Skip to main content
. 2024 Feb 12;14:1281922. doi: 10.3389/fonc.2024.1281922

Table 5.

DL-based mammography for breast tumor classification.

Reference Year Method Database Number of images Accuracy AUC Sensitivity Precision F1-Score
(95) 2017 Transfer learning, Random Forest INbreast 108 90% NA 98% 70% NA
(124) 2018 Deep GeneRAtive Multitask CBIS-DDSM NA 89% 0.884 NA NA NA
(125) 2019 VGG, Residual Network CBIS-DDSM NA NA NA 86.10% 80.10% NA
(126) 2019 DCNN, Alexnet CBIS-DDSM 1696 75.0% 0.80 NA NA NA
(127) 2019 MA-CNN MIAS 322 96.47% 0.99 96.00% NA NA
(128) 2019 DCNN, MSVM MIAS 322 96.90% 0.99 NA NA NA
(129) 2019 CNN
Improvement (CNNI-BCC)
MIAS NA 90.50% 0.90 89.47% 90.71% NA
(130) 2020 MobileNet, VGG, Resnet,
Xception
CBIS-DDSM 1696 84.4% 0.84 NA NA 85.0%
(131) 2020 MobilenetV1, MobilenetV2 CBIS-DDSM 1696 74.5% NA NA 70.00% 76.00%
(132) 2020 DE-Ada* CBIS-DDSM NA 87.05% 0.9219 NA NA NA
(133) 2020 AlexNet MIAS 68 98.53% 0.98 100% 97.37% 98.3%
(133) 2020 GoogleNet MIAS 68 88.24% 0.94 80% 94.74% 85.71%
(134) 2020 Inception ResNet V2 INbreast 107 95.32% 0.95 NA NA NA
(132) 2020 De-ada* INbreast NA 87.93% 0.9265 NA NA NA
(135) 2021 CNN CBIS-DDSM 1592 91.2% 0.92 92.31% 90.00% 91.76%
(136) 2021 MobilenetV2, Nasnet Mobile, MEWOM CBIS-DDSM 1696 93.8% 0.98 93.75% 93.80% 93.77%
(137) 2021 ResNet-18, (ICS-ELM) MIAS 322 98.13% NA NA NA NA
(135) 2021 CNN MIAS 322 93.39% 0.94 92.72% 94.12% 93.58%
(136) 2021 Mobilenet V2 & NasNet Mobile,
MEWOA
MIAS 300 99.80% 1.00 99.00% 99.33% 99.16%
(137) 2021 ResNet-18, (ICS-ELM) INbreast 179 98.26% NA NA NA NA
(135) 2021 CNN INbreast 387 93.04% 0.94 94.83% 91.23% 93.22%
(136) 2021 Fine-tuned MobilenetV2, Nasnet, MEWOM INbreast 108 99.7% 1.00 99.0% 99.0% 99.0%
(123) 2022 DualCoreNet CBIS-DDSM NA NA 0.85± 0.021 NA NA NA
(138) 2022 CNN
classifier with
different fine-tuning
DDSM 13128 99.96% 1.00 100% 99.92% 99.96%

N/A, Not Applicate.