Skip to main content
. 2024 Jan 22;14(2):2034–2048. doi: 10.21037/qims-23-947

Table 3. Performance comparison with convolutional and transformer baselines.

Method Dataset A Dataset B
DSC AER HE MAE DSC AER HE MAE
UNet 0.730±0.008 0.632±0.036 97.75±1.87 54.99±1.37 0.840±0.007 0.378±0.032 53.91±2.55 24.60±1.57
UNet++ 0.704±0.008 0.702±0.037 102.48±1.93 65.18±1.49 0.849±0.006 0.310±0.019 83.89±3.07 42.83±1.94
Att UNet 0.703±0.008 0.654±0.032 92.25±1.99 44.23±1.35 0.872±0.005 0.245±0.010 72.05±2.93 33.30±1.71
RDAU 0.770±0.008 0.537±0.036 80.96±2.02 34.93±1.17 0.885±0.005 0.223±0.010 54.62±2.35 21.17±1.11
Ghost UNet 0.711±0.009 0.604±0.032 89.92±1.97 51.05±1.42 0.884±0.006 0.207±0.007 39.98±2.22 13.14±0.89
SGUNet 0.782±0.007 0.499±0.030 94.25±2.03 55.33±1.49 0.898±0.004 0.195±0.007 66.35±2.83 28.40±1.47
MedT 0.729±0.008 0.556±0.024 90.10±1.83 51.65±1.34 0.889±0.005 0.219±0.010 45.74±2.33 17.71±1.19
DT 0.769±0.007 0.588±0.036 83.50±1.99 35.74±1.18 0.889±0.004 0.224±0.009 38.89±2.03 14.48±1.05
UNeXt 0.769±0.008 0.546±0.037 80.67±2.09 35.11±1.23 0.902±0.004 0.189±0.007 29.58±1.76 10.71±0.91
ConvUNeXt 0.792±0.008 0.481±0.037 81.94±2.17 39.07±1.37 0.909±0.006 0.163±0.007 27.54±1.84 9.18±0.88
GDUNet 0.806±0.007* 0.477±0.036* 73.77±2.08* 28.46±1.05* 0.925±0.004* 0.144±0.005* 17.57±1.05* 4.65±0.41*

The data in the table are presented as the mean ± standard deviation. *, best result in the table. DSC, Dice similarity coefficient; AER, area error ratio; HE, Hausdorff error; MAE, mean absolute error; UNet, U-shaped network; Att UNet, attention UNet; RDAU, Residual-Dilated-Attention-Gate-UNet; Ghost UNet, Ghost-Net and U-Net; SGUNet, semantic-guided UNet; MedT, medical transformer; DT, dilate transformer; GDUNet, attention gate and dilation U-shaped network.