 2015), it has been shown that the behav-

ioral efficiency of the attention networks is heritable (Fan

et al., 2001). Several studies have attempted to implicate candidate

polymorphisms on genes with direct relevance for the neuromodula-

tory systems in behavioral and neural markers of attention and have

found some evidence for the hypothesized dissociation (Fan

et al., 2003; Fossella et al., 2002; Rueda et al., 2005). The available

evidence, however, is not conclusive (Green et al., 2008; Posner

et al., 2014) and genetic association studies on candidate genes have

been disputed more recently, despite their apparent face value

(Border et al., 2019; Montag et al., 2020; S. R. Moore, 2017).

Given the paucity of supporting evidence for the molecular and

genetic dissociation of the three attention systems in humans, we

decided to revisit the hypothesis by utilizing two novel and comple-

mentary approaches: a comprehensive examination of brain-wide

gene transcriptomic activity and the expression of receptor and trans-

porter molecules as discerned through molecular neuroimaging.

ANT theory's underpinnings predominantly rely on systemic phar-

macological manipulations and exhibit some ambiguity in elucidating

the precise mechanisms through which neuromodulatory signals affect

the attention networks. All three proposed neuromodulatory systems

share common characteristics, including the localized origin of synthe-

sizing neurons in the brainstem and midbrain, and widespread target

sites throughout the cortex and subcortical areas such as the basal

ganglia and the thalamus, where these neurotransmitters exert their

neuromodulatory influences at noradrenergic, cholinergic, and dopami-

nergic synapses. Consequently, the chemical neuromodulation of atten-

tion networks could occur through direct mechanisms, involving the

modification or regulation of synaptic connections within the attention

networks themselves, or through indirect pathways, influencing neural

circuitry in regions such as the striatum and thalamus, which subse-

quently impact the attention networks via other neurotransmitters like

glutamate or GABA (Ross & Van Bockstaele, 2021; Speranza

et al., 2021; Tang et al., 2012).

Since ANT theory designates the cortical projection sites of ascend-

ing dopaminergic, cholinergic, and noradrenergic fibers as central hubs in

the attention networks (Posner & Fan, 2008), it seems reasonable to

begin by exploring the possibility of direct neuromodulation. Under this

premise, we posit that the cortex-wide activation profile of each atten-

tion network, as activated by the ANT (Fan et al., 2002; Fan et al., 2005),

corresponds to the relative availability of pertinent receptor and trans-

porter molecules (approach 1) and the relative expression of relevant

genes in brain tissue (approach 2). Assuming that the molecular neuro-

modulation of attention networks occurs at the synaptic levels, we

hypothesize that (1) brain regions that activate during alerting show

higher availability of the norepinephrine transporter (NET) and higher

expression of genes involved in norepinephrine binding, (2) that brain

regions that activate during orienting show higher availability of nicoti-

nergic acetylcholine receptors and vesilcular acetylcholine transporters,

and a higher expression of genes involved in acetylcholine-gated cation-

selective channel activity, and (3) that brain regions that activate during

attention control show higher availability of the dopamine transporter

(DAT) and dopamine D1 and D2 receptors, and higher expression of

genes involved in dopamine binding. We expect stronger covariation

between task-evoked activity within each attentional domain and the

mentioned gene sets as compared to randomly defined gene sets of

equal size. We also expect stronger covariation between task-evoked

activity within each attentional domain and receptor/transporter avail-

ability as compared to random null models of the attention networks.

Moreover, we expect specificity of the associations in a way that gene

sets and receptor/transporter availability with presumed relevance for

one attentional domain is more strongly related to this domain than to

the other two domains. Finally, given the assumed independence of the

three attention networks, we expect (4) that the genome-wide transcrip-

tomic signatures of the attention networks are uncorrelated.

To this end, we utilize a sample of healthy volunteers who com-

pleted the ANT during functional magnetic resonance imaging

(Markett et al., 2022), publicly available maps of group-level receptor

and transporter distribution maps from positron emission tomogra-

phy (Hansen, Shafiei, et al., 2022), and microarray measures for over

20,000 genes measured at 3702 locations in the brains of six donors

as provided by the Allen Human Brain Atlas (AHBA) and curated by

the abagen toolbox (Hawrylycz et al., 2012; Markello et al., 2021).
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2 | METHODS

2.1 | Functional imaging data set

We used the publicly available (https://osf.io/st9ae/) group-level

attention network maps from our previous study (Markett

et al., 2022). The maps were obtained from N = 78 healthy young vol-

unteers (n = 35 female, n = 43 male, mean age M = 26.18,

SD = 5.34) who completed the revised ANT (see next paragraph for

details) during fMRI. All participants provided informed written con-

sent and received remuneration. The study protocol adhered to the

Declaration of Helsinki and was approved by a local ethics committee.

2.2 | Attentional network test

The maps were derived by using the ANT (Xuan et al., 2016). The

task followed a 4 � 2 design with the factors cueing condition

(no cue, double cue, valid spatial cue, invalid spatial cue) and target

(congruent flanker, incongruent flanker). Participants responded to a

total of 288 trials, split into four sessions of 78 trials each. A typical

trial sequence is shown in Figure 1. Throughout each trial, partici-

pants were instructed to maintain fixation on a central fixation

cross. Target stimuli appeared in one out of two boxes presented

laterally to the fixation cross and included five arrows pointing

either to the left or to the right. Participants were instructed to

indicate as fast and as accurate as possible via button press whether

the most central of the five arrows pointed left or right while ignor-

ing the four flanking arrows that could either point into the same

(congruent) or opposite direction (incongruent). Shortly before target

onset, one out of four different cues was presented that carried

information that a target was about to appear (temporal double cue)

or where the target was about to appear (spatial cue). Spatial cues

were either valid (i.e., giving correct information on the target loca-

tion) or invalid (i.e., pointing at a location where the target did not

appear). Some targets were preceded by no cue as a baseline condi-

tion. Cues were presented for 100 ms, the onset asynchrony

between cues and targets was 0, 400, or 800 ms, targets were pre-

sented for 500 ms with an additional response window of 1200 ms,

and trials were spaced with a jittered interval of 4000 ms on aver-

age, systematically sampled from a distribution ranging from 2000

to 12,000 ms. There were 48 trials with double cue, 48 trials with

invalid cue, 48 trials with no cue, and 144 trials with valid cues. We

realized an equal proportion of congruent and incongruent targets

(144 each). The combinations of cue-target asynchronies, target

location, and flanker types were counterbalanced for each cue con-

dition. For more details on stimulus dimension and timing, we refer

to our previous work (Markett et al., 2022).

F IGURE 1 Overview of the stimuli and their timing within a standard trial sequence. Each trial commenced with a 100 ms display of one of
three cues: no cue, a double cue, or a spatial cue. Following this, there was a cue-target interval of 0, 400, or 800 ms, after which five arrows
were presented for 500 ms as the target stimulus. Participants were required to indicate, through button presses, whether the central arrow
pointed to the left or right. In half of the trials, the flanking arrows were congruent, while in the other half, they were incongruent. The time
elapsed between the offset of the target and the onset of the subsequent cue was a jittered interval, with a mean duration of 4000 ms across
trials and a range of 2000–12,000 ms. The targets appeared at either the cued position (in cases of valid spatial cues) or at an uncued position
(in cases of invalid spatial cues). The experiment consisted of a total of 288 trials, organized across four separate runs.
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2.3 | Functional MRI acquisition and preprocessing

Brain images were collected on a 3T Siemens Prisma scanner

equipped with a 32 channel had coil. We used the following pulse

sequences from the HCP-Lifespan project (Glasser et al., 2013; Harms

et al., 2018): a T1-weighted structural image (Multiecho MPRAGE,

voxel size 0.8 mm, isotropic, time to repeat TR = 2.4 s, time to echo

TE = 22 ms, flip angle 8�), a T2-weighted structural image (SPACE,

voxel size 0.8 mm isotropic, TR = 3.2 s, TE = 563 ms, flip angle 120�),

and four runs of task fMRI, including two spin echo fieldmaps (A-P

and P-A encoding) followed by BOLD fMRI (multiband echoplanar,

72 slices, TR = 800 ms, voxel size 2 mm isotropic, TE = 37 ms, flip

angle 52�, A-P encoding direction).

Images were preprocessed with the HCP minimal preprocessing

pipelines (v4.1) using Freesurfer (v6.0) and FSL (6.0.1) under Linux

Debian 10. Preprocessing scripts are described in Glasser et al. (2013)

and can be obtained from Github (github.com/Washington-

University/HCPpipelines).

T1- and T2-weighted images were corrected for gradient distor-

tions, aligned, brain extracted, bias field corrected, and registered to

MNI space using nonlinear transformation. We then ran the images

through HCP's Freesurfer pipeline with improved brain extraction,

alignment, and adjustment of the white matter surface. Cortical sur-

faces were subsequently registered to template space based on corti-

cal folding (MSMsulc, Robinson et al., 2018) and downsampled to the

32k_LR surface space. Functional images and the corresponding field

maps were processed with the fMRIVolume pipeline which included

correction for gradient distortions, motion, and EPI image distortions,

followed by co-registration with the T1 structural image and normali-

zation to MNI volumetric space using MSMsulc. All transformations

were applied in a single step. Following intensity normalization to

their global 4D mean and masking, volume time series underwent

additional processing using the fMRISurface pipeline. This processing

involved creating individual CIFTI dense time series grayordinate files.

During this step, we applied light volume and surface-based smooth-

ing, employing a Gaussian filter with a full width at half maximum

of 4 mm.

2.4 | Attention network maps

We conducted first-level analyses in SPM12 (www.fil.ion.ucl.ac.uk/)

using a general linear model. To facilitate the analysis, we converted

surface images into “fakevolumetric” nifti-images. Condition-specific

regressors were generated by convolving delta functions with SPM's

canonical hemodynamic response function. Adhering to the ANT's

design featuring four types of cues and two types of targets, we estab-

lished separate regressors to represent the onsets of the following

events: Congruent targets following double cues, congruent targets fol-

lowing valid cues, congruent targets following invalid cues, congruent

targets following no cues, incongruent targets following double cues,

incongruent targets following valid cues, incongruent targets following

invalid cues, and incongruent targets following no cues. In addition to

these eight regressors, we introduced an extra regressor for error trials,

12 regressors to account for the six head motion parameters and their

temporal derivatives, and one constant per run. The three attention

networks were operationalized through linearly weighted contrasts on

estimated beta images from first-level analyses in SPM12: the alerting

network was obtained by contrasting the double cue minus the no cue

condition across target conditions. The orienting network was defined

as the validity effect by contrasting the invalid cue minus valid cue con-

dition across targets. The control network was obtained by contrast

incongruent minus congruent targets across cue conditions. Group-

level maps were obtained by submitting the individual contrast images,

using the Sandwich Estimator (SwE) Toolbox for SPM12 (Guillaume

et al., 2014). Specifically, we implemented a modified SwE procedure

that included a type c small sample size correction and a wild boot-

strapping procedure consisting of 999 bootstraps.

2.5 | Cortical parcellation

Linking imaging data from different modalities (functional activation

maps, PET maps, gene-expression data) requires a brain parcellation

as a common reference scheme. We utilized the Lausanne-219 parcel-

lation which is a high resolution derivative of Freesurfer's surface-

based Desikan-Killiany-Atlas (Cammoun et al., 2012; Desikan

et al., 2006) with 219 cortical brain regions. PET-maps were already

available in this format. For the functional and gene-expression ana-

lyses, we created our own group version of the Lausanne-219 parcel-

lation based on the T1-weighted structural images acquired alongside

the functional imaging data. Structural images were run through

HCP's freesurfer pipeline (Glasser et al., 2013) and subsequently par-

cellated according to the Lausanne-219 atlas with scripts distributed

with the CATO toolbox (de Lange & van den Heuvel, 2021). All indi-

vidual parcellations were subsequently aligned with fsaverage_32LR

space and a group atlas was created by assigning each vertex to the

most frequent Lausanne-label across participants. We used this group

atlas to extract region-wise mean activation differences from the

unthresholded second-level contrast maps for each ANT contrast. For

the gene-expression analysis, we resampled the group parcellation to

fsaverage5 space with 10k resolution for each hemisphere separately,

as required by abagen. We complemented the cortical parcellation

with the standard Freesurfer subcortical parcellation which includes

seven bilateral regions.

2.6 | Null model

Testing the spatial correspondence of different brain maps requires a

null model that accounts for spatial non-independence (Alexander-

Bloch et al., 2018). We evaluated statistical significance of the correla-

tions between functional task activation and gene-expression profiles

and between task activations and receptor/transporter maps through

a spatial permutation approach (the “spin test”) where we swapped

the parcellation labels randomly while accounting for the intrinsic

geometry of the cortex (Váša et al., 2018). We created the null model

based on centroid coordinates for each cortical region after projecting
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the group-level parcellation onto a sphere. For each permutation,

coordinates were rotated around three axes with randomly generated

angles. The same angles (with opposing signs) were used for both

hemispheres to preserve hemispheric symmetry. To keep the align-

ment between rotated and unrotated parcellations intact, we matched

each rotated to the closest unrotated region (minimum Euclidian dis-

tance), starting with the region that was most distant to all other

regions on average and then progressing though all other regions in

descending order. Code snippets for null model creations were taken

from Github (github.com/frantisekvasa/rotate_parcellation).

2.7 | Overlap of activation maps

We quantified the degree of functional overlap between the pheno-

typic activation maps (brain images) by calculating product–moment

correlations between respective activation vectors. Statistical signifi-

cance was determined via permutation testing based on the null

model. We randomly rotated each activation map one million times to

obtain permutated activation maps that account for spatial autocorre-

lations in the brain maps (see Section 2.5). For each pairwise compari-

son (alerting vs. control, alerting vs. orienting, and control

vs. orienting), rotation was performed twice, that is, one activation

vector (e.g., alerting) was rotated first and correlated with the

observed activation vector (e.g., control) and vice versa. Thus, each

observed correlation (e.g., alerting vs. control) was compared to two

million expected correlations (alerting observed vs. control rotated,

and alerting rotated vs. control observed).

2.8 | Gene expression analyses

For gene expression analyses, we used abagen (Markello et al., 2021),

an open-source Python interface that enables integration of the

AHBA (Hawrylycz et al., 2012) with neuroimaging data. The AHBA is

an open-access database containing gene expression and other micro-

array expression data collected from six human postmortem brains.

abagen intends to improve workflows related to the AHBA in terms of

transparency, reproducibility, and standardization. The tool enhances

transcriptional data analyses as these are often accompanied by a

wide range of processing options making results from different stud-

ies less comparable.

We utilized abagens workflow for correlated gene expression ana-

lyses, employing its default parameters. The detailed processing steps

are documented in the abagen methods report (Appendix B).

This procedure involved uploading a surface brain atlas to gener-

ate a genes-by-regions expression matrix with a total of 15,632 incor-

porated genes.

2.9 | Gene expression and attention networks

We correlated each of the three regions-by-activation vectors from

the ANT conditions with the regions-by-genes expression matrix

obtained from abagen, resulting in one product–moment correlation

coefficient for each ANT condition by gene combination. We

obtained corresponding p-values through permutation tests with

the rotated spatial null model (see Section 2.5). We performed one

million rotations to determine significance with adequate accuracy

even after stringent Bonferroni-correction for multiple testing

(0.05/15632 = 0.0000032). For each gene, we determined the rela-

tive frequency by which the absolute correlation coefficient after

random permutation was equal to or larger than the absolute empiri-

cal (observed) correlation coefficients. To distinguish positive from

negative correlations, the p-values were transformed into z-values

under consideration of the empirical correlations' signs. In a last

step, all genes were rank-ordered based on these z-values. Rank ties

were resolved by inspecting the empirical correlation coefficient,

allowing duplicate z-values to be unambiguously assigned to a rank.

These rank indices, each obtained by considering both the p-value

and empirical correlation coefficient with its sign, serve as input for

the subsequent gene set enrichment analysis (GESA). In this analysis

step, no thresholds were applied, and all genes, along with their

respective rank indices, were preserved without exclusions.

2.10 | Gene-expression-similarities of attention
networks

We calculated pair-wise correlations between the three vectors con-

taining the association between each gene by ANT condition combi-

nation (see Section 2.8) to quantify gene-expression-similarities

between the three attention networks. Corresponding p-values were

computed by randomly rotating the ANT activation maps relative to

the gene expression maps (see Section 2.6) and calculating the pro-

portion of pair-wise correlation coefficients of genetic associations

results that were at least as extreme as the original pair-wise correla-

tion coefficients. ANT activation maps were rotated in equal direc-

tions to preserve their phenotypic correlations. Under the assumption

of no association between ANT activation maps and gene expression

maps, the pair-wise correlations of association results were expected

to reflect, on average, the phenotypic correlations between ANT acti-

vation maps. In case of true associations between ANT activation

maps and gene expression maps, genetic similarities (i.e., pair-wise

correlations of genetic association results) were expected to exceed

the phenotypic correlation.

2.11 | Gene set definition

We grouped the gene expression decoding results for each ANT con-

ditions by their underlying molecular functions (MFs) to detect similar-

ities between single genes on a higher level. A common tool for

classifying such gene functions is the PANTHER Classification System

(Mi et al., 2021). PANTHER allows functional sorting of proteins,

based on various criteria such as signaling and metabolic pathways or

external aspects of the Gene Ontology database. The Gene Ontology

(Ashburner et al., 2000; Gene Ontology Consortium, 2021) provides
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biological information to PANTHER that can be divided into three

domains: MFs, biological processes, and cellular components (Mi &

Thomas, 2009). Given our hypotheses on local activity of dopamine,

norepinephrine, and acetylcholine, we focused our analyses only MFs,

that is, on all molecular activities that arise almost directly from one or

more gene products, such as binding or transport activity. In contrast,

biological processes represent activities superordinate to MFs, thus

not describing actions on a local, individual level but rather general

metabolic or physiological processes. Cellular components, on the

other hand, describe cell structures (e.g., mitochondria, cytosol)

instead of cell activity and therefore do not provide relevant informa-

tion about the neurotransmitter system.

Further, the selection of MFs we hypothesize being involved in

alerting, orienting, and control focused primarily on transmitter inter-

action rather than synthesis since regions of transmitter synthesis are

relatively confined. We rather expect the experimental manipulation

leading to increased postsynaptic activity in the target regions of the

three transmitter systems.

Before performing statistical analyses, we preselected those three

MFs (out of around 5000 available MF in the database) that best

reflect neurotransmitter binding activity of dopamine, norepinephrine,

and acetylcholine:

1. Dopamine binding (GO:0035240, 7 genes)

Binding to dopamine, a catecholamine neurotransmitter formed by

aromatic-L-amino-acid decarboxylase from 3,4-dihydroxy-L-

phenylalanine.

2. Norepinephrine binding (GO:0051380, 4 genes)

Binding to norepinephrine, (3,4-dihydroxyphenyl-2-aminoethanol),

a hormone secreted by the adrenal medulla and a neurotransmitter

in the sympathetic peripheral nervous system and in some tracts

of the CNS. It is also the biosynthetic precursor of epinephrine.

3. Acetylcholine-gated cation-selective channel activity

(GO:0022848, 18 genes)

Selectively enables the transmembrane transfer of a cation by a

channel that opens upon binding acetylcholine.

2.12 | Gene set enrichment analysis

We used GSEA to assess whether genes belonging to the specified

gene sets. Dopamine binding, norepinephrine binding, and

acetylcholine-gated cation-selective channel activity showed stronger

co-expression with the attention network maps relative to all other

expressed genes. Association results derived from correlating gene

expression maps and ANT activation maps (see Section 2.8) were

uploaded to PANTHER v17, including unique Gene IDs and their cor-

responding rank index. This index indicates the extent to which gene

expression and fMRI activation spatially overlap in comparison to

other genes. Identical tool settings and processing steps were applied

to all gene lists (Appendix B). The results of these enrichment tests

are lists of significantly over- or under-represented MFs for each ANT

contrast as well as information about all mapped genes for each

MF. GSEA was primarily applied to evaluate whether the three

hypothesized categories are statistically overrepresented. In addition,

we explored the potential over- or under-representation of other cat-

egories (Appendix D). However, it is crucial to interpret these explor-

atory findings with caution, considering the autocorrelations of gene

expressions.

2.13 | Analysis of subcortical areas

To gain a more comprehensive understanding of the overlap

between brain images and gene expression patterns in subcortical

regions, we extended our analytical approach, previously applied

to the cortex (as described in Sections 2.6–2.11), to subcortical

areas, including the thalamus, caudate, putamen, pallidum, hippo-

campus, amygdala, and the accumbens area (Desikan-Killiany brain

parcellation).

For these subcortical regions, we performed an adapted spin test

by generating permutations of all 5040 possible orders while consid-

ering the hemisphere as a fixed factor. This allowed us to determine

pairwise significance of overlap in ANT activation. We correlated the

observed activation vector of one ANT condition (e.g., alerting) with

5039 shuffled activation vectors of the other ANT condition

(e.g., control), and vice versa. Similarly, we computed gene expression

similarities (as described in Section 2.9) and conducted GSEA

(as detailed in Section 2.11) for the subcortical regions.

We also utilized the Desikan-Killiany brain parcellation to retrieve

gene expression data for 15,632 genes from the AHBA within these

seven subcortical brain regions.

2.14 | PET data set

We obtained 19 publicly available group-level maps of receptor and

transporter availability in nine neurotransmitter systems (Hansen, Sha-

fiei, et al., 2022), derived from PET imaging in 27 different samples

with N = 1239 healthy participants in total and individual sample sizes

ranging from n = 3 to n = 174. From the 19 maps, we selected six

maps with direct relevance for the three hypothesized neurotransmit-

ter systems: Norepinephrine (NET), acetylcholine (nicotinergic recep-

tor a4b2 and vesicular acetylcholine transporter [vACht]), and

dopamine (d1-receptor, d2-receptor, and DAT). All data were already

provided in the Lausanne-219 parcellation and can be accessed via

github.com/netneurolab/hansen_receptors.

2.15 | Molecular similarities of attention networks

Relationships between attention networks and PET maps were

assessed through Pearson correlations. Corresponding p-values

were obtained through permutation testing with the spin test (5000

permutations each). We report all correlations with false-discovery-

rate-adjusted p-values (q = .05).
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2.16 | Open science statement

Code for structural and functional preprocessing can be obtained

from https://github.com/Washington-University/HCPpipelines.

Group-level data, decoding results, and analyses code can be

obtained from github.com/schinhan/ant_genes. We have pub-

lished other work on the same data set (Markett et al., 2022).

3 | RESULTS

3.1 | Overlap of activation maps

In a first step, we parcellated the three attention network

maps (Figure 2a) into 219 ROIs (Figure 2b) to evaluate their functional

overlap. These activation vectors of attention networks (Figure 2c)

were positively intercorrelated: r = .546 (p = 3.5e-06) for alerting

versus control, r = .824 (p = 2e-06) for alerting versus orienting, and

r = .636 (p = 1e-06) for control versus orienting. The p-values indi-

cate that, for each pairwise comparison, almost none of the randomly

rotated brain maps displayed stronger correlations with the observed

brain maps than the observed brain maps themselves (Figure 2d).

Additionally, we computed Dice similarity coefficients (DSC) to

offer a more comprehensive evaluation of spatial overlap. The DSC

quantifies set overlap based on binary vectors. To determine whether

a given brain region belonged to a particular attention network, we

initially extracted mean activation for each task condition

(e.g., incongruent flankers) in all 219 brain regions at the participant

level. We then conducted t-tests to identify regions significantly acti-

vated by the experimental manipulation (p < .05, FDR-corrected). The

resulting binary vectors were used to calculate DSC for all ANT com-

parisons. We obtained a DSC = .444 (p = .003) for alerting versus

(a) fMRI activity during
Attention Network Test  

(b) Cortical parcellation into 219 ROIs (e) Parcellated gene expression of AHBA genes

(c) Parcellated fMRI activation vectors
(f) Correlation coefficients of fMRI activation

vectors with gene expression data

(d) Observed and expected correlation
coefficients of fMRI activation vectors

(g) Observed and expected correlation
coefficients of gene associations

Alerting

Orienting

Control

fMRI

activation r

Gene

expression

F IGURE 2 Outline of the step-by-step workflow for our analysis: Attention network maps (a) were parcellated into 219 regions using the
Lausanne parcellation (b), generating one activation vector of length 219 for each attention network, displayed in panel (c). Functional overlap
between attention network test (ANT) networks was evaluated by correlating the ANT brain activation vectors, displayed as dots in panel (d).
Statistical significance of the correlations was evaluated by a spatial permutation test. The violins in panel (d) show the distributions of 2 million
correlations obtained from spatially rotating the ANT activation vectors according to the spin-test null model. Horizontal lines reflect the 95th
quantiles of correlations expected under the null hypothesis. We then obtained regional gene expression data from the AHBA using the abagen
pipeline. The matrix in panel (e) visualizes gene expression for a total of 15,632 genes, with values ranging from 0 to 1 across all 219 regions of
the Lausanne parcellation. For visualization, the order of genes and ROIs was rearranged into two clusters. Associations between gene expression
and ANT networks were evaluated by correlating the activation vectors from panel (c) with each of the 15,632 gene expression vectors in panel
(e), yielding a correlation coefficient for each gene with the alerting, orienting, and control networks, displayed in panel (f). In a last step, we
assessed the similarity between the gene expression associations of each attention network displayed in panel (f) by computing their pairwise
correlation, shown as dots in panel (g). The violins show the distribution of two million correlations obtained from spatially rotating the ANT

activation vectors (panel e) according to the spin-test null model. Again, horizontal lines reflect the 95th quantiles of correlations expected under
the null hypothesis.
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control, DSC = .583 (p = 8.15e-05) for alerting versus orienting, and

DSC = .592 (p = 1.10e-04) for control versus orienting. In practical

terms, this means that the pairwise similarity between ANT maps

ranges from 44.4 to 59.2%. P-values were obtained through the same

spin test approach as used for the correlational overlap of ANT maps,

involving two million permutations for each comparison.

In an exploratory endeavor, we aimed to identify which regions

were primarily responsible for this high overlap between attention

networks and where regional differences emerged. In Appendix C, we

provide visualizations of regions displaying the greatest absolute dif-

ferences in brain activation across all three comparisons within the

ANT. This includes highlighting elements consistently activated across

all three attention networks and those showing activation in just one

or two of them.

3.2 | Gene expression analyses

Second, we examined the spatial correspondence between gene

expression and spatial activation of attention networks for each

gene in comparison to all other genes. The gene expression matrix

extracted from abagen is shown in Figure 2e. Correlation of the

region-by-gene expression matrix with the spatial activation vectors

of the ANT conditions yielded an ANT condition-by-gene association

matrix (Figure 2f). Significance testing with one million permutations

of the spatial null model revealed 3871 genes whose cortex-wide

expression patterns covaried with the activation maps (p < .05, FDR

corrected) in alerting, 6905 genes in orienting, and 2556 genes in

control.

Overall, the associations between the gene expression maps from

abagen and the ANT maps exceed the expected associations under

the null hypothesis since the observed permutation-based p-values

strongly deviate from the expected p-values (Figure 3a). In other

words, the activation maps and gene expression map exhibit overall

stronger overlaps than those resulting from random rotation of the

activation maps.

Association results of all expressed genes and the different ANT

conditions are displayed in respective Manhattan plots (Appendix C,

Figure C.1), with further details provided in Appendix S1 (Table B1).

We note that Manhattan plots do not highlight specific genomic

regions that contain accumulations of strong association p-values as

typically shown in genome-wide association studies. In this

(a) QQ-Plots showing observed and expected p-values of associations between gene expressions and ANT maps

Alerting Orienting Control

(b) Scatterplots of enriched Molecular Functions clustered with GOFigure! 

F IGURE 3 QQ-plots in panel (a) display permutation-based p-values for all 15,632 genes. These p-values were derived by associating the
gene expression map from abagen with the ANT activation maps and comparing them to gene associations of 1 million rotated ANT activation
maps. On the y-axes, we present observed permutation-based p-values, plotted against the expected p-value distribution under the null
hypothesis on the x-axes. Notably, leftward deflections (indicated by blue dots) from the projected null (diagonal line) signify an enrichment of
low p-values. GO-Figure! plots in panel (b) summarize enriched MFs from GSEA. We have included all significant MFs (p < .05, FDR corrected) in
the creation of these summary visualizations with GO-Figure. Each cluster's color represents the p-value of the selected representative, while the
size of the circles indicates the number of MF assigned to the cluster. Spatial distances between clusters reflect their semantic similarity. For this
analysis, we specified a maximum of 20 clusters, a default similarity cut-off of si = .50, and restricted the analysis to molecular functions. The
similarity cut-off is a parameter between 0 and 1, determining the degree of semantic similarity necessary for two GO-terms within the Gene
Ontology to be assigned to the same cluster. Labels of the cluster's representatives are given in Table 2.

8 of 16 SCHINDLER ET AL.



expression-based analysis, clusters of genes may span the whole

genome and still overlap in their cortex-wide expression patterns, pro-

ducing “horizontal band of associations” with similar test-statistics in

Manhattan plots (e.g., see band of associations in ranging from

�log10(p) = 4 to �log10(p) = 5).

To identify groups of genes with a relative enrichment of signals,

we carried out GSEA, which implies that all genes (both significant

and nonsignificant genes) were included along with their correspond-

ing z-values.

3.3 | Gene-expression-similarities of attention
networks

Next, we aimed to test whether the general gene expression patterns

showed spatial overlap between the alerting, orienting, and control net-

work. The empirical correlation between vectors containing the genetic

associations of ANT maps, which, again, represent the correlation coef-

ficients between activation maps and gene expression maps, aggre-

gated to r = .893 (p = .0002) for alerting versus control, r = .948

(p = .0015) for alerting versus orienting, and r = .922 (p = .0008) for

control versus orienting. By comparison, under the null model of no

association between gene expression and ANT activation maps (opera-

tionalized through one million random rotations of the ANT activation

maps), correlations of the gene association results derived for the three

ANT conditions were lower and approximated the direct correlations of

ANT maps (mean r = .554 for alerting vs. control, mean r = .785 for

alerting vs. orienting, and mean r = .695 for control vs. orienting). The

enhanced similarity in association results as indicated by higher-

than-expected correlation coefficients suggests a shared systematic

covariation between gene expression and ANT maps (Figure 2g).

3.4 | Gene set enrichment analysis

GSEA were applied for all three ANT conditions to quantify the proba-

bility to which the genes associated with their hypothesized MFs are

coincidentally or systematically ranked higher within the whole gene

list. To do so, we uploaded association results of all 15,632 genes to

PANTHER, of which 14,466 genes could be successfully annotated

within the database. Consequently, we derived GSEA results from

these 14,466 genes and excluded the unmapped gene IDs from sub-

sequent analysis.

Table 1 shows enrichment analysis results (Mann–Whitney

U test statistic) for all three MF defined a priori. Test statistics

inform about how many genes were mapped to this MF and

whether the MF is over- or underrepresented. No ANT contrast

was significantly positively related to its matching MF: There was

no evidence for positive enrichment of genes related to norepi-

nephrine binding in alerting, nor for dopamine binding in control,

nor for acetylcholine-gated cation-selective channel activity in

orienting. Furthermore, there was also no positive enrichment for

any pre-defined MF and the other two ANT conditions. In con-

trast, we did find an enrichment toward the bottom extreme for

norepinephrine binding and the control network, meaning that the

distribution of values of this gene set (z-scores derived from the

permutation-based p-value and the sign of the observed correla-

tion coefficient) was shifted toward smaller values relative to the

overall list of genes, suggesting lower expression at activated

regions.

In summary, the preselected MFs yielded no significant hits;

nonetheless, we detected positive enrichment (p < .05, FDR-cor-

rected) for 4 other MFs in alerting (Table D.1, Appendix D), 41 MFs in

orienting (Table D.2, Appendix D), and 8 MFs in control (Table D.3,

Appendix D). Negative associations appeared for 4 MFs in alerting,

25 MFs in orienting, and 17 MFs in control. Among these hits, no

MF was directly related to dopamine, acetylcholine, or norepinephrine

(see Appendix D).

3.5 | Summarizing GESA results

Following GSEA with Panther, we focused on MFs that were signifi-

cantly associated with attention networks, filtered with a significance

threshold of p < .05, FDR corrected. Given the potentially extensive

and complex nature of these lists, we sought to enhance the interpret-

ability of our enrichment results by employing GO-Figure!

(Reijnders & Waterhouse, 2021), an open-source Python software

designed to cluster lists of GO-terms and reduce redundancies

(Figure 3b).

Our process involved using the significant GO-terms, along

with their corresponding p-values, as input for analysis. Pairwise

similarities were computed among all inserted terms, following the

common formula established by Lin (1998). MFs that exceeded a

similarity score of si = .50 were grouped into clusters, as they

were assumed to be highly functionally similar. For each cluster,

we selected a representative MF based on several criteria, includ-

ing the p-value, the number of annotated proteins, and their rela-

tionships within the Gene Ontology database. In this selection

process, parent terms were prioritized over child terms.

TABLE 1 GSEA results of MF defined a priori.

ANT condition

Alerting Control Orienting

Number ± p ± p ± p

Dopamine binding 6 - .384 - .739 - .544

Norepinephrine binding 3 - .057 - .018 - .054

Acetylcholine-gated cation-selective channel activity 10 - .643 - .252 - .277

Note: Bold value indicates statistical significance.
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The representatives were then plotted in a two-dimensional

space based on the pairwise semantic similarity of the representatives.

This numerical value reflects the extent of functional and hierarchical

similarity within the Gene Ontology.

It is important to note that the enriched categories presented in

GO-Figure! may be subject to potential influences from autocorrelations

of gene expressions, as discussed in Fulcher et al. (2021). This consider-

ation raises the possibility of false-positive results, even when account-

ing for spatial autocorrelation of brain activation with the spin test.

3.6 | Analyses of subcortical areas

We extended our analyses of cortical ANT maps to subcortical maps.

We applied the same analysis pipeline as described in Sections 3.1–

3.4, encompassing the calculation of overlap between ANT maps,

assessment of gene expression similarities across different ANT con-

ditions, and GSEA.

To determine significance, we employed permutation tests. In

these tests, we computed correlations between randomly shuffled

ANT maps and observed ANT maps or gene expression patterns of

randomly shuffled maps. The resulting p-values were derived by

assessing how many of these randomly generated correlations

exceeded the observed correlation coefficient, relative to the total

number of permutations conducted. An illustrative depiction of this

workflow, akin to Figure 2, is available in Appendix C.

In the subcortical regions, we found no statistically significant

overlaps among the three attention network maps. The correlation

coefficients were as follows: r = .556 (p = .506) for alerting versus

control, r = .146 (p = .743) for alerting versus orienting, and r = .377

(p = .368) for control versus orienting comparisons. Similarly, no sig-

nificant overlap was observed in gene expression patterns: r = .778

(p = .128) for alerting versus control, r = .426 (p = .241) for alerting

versus orienting, and r = .238 (p = .522) for control versus orienting.

3.7 | Attention networks and neurotransmitter
systems measured by PET

Our complementary methodological approach involved the analysis of

PET-maps representing neurotransmitter receptors and transporters

to evaluate their spatial overlap with the attention networks. Based

on attention network theory, we expected brain regions with stronger
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Alerting Orienting Control
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A4B2
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.3362 .2622 .4429
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5HT1a
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5HT2a
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5HT6
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NMDA
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-0.2
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0.2
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F IGURE 4 Correlations between neurotransmitter maps as
revealed by PET-imaging (rows) and attention networks (columns)

based on the Lausanne-219 parcellation. P-values were obtained
through permutation testing under consideration of the
autocorrelations across brain regions. The upper part of the table
shows the hypothesized relationships (bold-framed cells) and the
lower part of the table gives the results from the exploratory analysis.
None of the correlations were significant at p < .05, FDR-corrected.

TABLE 2 GO-terms functioning as representatives of clusters
generated with GO-figure (si = 0.50).

ANT

condition GO-terms with FDR-adjusted p-value

Alerting 1. Signaling receptor binding (padj = 2.62E-04)

2. Structural constituent of ribosome (padj = 1.27E-03)

3. Active transmembrane transporter activity

(padj = 8.29E-03)

4. Protein serine kinase activity (padj = 2.52E-02)

5. ATP binding (padj = 3.56E-02)

Orienting 1. Structural constituent of ribosome (padj = 1.58E-09)

2. DNA binding (padj = 9.24E-07)

3. Double-stranded DNA binding (padj = 9.24E-07)

4. Regulatory region nucleic acid binding

(padj = 1.99E-06)

5. Transcription regulator activity (padj = 2.16E-06)

6. Signaling receptor binding (padj = 2.77E-06)

7. Protein serine kinase activity (padj = 3.37E-05)

8. ATP binding (padj = 1.21E-04)

9. Chromatin binding (padj = 1.46E-03)

10. Antioxidant activity (padj = 5.76E-03)

11. Transmembrane signaling receptor activity

(padj = 6.59E-03)

12. Fatty acid binding (padj = 1.05E-02)

13. Copper ion binding (padj = 1.68E-02)

14. Glycosaminoglycan binding (padj = 2.74E-02)

15. Oxidoreductase activity, acting on the CH-NH

group of donors (padj = 3.09E-02)

16. Helicase activity (padj = 3.67E-02)

17. Metal ion transmembrane transporter activity

(padj = 3.67E-02)

18. Calcium ion binding (padj = 3.91E-02)

19. Catalytic activity, acting on RNA (padj = 4.70E-02)

Control 1. Structural constituent of ribosome (padj = 2.72E-08)

2. Signaling receptor binding (padj = 6.89E-06)

3. Transmembrane signaling receptor activity

(padj = 1.93E-03)

4. Protein serine kinase activity (padj = 1.07E-02)

5. ATP binding (padj = 1.03E-02)

6. Copper ion binding (padj = 3.96E-02)
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activation during attention to correlate with the availability of recep-

tor and transporter molecules within three neurotransmitter systems.

As shown in Figure 4, however, empirical results were not in line with

our hypotheses: The availability of the noradrenalin transporter did

not match the alerting network, and the availability of dopamine D1

and D2 receptors and the DAT did not correspond with the control

network. Also, the availability of the most abundant nicotinergic ace-

tylcholine receptor did not correlate with the activation of the orient-

ing network. The exploratory analyses on other neurotransmitter

systems did not reveal significant relationships (see Figure 4).

4 | DISCUSSION

Attention network theory states that three distinct attention net-

works are each modulated by a specific neurotransmitter: the alerting

network by norepinephrine, the orienting network by acetylcholine,

and the attention control network by dopamine. We sought to ascer-

tain these hypotheses by assessing the molecular signatures of atten-

tion networks through a multimodal neuroimaging design: We

compared fMRI activation maps from the ANT with cortex-wide gene

expression patterns and with the spatial distribution of neurotransmit-

ter receptors and transporters as revealed by PET imaging.

If the three attention networks were modulated by distinct neu-

rotransmitters as proposed by attention network theory, we would

expect spatial correspondence between the networks' activation pat-

terns on the one hand and the expression-levels of genes related to

transmitter binding as well as the availability of receptor and trans-

porter molecules of the proposed neurotransmitter on the other hand.

4.1 | No evidence for the hypothesized
neuromodulators

We did not find any evidence for the suggested neuromodulatory

separation for any of the three attention networks. Even though a

substantial number of genes co-expressed significantly with the atten-

tion networks, there was no enrichment of gene sets linked to the

MFs of dopamine binding, norepinephrine binding, and acetylcholine-

gated channel activity. Regarding the spatial distribution of receptor

and transporter molecules in the PET images, there was also no spatial

correspondence with attention network in the hypothesized direction:

the distribution of NET did not correlate with the activation of the

alerting network, the distribution of a4b2 receptors did not correlate

with activation of the orienting network, and neither DRD1 nor

DRD2 availability correlated with the activation of the attention con-

trol network. Only the distribution of the vACht correlated with the

activation of the orienting network, however, in the opposite direc-

tion, suggesting higher transporter availability outside the orienting

network.

From this, we conclude that the specific hypotheses on distinct

neuromodulation of the three attention networks do not hold, at least

not at the level of transcriptomic activity and the availability of

receptor or transporter molecules, and at least not in the general and

straightforward manner as suggested by attention network theory.

We will discuss implications against methodological questions further

below.

4.2 | No evidence for a transcriptomic separation
of attention networks

Despite the unfavorable evidence for the a priori hypotheses, our

exploratory analysis revealed that our design was at least in principle

capable of detecting MFs in relationship with the attention networks.

We found a substantial number of genes (3871 for alerting, 6905 for

orienting, 2556 for control) whose cortex-wide transcription co-varied

with the activation maps. Among a ranked list of all available genes,

GESA further prioritized several MFs for all three attention networks.

These included genes involved in the regulation of protein biosynthe-

sis, phosphorylation, enzymatic activity, and receptor binding. The

implication of such broad terms in all three networks is not surprising,

given the high similarity of the co-expression patterns across net-

works. Such broad terms, however, could also result from spatial auto-

correlations of the gene expression maps (Fulcher et al., 2021), and

should therefore be interpreted with caution.

In absolute numbers, we implicated most genes in the orienting

network. The additional MFs prioritized here included genes involved

in transcriptomic activity and regulation. Among all identified gene

sets, the only gene set with direct relevance for a concrete neuro-

transmitter was glutamate receptor activity (GO:0008066). This gene

set, however, was underrepresented among the associations for the

control network. In sum, the exploratory analysis of the attention net-

works' transcriptomic signatures revealed a relatively broad set of

associated MFs. Contrary to the claims of attention network theory,

there was no clear distinction in the networks' transcriptomic profiles

and no evidence for any given neurotransmitter system whose neuro-

modulatory activity might support the hypothesized separation of the

networks at the molecular level.

4.3 | Methodological considerations

The current approach is based on various assumptions of attention

network theory. In the following, we will discuss the current finding

against these assumptions and highlight some challenges within atten-

tion network theory that may prompt a need for reevaluation of its

central principles.

One of the fundamental assumptions of attention network theory

is the independence of the three attention networks. Independence

refers to the idea that the three networks exhibit uncorrelated behav-

ioral responses when manipulated, distinct activation patterns, and

independent neuromodulatory influences (Petersen & Posner, 2012;

Posner & Fan, 2008; Posner & Rothbart, 2007). While the behavioral

independence of the three networks has been well-documented

(Callejas et al., 2004; Fan et al., 2002, 2009; Ishigami & Klein, 2010;
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Markett et al., 2022), our findings suggest that there is significant

overlap between the cortical activation patterns of the three net-

works. This overlap limits the scope of the theory but does not neces-

sarily rule out the possibility of separate neuromodulation which may

still occur despite overlapping activation patterns. This, however, was

not the case. The lack of independence in functional activation, tran-

scriptomic activity, and receptor expression, impose significant con-

straints on the predictions of attention network theory.

Our approach also rests on the assumption that the three atten-

tion networks can be operationalized using activation maps from the

ANT. This assumption is based on attention network theory, which

views the ANT as the standard protocol for separating the networks

and considers it capable of fully activating them (Fan et al., 2005;

Fan & Posner, 2004). By keeping visual stimuli constant and by coun-

terbalancing motor responses, the ANT is believed to reveal the extra

neural effort required for different attention systems. But while the

ANT's validity can be reasonably assumed, it is unclear whether

the presumed transmitter systems modulate a given network as a

whole (and not only selected regions within the network) and if acti-

vation across the network is proportional to the hypothesized neuro-

modulation. Such proportional relationship would imply uniform

neuromodulation of the several processes captured by the ANT acti-

vation maps such as increased activation due to the prioritization of

information processing in sensory cortices (Brefczynski &

DeYoe, 1999; Kastner et al., 1999; Müller et al., 2003), increased acti-

vation due to the maintenance and allocation of the attentional focus

in premotor cortex and the frontal eye fields (T. Moore et al., 2003;

Thompson, 2005), and increased activity linked to the detection of

increased demand for attentional resources in the anterior cingulate

(Botvinick et al., 2004). Since attention network theory does not spec-

ify the mechanisms of neuromodulation, the current results do not

necessarily refute the specific hypotheses. However, they raise

doubts that the attention networks as currently operationalized are

modulated as a whole, and indicate the need to amend the theory.

This revision should include a specification of the relationship

between attention networks and activation patterns, the functional

neuroanatomy of each network, and the potential target regions of

neuromodulatory influences.

Another fundamental assumption underlying our approach per-

tains to the translation of the proposed neuromodulation into three

gene sets derived from the gene ontology, specifically encompassing

MFs associated with transmitter binding. This assumption warrants

careful examination from two distinct angles. First, can we reasonably

infer that the selected transcriptomic markers adequately represent

the cortical projection sites, and are the chosen MFs the most appro-

priate operationalization? Second, can we anticipate that neural activ-

ity patterns across the brain will indeed correlate with the relative

expression of genes following neuromodulation?

Regarding the first question: The MFs selected are linked to

transmitter binding, a process that characterizes neurotransmitter

interaction with synaptic molecules. The gene products examined

include key components such as the DAT, dopamine receptors, associ-

ated intracellular signaling molecules, various adrenergic receptors,

and proteins forming subunits for the pentameric nicotinergic acetyl-

choline receptor. Our premise is that if the experimental manipula-

tions within the ANT lead to the hypothesized increase in activity of

dopaminergic neurons in the midbrain, noradrenergic neurons in the

locus coeruleus, and cholinergic neurons in the basal forebrain, we

should observe a neuromodulation of ongoing neural activity within

their respective projection areas. Given that these projection areas

are known to possess an abundance of the mentioned receptor and

transporter molecules, this should also be reflected in their transcrip-

tomic activity. If the hypothesized neuromodulation indeed acts

directly on the attention networks, we would expect local parcel-wise

associations between transcriptomic activity and attention network

activation.

This leads to the second question. The hypothesized direct neuro-

modulatory effects on the networks as a whole are not definitively

established. Attention network theory does not explicitly outline the

mechanisms of the presumed neuromodulation. While descriptions of

the attention networks in the literature include the cortical target sites

of these neurotransmitters (Posner & Fan, 2008), suggesting a direct

effect, it is equally plausible that neuromodulation operates indirectly.

For example, locus coeruleus activity and norepinephrine release

influence attention by initiating broader adjustments in brain states,

including alterations in cortical, subcortical, and autonomic activity

(Ross & Van Bockstaele, 2021). Norepinephrine's influence extends to

the thalamus, which subsequently modulates cortical activity during

sensory processing (O'Donnell et al., 2012). Dopamine, as a neuromo-

dulator, acts on striato-thalamic-cortical loops (Parent &

Hazrati, 1995). Dopamine's modulation of medium spiny neurons in

the striatum results in the disinhibition of thalamic glutamatergic

neurons projecting to the cortex (Speranza et al., 2021). These striato-

thalamic-cortical loops are further modulated by acetylcholine, partic-

ularly through the nicotinic receptor (Exley & Cragg, 2009). If neuro-

modulatory effects on the attention networks prove to be indirect,

perhaps involving the basal ganglia or the thalamus, or being more

locally confined to individual cortical targets, we may find little basis

for assuming correlations between transcriptomic and neural activity

across the entire brain.

Our present findings suggest that there is no detectable relation-

ship between neural activation patterns elicited by the experimental

manipulation of attention and receptor or transporter availability, or

related transcriptomic activity. Given that the relationship between

receptor/transporter availability and gene expression is not straight-

forward (Hansen et al., 2022), the absence of a relationship with

either level of observation can be considered complementary evi-

dence. Our exploratory analysis also did not reveal any other MF

whose transcriptomic activity would suggest a comprehensive rela-

tionship between the activation maps and dopamine, norepinephrine,

or acetylcholine. This may constrain the strong claim of network-wide

neuromodulation, but does not preclude neuromodulation through

other mechanisms, such as more nuanced or dynamic neuromodula-

tory activity in brain stem or midbrain nuclei. In light of the mixed evi-

dence from pharmacological studies with the ANT (Badgaiyan &

Wack, 2011; McCormick, 2022; Reynaud et al., 2019; Thienel
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et al., 2009); however, it seems reasonable to revise attention net-

work theory regarding the presumed neuromodulation of attention

networks. The analysis of subcortical areas similarly failed to establish

a clear relationship between ANT activations and molecular measures.

Nevertheless, it is essential to recognize that subcortical nuclei are

often relatively small and may not be adequately distinguished at the

limited spatial resolution inherent to transcriptomic, molecular, and

functional neuroimaging techniques (for an in-depth discussion, please

refer to Boeken et al., 2022). Future investigations may consider opti-

mizing processing pipelines for subcortical areas or employing spatially

constrained hypotheses to uncover more regionally specific effects.

Finally, our approach is based on the idea that group-level

data from three different sources can be combined in a correla-

tional design on the grounds of a cortical parcellation. This meth-

odological approach is widely applied when combing

transcriptomic and neuroimaging data (Fornito et al., 2019; Han-

sen, Markello, et al., 2022; Seidlitz et al., 2020), probing mechanis-

tic hypotheses in clinical neuroscience (Buckner et al., 2008; de

Lange et al., 2019; Fornito & Bullmore, 2014; Zhou et al., 2012),

and multimodal neuroimaging where the invasive nature of one of

assessment methods precludes direct comparisons in the same

participants (Scholtens et al., 2014; van den Heuvel et al., 2015).

Despite the limitations of small sample sizes of postmortem

brains, constraints in spatial resolution with PET imaging, and

unaccounted individual variability, it is important to

recognize that the AHBA microarray gene expression maps and

group-level receptor/transporter maps still represent state-of-

the-art techniques. But even though we used an established null

model to reduce spurious influences on our test statistics

(Alexander-Bloch et al., 2018; Váša et al., 2018), it needs to be

noted that the here presented relationships are correlational. The

absence of direct psychopharmacological manipulation or experi-

mental effects on neuromodulators limits conclusions on causal-

ity. Furthermore, it is essential to emphasize that our study's

statistical approach, while yielding a nonsignificant correlation

between the molecular markers and attention network maps, does

not definitively conclude the absence of any spatial association.

Instead, it suggests that the observed relationship is highly

unlikely, given the general baseline similarity of the brain maps we

analyzed. Our findings should be considered within the context of

the data's nature and the inability to conduct equivalence testing.

Further research utilizing alternative statistical methods may pro-

vide additional insights into the practical significance of the

observed associations.

4.4 | Implications for attention network theory

Since its first conception more than 30 years ago (Posner &

Petersen, 1990), attention network theory has established itself as

an influential account of how higher cognitive functions such as

attention emerges from a network of distributed brain areas

(Posner & Dehaene, 1994). By incorporating neuropsychological evi-

dence (Fernandez-Duque & Posner, 2001), modern neuroimaging

(Fan et al., 2005; Markett et al., 2014; Petersen & Posner, 2012;

Xuan et al., 2016), as well as developmental (Posner et al., 2014),

genetic (Fan et al., 2001; Green et al., 2008), and pharmacological

data (Marrocco & Davidson, 1998), attention network theory has not

only stipulated hundreds of empirical investigations (Arora

et al., 2020) but also achieved a level of sophistication that allows

for specific hypotheses on the molecular signatures of attention net-

works. The present findings, however, indicate that some of these

predictions do not hold in the proposed way. The ANT activation

maps do neither align with the hypothesized distribution of receptor

and transporter molecules nor with transcriptomic profiles that

would suggest clearly separable networks along molecular lines. Sep-

arability and presumed independence of the attention networks is

additionally constrained by a high level of spatial dependency

between the network maps. Since attention network theory

acknowledges interactions between the attention networks (Callejas

et al., 2004; Fan et al., 2009; Xuan et al., 2016), it may be reasonable

to reconceptualize the attention networks in terms of their segrega-

tion and integration. Future work will also need to readdress the dif-

ferent observational layers and specify how the functional activation

maps relate to the underlying brain network (Betzel et al., 2016; Cole

et al., 2016; Liu et al., 2022; Markett et al., 2022; Murphy

et al., 2020), in order to reevaluate the presumed independence of

attention networks at the neural and neurochemical level, and to

specify the presumed neuromodulatory influences on alerting,

orienting, and attentional control.
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