Skip to main content
. 2024 Jan 22;14(2):2034–2048. doi: 10.21037/qims-23-947

Table 5. Comparison with the state-of-the-art methods in dataset B.

Network DSC AER HE MAE
FCN-AlexNet (34) 0.84 0.39 25.1 7.1
SegNet (35) 0.89 0.22 21.7 4.5
CE-Net (36) 0.90 0.22 21.6 4.5
SCAN (37) 0.90 0.20 26.9 4.9
DenseU-net (38) 0.88 0.25 25.3 5.5
MultiResUNet (39) 0.91 0.19 18.8 4.1
STAN (40) 0.91 0.18 18.9 3.9*
Fuzzy FCN (41) 0.92 0.14* 19.8 4.2
Huang et al. (42) 0.93* 0.15 26.0 4.9
GDUNet 0.93* 0.14* 17.6* 4.7

*, best result in the table. DSC, Dice similarity coefficient; AER, area error ratio; HE, Hausdorff error; MAE, mean absolute error; FCN, fully convolutional network; SegNet, deep fully convolutional neural network architecture for semantic pixel-wise segmentation; CE-Net, context encoder network; SCAN, semantic context-aware network; MultiResUNet, the U-Net Architecture for Multimodal Biomedical Image Segmentation; STAN, small tumor-aware network; GDUNet, attention gate and dilation U-shaped network.