Table 3. Performance comparison with convolutional and transformer baselines.
Method | Dataset A | Dataset B | |||||||
---|---|---|---|---|---|---|---|---|---|
DSC | AER | HE | MAE | DSC | AER | HE | MAE | ||
UNet | 0.730±0.008 | 0.632±0.036 | 97.75±1.87 | 54.99±1.37 | 0.840±0.007 | 0.378±0.032 | 53.91±2.55 | 24.60±1.57 | |
UNet++ | 0.704±0.008 | 0.702±0.037 | 102.48±1.93 | 65.18±1.49 | 0.849±0.006 | 0.310±0.019 | 83.89±3.07 | 42.83±1.94 | |
Att UNet | 0.703±0.008 | 0.654±0.032 | 92.25±1.99 | 44.23±1.35 | 0.872±0.005 | 0.245±0.010 | 72.05±2.93 | 33.30±1.71 | |
RDAU | 0.770±0.008 | 0.537±0.036 | 80.96±2.02 | 34.93±1.17 | 0.885±0.005 | 0.223±0.010 | 54.62±2.35 | 21.17±1.11 | |
Ghost UNet | 0.711±0.009 | 0.604±0.032 | 89.92±1.97 | 51.05±1.42 | 0.884±0.006 | 0.207±0.007 | 39.98±2.22 | 13.14±0.89 | |
SGUNet | 0.782±0.007 | 0.499±0.030 | 94.25±2.03 | 55.33±1.49 | 0.898±0.004 | 0.195±0.007 | 66.35±2.83 | 28.40±1.47 | |
MedT | 0.729±0.008 | 0.556±0.024 | 90.10±1.83 | 51.65±1.34 | 0.889±0.005 | 0.219±0.010 | 45.74±2.33 | 17.71±1.19 | |
DT | 0.769±0.007 | 0.588±0.036 | 83.50±1.99 | 35.74±1.18 | 0.889±0.004 | 0.224±0.009 | 38.89±2.03 | 14.48±1.05 | |
UNeXt | 0.769±0.008 | 0.546±0.037 | 80.67±2.09 | 35.11±1.23 | 0.902±0.004 | 0.189±0.007 | 29.58±1.76 | 10.71±0.91 | |
ConvUNeXt | 0.792±0.008 | 0.481±0.037 | 81.94±2.17 | 39.07±1.37 | 0.909±0.006 | 0.163±0.007 | 27.54±1.84 | 9.18±0.88 | |
GDUNet | 0.806±0.007* | 0.477±0.036* | 73.77±2.08* | 28.46±1.05* | 0.925±0.004* | 0.144±0.005* | 17.57±1.05* | 4.65±0.41* |
The data in the table are presented as the mean ± standard deviation. *, best result in the table. DSC, Dice similarity coefficient; AER, area error ratio; HE, Hausdorff error; MAE, mean absolute error; UNet, U-shaped network; Att UNet, attention UNet; RDAU, Residual-Dilated-Attention-Gate-UNet; Ghost UNet, Ghost-Net and U-Net; SGUNet, semantic-guided UNet; MedT, medical transformer; DT, dilate transformer; GDUNet, attention gate and dilation U-shaped network.