Skip to main content
. 2024 Feb 12;14:1281922. doi: 10.3389/fonc.2024.1281922

Table 4.

DL-based mammography for breast tumor detection.

Reference Year Method Database Number of images Accuracy AUC Sensitivity Specificity
(88) 2016 Deep CNN DDSM 600 96.7% NA NA NA
(89) 2016 AlexNet FFDM 607 NA 86% NA NA
(90) 2016 CNN BCDR-F03 736 NA 82% NA NA
(91) 2016 SNN UCI, DDSM NA 89.175%, 86% NA NA NA
(92) 2016 ML-NN ED(US) NA 98.98% 98% NA NA
(93) 2016 DBN ED(US-SW E) NA 93.4% 94.7% 88.6% 97.1%
(94) 2017 Deep CNN FFDM 3185 82% 88% 81% 72%
(95) 2017 CNN (COM) INbreast 115 95% 91% NA NA
(96) 2017 Deep CNN SFM, DM 2242 NA 82% NA NA
(97) 2017 CNN-CT IRMA 2796 83.74% 83.9% 79.7% 85.4%
(97) 2017 CNN-WT IRMA 2796 81.83% 83.9% 78.2% 83.3%
(98) 2017 VGG19 FFDM 245 NA 86% NA NA
(99) 2017 Custom CNN FFDM 560 NA 79% NA NA
(100) 2017 VGG16 IRMA 2795 100% 100% NA NA
(101) 2017 SNN DDSM 480 79.5% NA NA NA
(101) 2017 CNN (COM) MIAS, CBIS-INBreast NA 57% 77% NA NA
(96) 2017 Multitask DNN ED(Mg),DD SM 1057 malignant, 1397 benign 82% NA NA NA
(102) 2017 CNN (COM) ED (HP) NA 95.9% (2 classes), 96.4% (15 classes) NA NA NA
(103) 2017 ImageNet BreakHis NA 93.2% NA NA NA
(104) 2018 GoogLeNet BCDR-F03 736 81% 88% NA NA
(104) 2018 AlexNet BCDR-F03 736 83% 79% NA NA
(104) 2018 Shallow CNN BCDR-F03 736 73% 82% NA NA
(105) 2018 Faster R-CNN INbreast 115 NA 95% NA NA
(105) 2018 Faster R-CNN DREAM 82,000 NA 85% NA NA
(106) 2018 ROI based CNN DDSM 600 97% NA NA NA
(107) 2018 Inception V3 DDSM 5316 97.35% ( ± 0.80) 98% NA NA
(107) 2018 Inception V3 INbreast 200 95.50% ( ± 2.00) 97% NA NA
(107) 2018 Inception V3 BCDR-F03 600 96.67% ( ± 0.85) 96% NA NA
(107) 2018 VGG16 DDSM 5316 97.12% ( ± 0.30) NA NA NA
(107) 2018 ResNet50 DDSM 5316 97.27% ( ± 0.34) NA NA NA
(108) 2018 Deep CNN MIAS 120 96.7% NA NA NA
(109) 2018 AlexNet, Transfer Learning University of Pittsburgh 20,000 NA 98.82% NA NA
(110) 2018 Faster R-CNN DDSM, INbreast & Semmelweis University data 2620,115, 847 NA 95% NA NA
(111) 2018 CNN FFDM 78 NA 81% NA NA
(112) 2018 MV-DNN BCDR-F03 736 85.2% 89.1% NA NA
(113) 2018 Deep CNN MIAS 322 65% NA NA NA
(114) 2018 SDAE ED (HP) 58 98.27% (Benign), 90.54% (Malignant) NA 97.92% (Benign), 90.17% (Malignant) NA
(115) 2018 CNN (UDM) BreakHis NA 96.15%, 98.33% (2 Classes), 83.31-88.23% (8 Classes) NA NA NA
(116) 2018 CNN-CH BreakHis 400× (× represents magnificati on factor) 96% NA 97.79% 90.16%
(116) 2018 CNN-CH BreakHis 400× (× represents magnificati on factor) 97.19% NA 98.20% 94.94%
(117) 2019 CNN DDSM 190 93.24% NA 91.92% 91.92%
(117) 2019 CNN based LBP DDSM 190 96.32% 97% 96.81% 95.83%
(118) 2020 InceptionV3 DDSM 2620 79.6% NA 89.1% NA
(118) 2020 ResNet 50 DDSM 2620 85.7% NA 87.3% NA
(119) 2020 ResNet50 DDSM patch 10713 75.1% NA NA NA
(119) 2020 Mobile Net DDSM patch 10713 77.2% NA NA NA
(119) 2020 MVGG16 DDSM patch 10713 80.8% NA NA NA
(119) 2020 MVGG16 + ImageNet DDSM patch 10713 88.3% 93.3% NA NA
(71) 2020 GAN and CNN DDSM 292 80% 80% NA NA
(120) 2021 Optimal Multi-Level Thresholding-based Segmentation with DL enabled Capsule Network (OMLTS-DLCN) Mini-MIAS dataset and DDSM dataset NA 98.5% for Mini-MIAS, 97.55% for DDSM NA NA NA
(121) 2021 Inception-ResNet-V2 BreastScreen Victoria dataset 28,694 0.8178 0.8979 NA NA
(122) 2021 AI-powered imaging biomarker 2,058 NA 0.852 NA NA
(123) 2022 DualCoreNet DDSM NA NA 0.85 NA NA
(123) 2022 DualCoreNet INbreast NA NA 0.93 NA NA

N/A, Not Applicate.