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Abstract
Aims  To develop an algorithm to classify multiple 
retinal pathologies accurately and reliably from fundus 
photographs and to validate its performance against 
human experts.
Methods  We trained a deep convolutional ensemble 
(DCE), an ensemble of five convolutional neural 
networks (CNNs), to classify retinal fundus photographs 
into diabetic retinopathy (DR), glaucoma, age-related 
macular degeneration (AMD) and normal eyes. The 
CNN architecture was based on the InceptionV3 model, 
and initial weights were pretrained on the ImageNet 
dataset. We used 43 055 fundus images from 12 public 
datasets. Five trained ensembles were then tested on 
an ’unseen’ set of 100 images. Seven board-certified 
ophthalmologists were asked to classify these test 
images.
Results  Board-certified ophthalmologists achieved a 
mean accuracy of 72.7% over all classes, while the DCE 
achieved a mean accuracy of 79.2% (p=0.03). The DCE 
had a statistically significant higher mean F1-score for 
DR classification compared with the ophthalmologists 
(76.8% vs 57.5%; p=0.01) and greater but statistically 
non-significant mean F1-scores for glaucoma (83.9% 
vs 75.7%; p=0.10), AMD (85.9% vs 85.2%; p=0.69) 
and normal eyes (73.0% vs 70.5%; p=0.39). The DCE 
had a greater mean agreement between accuracy and 
confident of 81.6% vs 70.3% (p<0.001).
Discussion  We developed a deep learning model and 
found that it could more accurately and reliably classify 
four categories of fundus images compared with board-
certified ophthalmologists. This work provides proof-of-
principle that an algorithm is capable of accurate and 
reliable recognition of multiple retinal diseases using 
only fundus photographs.

Introduction
Retinal imaging plays a key role in the diagnosis 
of retinal pathologies. In current clinical practices, 
retinal imaging is manually interpreted by ophthal-
mologists and this workflow is limited by human 
resources. Automatic recognition of pathologies 
from fundus images would increase the efficiency 
in eye clinics, as well as introduce the potential 

of retinal screening in geographical regions where 
there is limited or infrequent access to specialists. 
In particular, several machine learning approaches 
based on convolutional neural networks (CNNs) 
have already been developed to recognise pathol-
ogies in fundus images.1 Many of these methods 
are designed to classify only one category against 
normal samples, such as for diabetic retinopathy 
(DR) classification,2 for papilloedema classification3 
and for glaucoma classification.4 Recently, two such 
learning algorithms were granted clearance by the 
US Food and Drug Administration (FDA) for DR 
screening5 and DR and diabetic macular oedema 
screening,6 making them among the first diagnostic 
machine learning methods to be authorised by the 
FDA without the need for human oversight.

CNNs have also been used for grading patholo-
gies on a nominal scale from fundus photographs, 
such as for age-related macular degeneration 
(AMD),7 and recently studies have demonstrated 
that CNNs are capable of accurately detecting 

What is already known on this topic
⇒⇒ Artificial intelligence (AI) algorithms have 
demonstrated excellent accuracy in classifying 
pathologies from retinal fundus photographs.

What this study adds
⇒⇒ Our AI algorithm demonstrates not only 
superior accuracy to board-certified 
ophthalmologists, in a balanced test containing 
four image categories, but also superior 
reliability as the confidence output by our 
model more closely matches its accuracy 
compared with ophthalmologists.

How this study might affect research, 
practice or policy

⇒⇒ This model could be used a blueprint for 
future decision-making support systems to 
assist pathology detection both in specialist 
ophthalmology clinics and in generic healthcare 
settings such as family practices and emergency 
rooms.
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multiple different retinal pathologies. Cen et al developed a 
two-level hierarchical classification technique for classifying 
39 different categories of retinal conditions and found that it 
achieved comparable performance to five retinal specialists.8 
Similarly, Son et al trained 12 independent networks to detect 
12 retinal findings in fundus images and found this technique 
performed equivalently to three retinal specialists in identi-
fying haemorrhages and hard exudates.9 Li et al developed an 
ensemble of CNNs to classify DR and diabetic macular oedema 
and demonstrated that it performed either as well or better than 
eight expert raters.10 Ting et al trained and validated a CNN 
for detecting referable DR, possible glaucoma and AMD in 
approximately 500 000 retinal images from a large multiethnic 
population, achieving areas under the receiver operating char-
acteristic curves (AUROCs) ranging from 0.931 to 0.983.11 
Detecting diseased retinal images using unsupervised anomaly 
detection was also proposed by Han et al, through the use of 
a convolutional generative adversarial network, which achieved 
an AUROC of 0.896 for detecting abnormal fundus images.12 
Zapata et al used five separate CNNs for five tasks such as differ-
entiating optical coherence tomography (OCT) images from 
colour fundus photographs, classifying right eye (OD) from left 
eye (OS) images and detecting AMD and glaucomatous optic 
neuropathy.13 The latter two networks achieved mean accuracies 
of 86.3% and 80.3%, respectively.

In order for stand-alone deployment, an automated retinal 
screening method should be able to identify multiple possible 
retinal pathologies. Moreover, the method should demonstrate 
equivalent or superior performance to the current standard-
of-care in retinal diagnoses and should produce trustworthy 
predictions that can be used by clinicians. We developed a 
method and associated study to address these gaps with three 
contributions: (1) we trained an ensemble-based deep learning 
algorithm (deep convolutional ensemble: DCE) which is 
capable of detecting three major retinal pathologies and normal 
eyes from fundus images alone, (2) we directly compared the 
performance of the DCE against practising board-certified 
ophthalmologists on a balanced test set, to show it is overall 
more accurate and (3) we demonstrated that the output of the 
DCE is also more reliable than the ophthalmologists over the 
same set of images.

Methods
Dataset
We compiled our training and validation image sets from 12 
publicly available retinal fundus datasets8 14–24 containing images 
of DR, glaucoma, AMD and normal patients (table 1). In total, 
the combined set contained 43 055 images, including 30 475 
normal, 11 814 DR, 544 glaucoma and 222 AMD images. These 
images were separated into training and validation sets using 
an 80%/20% split. We created a separate test set by randomly 
sampling the aforementioned public datasets such that there 
were 25 images of each category, for a total of 100 test images. 
We ensured there was no more than one image per patient in 
the test set and that there was no overlap of patients and images 
between the training, validation and test sets. We used the disease 
classes directly as determined by each institution associated with 
the dataset and did not reclassify any images. For public datasets 
that originally included gradations of diseases, we combined any 
subclassifications into one overall disease class (ie, mild or severe 
DR was considered DR).

Deep convolutional ensemble
We implemented a DCE: a CNN-based ensemble classi-
fier trained to predict the disease class in fundus images. The 
ensemble consisted of five InceptionV325 networks that were 
pretrained on the ImageNet dataset (figure  1). Each Incep-
tionV3 model was independently trained on bootstrap aggre-
gated samples from the training set, consistent with the deep 
ensembling methodology to improve uncertainty estimation and 
confidence calibration.26 27 We trained using a weighted cross-
entropy loss where the weights for each class were inversely 
proportional to the count of images in that class. We used 
the rectified Adam for optimisation and a fixed batch size of 
68 images. Input images were resized to 299×299 pixels, and 
random horizontal flipping and random scaling between 0% and 
10% were used for data augmentation during training. The final 
predicted class per image was generated by taking the majority 
vote of the five networks, such that the model could only predict 
one class per image. In the case there was no majority vote, we 
randomly assigned the predicted class from one of the categories 
with the most votes so as not to favour one class over the others. 
The network architecture and optimisation process were imple-
mented in PyTorch and executed on a single Nvidia V100 GPU.

Table 1  Number of images in the training and validation set and in the test set, and the corresponding source datasets

Source dataset

Training and validation set Test set

Normal DR Glaucoma AMD Normal DR Glaucoma AMD

DiaretDB14 0 89 0 0 0 0 0 0

Drishti-GS15 31 0 68 0 0 0 2 0

DRIVE16 33 7 0 0 0 0 0 0

HRF17 15 15 13 0 0 0 2 0

IDRiD18 167 348 0 0 1 0 0 0

Kaggle-398 38 105 0 0 0 1 0 0

Kaggle-DR19 25 769 9278 0 0 21 20 0 0

ODIR20 2276 1187 189 182 2 1 7 18

MESSIDOR21 546 651 0 0 0 3 0 0

ORIGA-light22 482 0 158 0 0 0 10 0

REFUGE23 1079 0 116 0 1 0 4 0

STARE24 39 134 0 40 0 0 0 7

Total 30 475 11 814 544 222 25 25 25 25

AMD, age-related macular degeneration; DR, diabetic retinopathy.
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Confidence
To compare the reliability of the DCE to that of board-certified 
ophthalmologists, we also estimated the confidence of the ensem-
bled models by taking the softmax of the mean logit output per 
image, and thresholding this value above 50% as ‘confident’ and 
below 50% as ‘not confident’. This confidence estimation was 
not used during training.

Experiment on test data
Figure 2 illustrates the overall experiment process.

Deep convolutional ensemble
We trained the DCE for 20 epochs on the training set, as we 
found that the weighted cross-entropy loss did not further 
improve on the validation with more training. We then evalu-
ated the model once on the test set. We independently repeated 
this process five times, using random seeds for the bootstrap 
sampling, training/validation splits and network weight initial-
isations. This allowed us to generate a distribution of perfor-
mance of the DCE, such that we could report a mean and SD of 
metrics and conduct statistical tests to compare its performance 
against the board-certified ophthalmologists. We ensured that 
the model was not given any information about the test set, such 
as how many samples of each class to expect.

Human expert classification
We asked seven board-certified staff ophthalmologists (mean 
practice duration: 2.4 years, range: 1–7 years) to independently 
classify each image in the test set into one of the four predeter-
mined classes (normal, DR, glaucoma, AMD), using only infor-
mation from the image. We also asked each ophthalmologist 
whether they were ‘confident’ or ‘not confident’ in their classifi-
cation of each image. The ophthalmologists were not informed 
about the underlying split of the classes (ie, how many images 
per class were included in the test set) and were only able to 
select one of the four classes per image. The task was adminis-
tered remotely over Google Forms.

Evaluation metrics
Several metrics were measured to compare the performances of 
the DCE and ophthalmologists. We calculated the overall accuracy 
defined as the percentage of correct predictions over all test images, 
as well as the overall (macroaveraged over all four classes) F1-score, 
positive predictive value (PPV), sensitivity and specificity. We also 
measured these metrics per class in a one-versus-all manner. We use 
the conventional definition of F1-score as the harmonic mean of 
PPV and sensitivity with equal weighting:

	﻿‍ F1 = 2
PPV × Sensitivity
PPV + Sensitivity‍�

Figure 1  Overview of the deep convolutional ensemble model components and training. AMD, age-related macular degeneration; DR,diabetic 
retinopathy.

Figure 2  Experiment overview. A test set consisting of 100 images was rated independently by the DCE five times and by each of seven board-
certified ophthalmologists. Classification metrics and reliability measures were compared between the DCE and ophthalmologist predictions. AMD, 
age-related macular degeneration; DCE, deep convolutional ensemble; DR,diabetic retinopathy; PPV, positive predictive value.
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We acknowledge that PPV is dependent on the true prevalence 
of each respective class, which will be different to the 25% in 
our test set. However, we report the PPV is solely a means of 
comparing relative performance between the DCE and ophthal-
mologists. For the DCE, we also report the AUROC averaged 
over all four classes. It was not possible to report the AUROC 
for the ophthalmologists as we did not ask the ophthalmologists 
to report their prediction decisions at multiple confidence levels.

To understand the reliability of predictions, we looked at the 
agreement between the confidence and accuracy in each predic-
tion by the DCE and ophthalmologists. We would expect a truly 
reliable classifier to only be confident when it is accurate and not 
confident when it is inaccurate.28

Statistical analyses
We conducted two-sample t-tests, assuming unknown and 
unequal variances, to determine statistically significant differ-
ences in metrics between the DCE and ophthalmologists.

Results
We report the results of classification performance and reliability 
on the test set experiment. Unless stated otherwise, the order of 
numerical results below always leads with the DCE followed by 
the ophthalmologists.

Classification performance
Over all 100 test images and four classes, we found that the DCE 
had a mean higher overall accuracy than the ophthalmologists 
(79.2% vs 72.7%, p=0.03), as well as a higher mean overall 
F1-score (79.9% vs 72.2%, p=0.02), higher mean overall PPV 
(85.0% vs 77.4%, p=0.0005), higher mean overall sensitivity 
(79.2% vs 72.7%, p=0.03) and a higher mean overall specificity 
(93.1% vs 90.9%, p=0.03). Figure 3 illustrates these results as 
boxplots. The DCE classification performance corresponded to 
a mean class-averaged AUROC of 0.9424 (SD: 0.0014). A mean 
of 1.8% (range: 0.0%–3.0%) of response output by the DCE did 
not constitute a majority vote.

In classifying normal fundus images, we found there were no 
statistically significant differences between the DCE and ophthal-
mologists in the mean F1-score (73.0% vs 70.5%, p=0.39), mean 
PPV (59.3% vs 61.3%, p=0.72), mean sensitivity (95.2% vs 87.4%, 
p=0.07) and the mean specificity (78.1% vs 78.7%, p=0.92).

In classifying DR, the DCE had a statistically significant higher 
mean F1-score than the ophthalmologists (76.8% vs 57.5%, 
p=0.01), a statistically higher mean sensitivity (72.8% vs 49.7%, 
p=0.01), while achieving a similar mean PPV (81.8% vs 73.7%, 
p=0.18) and mean specificity (94.4% vs 93.7%, p=0.75).

For glaucoma classification, we found no statistically signif-
icant differences between the DCE and ophthalmologists. 
The DCE had a comparable mean F1-score (83.9% vs 75.7%, 
p=0.10), mean PPV (100% vs 88.9%, p=0.06), mean sensi-
tivity (72.8% vs 68.6%, p=0.58) and mean specificity (100% vs 
96.2%, p=0.10).

Lastly, in AMD classification, we found that the DCE had a 
comparable mean F1-score as the ophthalmologists (85.9% vs 
85.2%, p=0.69), a statistically higher mean PPV (99.0% vs 
85.6%, p=0.0006), a statistically lower mean sensitivity (76.0% 
vs 85.1%, p=0.01) and a statistically higher mean specificity 
(99.7% vs 95.0%, p=0.002). Figure  4 plots the classification 
performance per class, comparing the DCE and ophthalmologists.

Table 2 provides the confusion matrix for the DCE and the board-
certified ophthalmologists, summarising the mean per cent agree-
ment between the predicted class against the ground-truth labels.

Reliability
We found that the DCE had an overall higher mean agreement 
in confidence and accuracy, compared with the ophthalmologists 
(81.6% vs 70.3%, p<0.001). Specifically, the DCE was confi-
dent when accurate with a higher mean frequency compared 
with ophthalmologists (77.4% vs 58.7%, p<10−5). The DCE 
was not confident while inaccurate with a lower mean frequency 
(4.2% vs 11.6%, p=0.001). Conversely, the ophthalmologists 
had a higher mean frequency of being not confident when accu-
rate (ophthalmologists: 14%, DCE: 1.8%, p=0.002), and both 
methods had a similar mean frequency of being confident when 
inaccurate (16.6% vs 15.7%, p=0.80). Table 3 summarises these 
results. We observed that the DCE had a skewed, unimodal distri-
bution of confidence values, with a mean of 94.0% confidences 
greater than 0.5 (table 3), and 50% of confidence values greater 
than 0.807. On the other hand, the board-certified ophthalmol-
ogists denoted a mean of 25.6% test images as ‘not confident’.

Table 4 provides the confusion matrix of only the ‘confident’ 
predictions for both the DCE and board-certified ophthal-
mologists. This table illustrates the mean per cent agreement 
between the ‘confident’ predictions and the ground-truth labels. 
Figure 5A–C provide examples of fundus photographs that both 
DCE and ophthalmologists were completely confident in, and 
one each where the DCE and ophthalmologists were least confi-
dent in, as well as their respective diagnoses.

Discussion and conclusion
We developed an ensemble of deep CNNs which we showed to 
be more accurate than seven board-certified ophthalmologists 
at classifying 100 fundus images, both in terms of overall mean 
accuracy and F1-score over the four image classes. The majority 
of this difference stems from the DCE’s superiority in classifying 
DR images compared with the ophthalmologists (figure 4), which 
is statistically significant. We believe this better performance is 
the result of the DCE’s ability to detect mild presentations of 
DR in fundus images compared with ophthalmologists, as the 

Figure 3  Classification scores for both the DCE and ophthalmologists 
over all 100 test set images and four classes. Box plots include a 
horizontal solid line and solid cross indicating the median and mean 
values, respectively, for each score. P values less than 0.05 are indicated, 
as determined by a two-sample t-test. DCE, deep convolutional 
ensemble; PPV, positive predictive value.
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datasets the DCE was trained on contained a wide spectrum of 
DR presentations. On the other hand, ophthalmologists do not 
detect DR from images alone and would also use a dilated clin-
ical fundus examination to make this diagnosis. We verified this 
by manually reviewing the images which were incorrectly classi-
fied by the majority of ophthalmologists but correctly classified 
by the DCE and found that the majority of these (54.5%) fundi 
were classified by the ophthalmologists as ‘normal’ when they 
had mild DR. In contrast, the DCE did not exceed the ophthal-
mologists’ performance in classes where the number of training 
samples and original datasets were limited, such as for glaucoma 
and AMD. Nevertheless, we found that the DCE exhibited statis-
tically equivalent or superior performance to ophthalmologists 
in all metrics over all classes, with the exception of sensitivity in 
AMD detection in which the ophthalmologists achieved a mean 
score of 85.1% compared with DCE’s mean of 76.0% (p=0.01; 
figure  4). Altogether, these results demonstrate that the DCE 

model has a higher accuracy in detecting and classifying disease 
from fundus images alone compared with ophthalmologists. To 
the best of our knowledge, this is the first study of its kind to 
show both superior classification performance and reliability 
compared with ophthalmologists for classifying multiple retinal 
diseases based on fundus photographs, although similar results 
have been demonstrated in lung lesion detection in radiographs29 
and in skin lesion detection in photographs.30

Our study also found that the DCE was more reliable in its 
predictions compared with ophthalmologists, as the DCE had a 
higher mean agreement between its stated confidence and accuracy 
compared with ophthalmologists. Our analysis showed that this was 
primarily due to the large proportion of underconfident responses 
(not confident yet accurate) given by the ophthalmologists compared 
with the DCE (table 3). As above, this could be explained by the fact 
ophthalmologists do not recognise pathology purely from fundus 
photographs but also rely on the dilated retinal examination and 

Figure 4  Classification scores for both the DCE and ophthalmologists per class in the test set. Box plots include a horizontal solid line and solid 
cross indicating the median and mean, values. respectively for each score. P values less than 0.05 are indicated, as determined by a two-sample t-test. 
AMD, age-related macular degeneration; DCE, deep convolutional ensemble; DR,diabetic retinopathy; PPV, positive predictive value.

Table 2  Confusion matrices for deep convolutional ensemble and board-certified ophthalmologists showing the mean (and SD) per cent 
agreement between the predicted labels against the ground-truth labels over the test set

Deep convolutional ensemble Ophthalmologists

Normal DR Glaucoma AMD Normal DR Glaucoma AMD

Ground-truth 
labels

Normal 23.8%
(0.8%)

1.2%
(0.8%)

0.0%
(0.0%)

0.0%
(0.0%)

21.9%
(2.3%)

1.3%
(1.4%)

1.4%
(2.1%)

0.4%
(0.5%)

DR 6.6%
(1.1%)

18.2%
(1.1%)

0%
(0.0%)

0.2%
(0.4%)

9.7%
(5.1%)

12.4%
(4.5%)

1.0%
(1.4%)

1.9%
(1.1%)

Glaucoma 6.6%
(2.3%)

0.2%
(0.4%)

18.2%
(2.7%)

0.0%
(0.0%)

5.6%
(4.8%)

0.9%
(1.6%)

17.1%
(3.8%)

1.4%
(0.5%)

AMD 3.2%
(0.4%)

2.8%
(1.5%)

0.0%
(0.0%)

19%
(1.2%)

0.7%
(0.8%)

2.6%
(1.5%)

0.4%
(0.5%)

21.3%
(1.4%)

Green cells indicate agreement between the ground-truth labels and predictions by the deep convolutional ensemble or ophthalmologists, and red cells similarly indicate 
disagreement
AMD, age-related macular degeneration; DR, diabetic retinopathy.
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auxiliary testing (such as OCT and visual fields). Additionally, the 
test set included fundus photographs of variable quality, many of 
which would be considered suboptimal for the detection of retinal 
disease—as evident in figure  5C which demonstrates the image 
rated least confidently by the ophthalmologists. Both the DCE and 
ophthalmologists had a similar rate of being overconfident (confident 
yet inaccurate), confirming that ensembling leads to well-calibrated 
classification in a manner that is equivalent to or better than human 
experts.27 31 A high agreement between confidence and accuracy is 
promising when considering an algorithm for clinical application, as 
the confidence values output by a model can be more meaningfully 
interpreted on newly acquired patient images when the ground-truth 
pathology is still unknown.

Our test set was limited to 100 fundus images, which is a relatively 
small sample size for evaluating modern machine learning methods. 
However, this sample size was chosen so that the ophthalmologists 
could perform image classification in one session without fatiguing. 
Another limitation of using previously published image sets for 
training and testing is the lack of access to clinical data in addition to 
the fundus photographs. As such, we have assumed that the ground-
truth labels are accurate and that fundus photographs contain single 
diseases only. However, datasets used different criteria to grade reti-
nopathies—for instance DiaretDB relied on ophthalmologists to 
manually detect visual findings in the fundus photographs to deter-
mine the presence of DR,14 whereas clinical diagnoses were used as 
ground-truth labels in the MESSIDOR dataset.21 It was not possible 
to standardise labels across the data sources, as each institution used 
different criteria for grading and clinical diagnoses for each eye were 
not available. It was not possible to guarantee images contained only 
single diseases for the same reason. This introduces a certain amount 
of noise, uncertainty and inconsistency in the training and test sets, 
which the DCE model learns but the board-certified ophthalmologists 
may not be aware of. Moreover, as our test set was proportionally 

sampled from the same data sources used in our training/validation 
pipeline, datasets were under-represented or over-represented in the 
test set based on the total number of images they contained for each 
disease category. Because the DCE was trained on the same distribu-
tion of data sources, and as some datasets contained a much greater 
number of certain conditions compared with others, this potentially 
biased the comparison with board-certified ophthalmologists who 
were not familiar with the data sets prior to grading the test set. 
Future work can address these limitations by collecting a prospective 
multidisease photographic database with associated clinical data.

We further explored the ophthalmologists’ responses on the 
test set to determine whether there were any images for which all 
ophthalmologists were in disagreement with the prescribed ground-
truth label, but also had 100% consensus on the classification. There 
were two such images, both of which were labelled as DR in the orig-
inal dataset but were rated as ‘normal’ and ‘AMD’, respectively, by all 
ophthalmologists. Given this consensus, we ran our statistical anal-
ysis after removing these two images. We found that the DCE main-
tained a higher mean accuracy than the ophthalmologists (80.4% 
vs 74.2%, p=0.04), as well as a higher mean F1-score (81.0% vs 
73.7%, p=0.03), over all 98 test set images. The DCE also had statis-
tically higher mean PPV, sensitivity and specificity than the ophthal-
mologists over all images.

In this study we showed that it is possible to train an ensemble 
of deep CNNs to accurately identify three retinal pathologies and 
normal retinas from colour fundus photographs alone. We showed 

Table 3  Mean (and SD) per cent agreement between 
confidence and accuracy of the deep convolutional ensemble and 
ophthalmologists

Deep convolutional ensemble Ophthalmologists

Correct Incorrect Correct Incorrect

Confident 77.4% (2.5%) 16.6% (2.5%) 58.7% (4.3%) 15.7% (8.6%)

Not confident 1.8% (0.8%) 4.2% (0.8%) 14% (6.0%) 11.6% (3.7%)

Green cells indicate agreement between the ground-truth labels and predictions 
by the deep convolutional ensemble or ophthalmologists, and red cells similarly 
indicate disagreement

Table 4  Confusion matrices for deep convolutional ensemble and board-certified ophthalmologists showing the mean (and SD) per cent 
agreement between ‘confident’ predicted labels against the ground-truth labels over the test set

Deep convolutional ensemble Ophthalmologists

Normal DR Glaucoma AMD Normal DR Glaucoma AMD

Ground-truth labels Normal 25.1%
(0.9%)

1.3%
(0.9%)

0.0%
(0.0%)

0.0%
(0.0%)

22.1%
(3.0%)

0.3%
(0.6%)

0.2%
(0.6%)

0.2%
(0.5%)

DR 5.7%
(1.2%)

18.9%
(1.0%)

0.0%
(0.0%)

0.0%
(0.0%)

7.8%
(5.5%)

12.7%
(6.8%)

0.2%
(0.6%)

2.1%
(1.1%)

Glaucoma 5.7%
(2.3%)

0.2%
(0.5%)

18.9%
(2.7%)

0.0%
(0.0%)

4.3%
(4.1%)

0.4%
(1.0%)

18.5%
(4.2%)

2.0%
(0.8%)

AMD 2.8%
(0.6%)

1.9%
(1.2%)

0.0%
(0.0%)

19.4%
(1.5%)

0.5%
(0.9%)

2.1%
(1.6%)

0.2%
(0.6%)

26.3%
(2.3%)

Green cells indicate agreement between the ground-truth labels and predictions by the deep convolutional ensemble or ophthalmologists, and red cells similarly indicate 
disagreement
AMD, age-related macular degeneration; DR, diabetic retinopathy.

Figure 5  Examples of fundus photographs showing least and 
most confident predictions. (A:) ‘Normal’ fundus image predicted 
with greatest confidence by all five DCE models and all seven 
ophthalmologists. (B:) ‘DR’ fundus image with the lowest mean 
confidence as rated by the DCE. (C:) ‘DR’ fundus image with the lowest 
mean confidence as rated by the ophthalmologists. AMD, age-related 
macular degeneration; DCE, deep convolutional ensemble; DR,diabetic 
retinopathy.
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that this performance meets or exceeds the performance of human 
experts in the field, and further that the reliability (or confidence cali-
bration) is better than that of the board-certified ophthalmologists. 
Although we use InceptionV3, a previously developed deep learning 
model, we showed that it is possible to use existing pretrained archi-
tectures in an ensemble configuration to meet, or even surpass, 
human expert medical image classification accuracy and confidence 
calibration. We expect future avenues of research to explore how 
technical advancements in model architecture and training algo-
rithms might further advance classification accuracy and reliability of 
supervised learning algorithms. While clinicians typically have access 
to additional information such as clinical history, a clinical exam-
ination and auxiliary testing to assist with making these diagnoses, 
these tests are costly in both human and technical resources. Auto-
mated artificial intelligence (AI) classifiers could represent a method 
by which rapid population-based screening for retinal disease could 
be performed using fundus photographs alone. Future work should 
explore the potential deployment of multidisease AI classifiers to 
assist with community-based retinal screening, particularly in settings 
where access to ophthalmology diagnostics is limited.

Twitter Stephan Ong Tone @StephanOngTone and Jovi C Y Wong @jovicywong
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