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Abstract
Metabolic tests are vital to determine in vivo insulin sensitivity and glucose metabolism in preclinical models, usually 
rodents. Such tests include glucose tolerance tests, insulin tolerance tests, and glucose clamps. Although these tests 
are not standardized, there are general guidelines for their completion and analysis that are constantly being refined. 
In this review, we describe metabolic tests in rodents as well as factors to consider when designing and performing 
these tests.
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Introduction
Breakthroughs in metabolic research rely upon in 
vivo studies using animal models, usually rodents. 
Assessment of glucose metabolism in rodents is a key 
component of diabetes research. Although general 
guidelines for quantification and interpretation of 
glucose metabolism experiments exist, such guidelines 
are constantly evolving. In this review, we describe 
the most common in vivo techniques currently used to 
assess glucose metabolism in rats and mice as well as 
factors to consider when utilizing such techniques. The 
purpose of this review is two-fold: (i) to highlight recent 
developments in performing as well as interpreting 
results of metabolic tests in rodents and (ii) to provide 
an easy-to-follow introduction to glucose metabolism 
methodology in rodents from theoretical and practical 
perspectives. We discuss metabolic techniques in both 

rats and mice because both species are commonly 
used in metabolic research. We compare, as applicable, 
metabolic protocols used in rodents with those 
used in humans to understand the translatability of  
metabolic tests.

Determining insulin sensitivity and 
glucose metabolism in vivo

Glucose tolerance test
The glucose tolerance test (GTT) assesses the response 
(i.e. circulating glucose concentration) to a glucose 
load (American Diabetes Association 2014). Circulating 
glucose concentrations during a GTT are the net result 
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of two crucial factors: insulin secretion by pancreatic β 
cells and insulin sensitivity (Ferrannini & Mari 2014). 
The relationship between insulin secretion rate and 
insulin sensitivity is hyperbolic and their product is the 
disposition index (Ferrannini & Mari 2014). To determine 
the role of insulin secretion and insulin sensitivity in  
GTT results, additional tests are required to assess  
each of these factors. Insulin sensitivity refers to the 
magnitude of insulin’s metabolic effects, including 
insulin-stimulated suppression of glucose production 
by the liver and insulin-stimulated glucose uptake by 
skeletal muscle (Pereira & Giacca 2011). Therefore,  
mouse A is more insulin sensitive than mouse B if 
the metabolic effects of insulin, at a given insulin 
concentration, are greater in mouse A. Plasma insulin 
concentrations during the GTT are commonly used 
as markers of insulin secretion (Pereira  et  al. 2019, 
Huynh et al. 2010), but it is important to note that plasma 
insulin concentrations in peripheral blood vessels 
(e.g. carotid artery, saphenous vein, tail vein) are the 
net result of insulin secretion and insulin clearance 
(Najjar  et  al. 2023). The gold standard technique for in 
vivo assessment of glucose-stimulated insulin secretion 
(i.e. β cell function) is the hyperglycemic clamp (Pereira 
& Giacca 2011). Another less studied variable that affects 
glucose tolerance is glucose effectiveness, which is 
the ability of glucose to inhibit its own production and 
stimulate its own uptake (Best  et  al. 1996, Lam  et  al. 
2005, Ayala  et  al. 2010, Carey  et  al. 2020). Glucose  
effectiveness is calculated using (i) the frequently  
sampled intravenous glucose tolerance test (IVGTT) 
with minimal model analysis or (ii) the pancreatic 
hyperglycemic clamp to determine the effect of  
selectively elevating glucose concentrations on 
endogenous glucose production (EGP) and glucose 
uptake (Tokuyama & Suzuki 1998, Ahrén & Pacini 2002, 
Henderson et al. 2005, Schwartz et al. 2013, Karstoft et al. 
2017, Carey  et  al. 2020). It appears that glucose 
effectiveness is a more important factor in determining 
circulating glucose concentrations during an OGTT in 
mice vs humans (Bruce et al. 2021).

The route of administration of the glucose load 
can be oral (usually more specifically directly into 
the stomach via gavage), intravenous (into blood 
vessel), or intraperitoneal (into peritoneal cavity), 
leading to OGTTs, IVGTTs, and IPGTTs, respectively 
(Turner  et  al. 2011). The latter is not used in humans. 
OGTT is the most physiological of the GTTs because it  
involves ingestion of glucose into the lumen of the 
gastrointestinal tract, which is the usual route through 
which glucose enters the body (Ferrannini & Mari 
2014). Glucose administered orally is absorbed in the 
gastrointestinal tract and enters the portal circulation; 
therefore, the first organ that glucose will reach is the 
liver. Glucose administered intraperitoneally will also 
enter the portal vein because its main fate is being 
absorbed into mesenteric blood vessels (Turner  et  al. 
2011). In contrast, if glucose is delivered intravenously 
(e.g. via the jugular vein (Frangioudakis  et  al. 2008)), 

the liver is not the first organ to be encountered  
by glucose.

Results for OGTT, IVGTT, and IPGTT may be different 
because the underlying physiological mechanisms 
are unique. When glucose that is consumed orally, 
either by gavage or starting at the mouth, reaches the 
intestinal lumen, it is sensed by enteroendocrine K 
and L cells, which will release the incretin hormones 
glucose-dependent insulinotropic polypeptide (GIP) and 
glucagon-like peptide 1 (GLP-1), respectively (Campbell 
& Drucker 2013, Reimann & Gribble 2016). Incretin 
hormones act on pancreatic β cells to potentiate insulin 
secretion (Campbell & Drucker 2013). This ‘incretin 
effect’ is not observed in IVGTTs and IPGTTs (Ayala et al. 
2010, Ferrannini & Mari 2014, Alquier & Poitout 2018). 
Furthermore, the presence of glucose in the mouth 
per se increases insulin secretion through a neural 
pathway (i.e. cephalic-phase insulin release), which 
in turn improves glucose tolerance (Glendinning  et  al. 
2015). In healthy rodents of both sexes, at a given dose 
of glucose, lower blood glucose levels are obtained in 
OGTTs vs IPGTTs (Benedé-Ubieto et al. 2020, Small et al. 
2022). This is associated with greater circulating insulin 
concentrations and inhibition of glucose production 
in OGTTs vs IPGTTs (Small  et  al. 2022). The fact that 
lower blood glucose levels are achieved by OGTT 
may also be caused by slow glucose absorption from 
the gastrointestinal tract (Small  et  al. 2022). Glucose 
effectiveness may be more important in explaining the 
glucose excursion profile during an IPGTT compared to an 
OGTT because (i) a robust increase in circulating insulin 
is lacking during an IPGTT and (ii) glucose appearance 
kinetics depend on the route of glucose administration, 
with glucose appearance in the circulation being greater 
during an IPGTT (Small et al. 2022).

Analyses of GTT results consist of comparing (i) blood 
glucose concentrations at specific timepoints, (ii) 
plasma insulin concentrations at specific timepoints (if 
measured), and (iii) area under the curve for the blood 
glucose concentration vs time graph for the entire 
procedure. GTTs typically last 2 h but can be shortened 
to 1–1.5 h (Ayala  et  al. 2010, Yue  et  al. 2016, Virtue & 
Vidal-Puig 2021, Small  et  al. 2022). When comparing 
blood glucose or plasma insulin concentrations 
between experimental groups throughout the GTT, one 
should use a two-way ANOVA followed by appropriate 
post hoc tests to minimize type 1 error (i.e. finding a 
difference between experimental groups where there 
is none). When the baseline (fasting) blood glucose 
concentration is different between experimental 
groups, the percentage change of blood glucose or 
plasma insulin concentration at each timepoint relative 
to baseline concentration should not be used and the 
area under the baseline should be subtracted when 
calculating area under the curve (Alquier & Poitout 
2018, Virtue & Vidal-Puig 2021). Typical glucose 
doses for GTTs have been summarized elsewhere  
(Alquier & Poitout 2018).
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Insulin tolerance test
The insulin tolerance test (ITT) is typically used to assess 
in vivo insulin sensitivity in rodents because it is not 
technically difficult. In humans, the index of insulin 
sensitivity obtained from the ITT correlates well with 
whole-body insulin sensitivity quantified with the 
hyperinsulinemic euglycemic clamp, which is the gold 
standard technique to assess insulin sensitivity in vivo 
(Pereira & Giacca 2011). To the best of our knowledge, 
however, these two tests have still not been directly 
compared in mice (Pereira & Giacca 2011). In the ITT, 
insulin is usually injected intraperitoneally (i.p.) and 
circulating glucose concentrations are monitored over 
1–2 h (Ayala  et  al. 2010, Pereira  et  al. 2019, Virtue & 
Vidal-Puig 2021). When comparing two groups of mice, 
one of the groups should have a maximal decrease in 
blood glucose concentration of ~50% so that differences 
between groups, if present, can be detected (Ozcan et al. 
2006, Huynh  et  al. 2010, Engström Ruud  et  al. 2020). 
Interpretation of ITT results depends on the extent 
of blood glucose concentration drop in response to 
insulin; the greater the decrease in blood glucose 
concentration, the more insulin sensitive the animal is.  
However, blood glucose concentrations should  
not drop excessively because this will trigger a 
counterregulatory response, which will confound 
the ITT results; the threshold for initiation of the 
counterregulatory response is considered to be 
~4mM, but it is specific to a given mouse population  
(Ayala  et  al. 2010, Alquier & Poitout 2018, Virtue &  
Vidal-Puig 2021). Moreover, it is the first 20–30 min  
of the ITT that are important to determine insulin 
sensitivity because the half-life of insulin is <10 min 
(Ayala  et  al. 2010, Alquier & Poitout 2018, Virtue &  
Vidal-Puig 2021).

ITT results represent insulin sensitivity at the level  
of the whole body (Ayala  et  al. 2010). The approach 
and caveats to analysis of ITT results are similar to  
those for GTT results, as described in the Glucose 
tolerance test section, except that area above the curve 
is preferred over area under the curve (Bruin  et  al. 
2015, Carper  et  al. 2020, Virtue & Vidal-Puig 2021).  
In line with the importance of the first 20–30 min  
of the ITT, the slope of reduction in blood glucose 
concentrations is described as the best index of insulin 
sensitivity that can be derived from an ITT (Pereira 
& Giacca 2011, Alquier & Poitout 2018). However, 
calculation of this slope is not commonly done in 
rodents. Similarly, the circulating insulin concentrations 
achieved after the injection of insulin in an ITT  
are rarely measured. Nevertheless, this is an important 
parameter and can become a confounding variable 
if, despite the same insulin dose, different levels of 
circulating insulin are achieved (Ahrén & Pacini 2006). 
High-fat diet (HFD)-fed mice, which are insulin resistant, 
have decreased insulin clearance and elevated fasting 
circulating insulin concentrations (Al-Share  et  al. 
2015, Kurauti  et  al. 2016). Following administration  

of insulin during an ITT, circulating insulin 
concentrations have been reported to be higher  
in HFD-fed mice compared to standard chow-fed 
mice (controls) for at least the first 60 min of the ITT 
(Kurauti  et  al. 2016). Differences in circulating insulin 
could prevent detection of sensitivity impairment  
using the ITT. Common insulin doses for ITTs have  
been published (Alquier & Poitout 2018).

Pyruvate tolerance test
The pyruvate tolerance test (PTT) measures the extent 
to which exogenous pyruvate is converted to glucose 
by the body. Therefore, the PTT assesses the rate of 
gluconeogenesis with pyruvate as a starting point, but 
it does not provide information about gluconeogenesis 
of nonpyruvate substrates, for example glycerol. 
Gluconeogenesis together with glycogenolysis makes up 
endogenous glucose production (EGP).

In a PTT, sodium pyruvate is typically injected i.p. 
and the experimental flow as well as data analysis is  
similar to that of an IPGTT (Ferreira  et  al. 2012, 
Hughey  et  al. 2014). Greater circulating glucose 
concentrations during a PTT implies higher rates of 
gluconeogenesis in the body (Hughey  et  al. 2014).  
At the tissue level, the PTT is expected to involve  
the liver and kidney, which are the two key sites of 
gluconeogenesis. Brain pyruvate metabolism may 
also affect PTT results because pyruvate can cross  
the blood–brain barrier and pyruvate metabolism in 
the brain lowers EGP in healthy rodents (Cremer  et al. 
1979, Villalba et al. 1994, Lam et al. 2005). An injection 
of pyruvate can result in torpor, which is a state 
of diminished body temperature and activity, in 
obese mice (Soto  et  al. 2018). Torpor can also affect 
glucose metabolism (Rubio  et  al. 2023); hence, torpor 
can be a confounding variable during PTTs. More 
sophisticated yet complex techniques for quantification 
of gluconeogenesis in vivo exist (Chevalier  et  al. 2006, 
Yook et al. 2023).

Homeostasis model assessment insulin 
resistance and quantitative insulin 
sensitivity check index
Homeostasis model assessment insulin resistance 
(HOMA-IR) and quantitative insulin sensitivity 
check index (QUICKI) are indexes of whole-body 
insulin sensitivity calculated using fasting insulin  
and glucose concentrations, as reviewed previously 
(Pereira & Giacca 2011, Meneses  et  al. 2023). HOMA-IR 
or HOMA-%S (inverse of HOMA-IR) and QUICKI  
correlate with whole-body insulin sensitivity assessed 
with the hyperinsulinemic euglycemic clamp in  
humans, rats, and mice (Pereira & Giacca 2011).  
A main criticism of these indexes of insulin sensitivity 
is that they use equations that were initially generated 



Journal of Endocrinology (2024) 260 e230308
https://doi.org/10.1530/JOE-23-0308

M Hahn et al.

for humans and that analogous equations should be 
generated for rodents (Alquier & Poitout 2018).

Hyperinsulinemic euglycemic clamp
The hyperinsulinemic euglycemic clamp is considered 
the gold standard technique for assessment of in 
vivo insulin sensitivity in humans, rats, and mice. 
In rats, blood vessel cannulation surgery (jugular 
vein for exogenous infusions and carotid artery for 
blood sampling) is performed, and time (~4 days) is 
required for recovery before performing the clamp in  
free-moving rats (Pereira  et  al. 2013). In mice,  
cannulation of the carotid artery is technically 
challenging; therefore, the experimental protocol is 
often altered such that mice are typically restrained 
during the clamp and blood samples are obtained  
from the tail (Ayala et al. 2010).

Experimental protocols for the hyperinsulinemic 
euglycemic clamp in conscious rats and mice have 
been published (Ayala  et  al. 2010, Pereira & Giacca 
2011, Pereira  et  al. 2013, Hughey  et  al. 2014) and a 
diagram of the experimental setup for rats is shown 
in Fig. 1A. The hyperinsulinemic euglycemic clamp 
involves a constant intravenous (i.v.) infusion of insulin  
to increase circulating insulin concentrations above 
baseline, which is typically the insulin concentration 
after an overnight (rats) or 5–6 h (mice) fast (Ayala et al. 
2010, Pereira et al. 2013). Exogenous glucose solution is 
then infused i.v. to maintain baseline plasma glucose 
concentrations (i.e. euglycemia); this requires frequent 
blood sampling and measuring of plasma glucose (Fig. 
1B, which is based on (DeFronzo et al. 1979, Pereira et al. 
2013)). A rat’s own red blood cells are reinfused i.v. 
throughout the clamp to avoid anemia (Pereira  et  al. 
2013). In mice, red blood cells are typically obtained 
from a ‘donor’ mouse and infused i.v. during the clamp 
(Ayala et al. 2010, Schertzer et al. 2011).

Glucose tracer methodology can be combined with the 
clamp and the glucose kinetics generated may differ 
depending on the glucose tracer used (Pereira & Giacca 
2011). A commonly used tracer is tritiated glucose 
(3-3H-glucose), which allows for quantification of EGP 
and glucose uptake (glucose utilization) by peripheral 
tissues such as skeletal muscle. If tracers are not used, 
then the only parameter of glucose metabolism that 
is generated is the rate of exogenous glucose infusion 
(Ginf). Ginf represents whole-body insulin sensitivity, 
and it is the difference between the rate of glucose 
utilization and EGP. However, if circulating insulin is 
sufficiently elevated, EGP will be completely suppressed 
and glucose utilization will equal Ginf (DeFronzo  et al. 
1983). Two steady states are established in a clamp 
protocol; one is the baseline/basal steady state, which is 
the period of time immediately before the start of insulin 
infusion and the other is the clamp steady state, which is 
the period of time toward the end of the clamp, typically 

the last 30 min of a 2-h clamp. A steady state refers to 
stable concentrations of glucose, insulin, and if tracers 
are being used, specific activity. Modified versions of 
the hyperinsulinemic euglycemic clamp also exist.  
To study protein metabolism, the hyperinsulinemic 
euglycemic isoaminoacidemic clamp was devised; it 
differs from the hyperinsulinemic euglycemic clamp in 
that baseline concentrations of circulating amino acids 
are maintained throughout the clamp via an exogenous 
infusion of an amino acid solution (Pereira et al. 2008).

In healthy humans and rodents during the 
hyperinsulinemic euglycemic clamp, inhibition of 
EGP is accompanied by a robust decrease in plasma 
concentrations of glycerol and free fatty acids, which 
is due to inhibition of adipose tissue lipolysis by insulin 
(Boden  et  al. 1994, Stumvoll  et  al. 2001, Perry  et  al. 
2015). In the liver, glycerol is used as a gluconeogenic 
substrate, while free fatty acids are converted to acetyl 
CoA, which is an allosteric activator of the gluconeogenic 
enzyme pyruvate carboxylase (Perry  et  al. 2015). In 
healthy overnight fasted rats, preventing this decrease 
in plasma concentrations of glycerol and hepatic 
acetyl CoA by infusing acetate and glycerol blocks  
suppression of EGP during the hyperinsulinemic 
euglycemic clamp (Perry  et  al. 2015). Furthermore, 
obesity in humans and HFD feeding in rodents elevate 
plasma free fatty acid concentrations during the 
hyperinsulinemic euglycemic clamp (Basu  et  al. 2005, 
Perry  et al. 2015). Multiple studies have demonstrated 
that increased plasma free fatty acid concentrations 
cause hepatic insulin resistance (e.g. Boden et al. (1994) 
and Park  et  al. (2007)). Circulating concentrations of 
glycerol and free fatty acids increase during fasting in 
healthy rodents in unclamped conditions (Palou  et  al. 
1981, Geisler  et  al. 2016). EGP has been found  
to remain similar (Heijboer et al. 2005, Mutel et al. 2011) 
or become lower (Nunes & Jones 2009) when comparing 
shorter vs longer (up to 24 h) fasting times in healthy 
rodents. These findings suggest that elevated circulating 
free fatty acids and glycerol may not be sufficient 
to sustain EGP as fasting continues because of other 
factors, such as depleted glycogen stores (Burgess et al. 
2005, Nunes & Jones 2009).

Interpretation of glucose kinetics results from the 
clamp requires measurement of circulating insulin 
concentrations during the basal and clamp steady states. 
In the simplest scenario, insulin concentrations at each 
steady state are similar across experimental groups. 
If not, then glucose kinetics results have to be divided 
by insulin concentrations or the alteration in insulin 
concentrations (Pereira & Giacca 2011). Alternatively, 
the insulin infusion rate can be altered in one  
of the groups in order to match the clamp insulin 
concentrations across groups (Pereira  et  al. 2014). If 
two experimental groups have different plasma glucose 
concentrations, the following approaches have been 
used: (i) divide glucose kinetics results by plasma glucose 
concentrations or (ii) make the average plasma glucose 



Journal of Endocrinology (2024) 260 e230308
https://doi.org/10.1530/JOE-23-0308

M Hahn et al.

Figure 1

(A) Setup and experimental flow of the hyperinsulinemic euglycemic clamp with tracer methodology in rats. Infusion of a glucose tracer into the jugular 
vein is initiated 2 h before the start of insulin infusion (i.e. before the start of the hyperinsulinemic euglycemic clamp) and lasts until the end of the 
clamp. At t = 0 h, a constant infusion of insulin into the jugular vein is initiated to increase circulating insulin concentrations (i.e. to obtain 
hyperinsulinemia) and lasts until the end of the clamp. To achieve euglycemia, which is typically the average plasma glucose concentration for a given 
rat during the last 30 min before the start of insulin infusion: (i) blood is collected every 5 min from the carotid artery and the plasma glucose 
concentration is measured and (ii) the rate of infusion of a glucose solution into the jugular vein is adjusted as necessary. The rate of exogenous glucose 
infusion (Ginf) is lower in rodents with obesity- and type 2 diabetes-associated insulin resistance compared to healthy controls. A hyperinsulinemic 
euglycemic clamp usually lasts 2 h. (B) Drawing of plasma insulin and glucose concentrations immediately before (basal steady state) and during the 
hyperinsulinemic euglycemic clamp, including the clamp steady state. Insulin infusion starts at 0 h. Typical insulin and glucose concentrations are also 
shown. (C) Drawing of plasma insulin and glucose concentrations immediately before (basal steady state) and during the pancreatic euglycemic clamp, 
including the clamp steady state. Insulin and somatostatin infusions start at 0 h and the pancreatic euglycemic clamp usually lasts 2 h. Typical insulin 
and glucose concentrations are also shown. Created with BioRender.com.
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concentration of the control group the target plasma 
glucose concentration for all groups during the clamp 
(Pereira et al. 2008, Pereira & Giacca 2011).

In addition to being technically challenging, the  
clamp is laborious, expensive (especially if tracer 
methodology is used), and usually terminal. However, 
it is a powerful technique in metabolic research. 
Important clamp-specific factors to address in the  
design, performance, and reporting of this technique 
have been published recently (Ayala et al. 2022).

Pancreatic euglycemic clamp
The pancreatic euglycemic clamp is used when an 
investigator wants to test the effect of a treatment without 
the confounding effect of alterations in endogenous  
insulin secretion. The pancreatic euglycemic clamp  
has also been extensively used to study how  
hormones and nutrients in the brain affect 
peripheral glucose metabolism; in such studies 
intracerebroventricular cannulation surgery is 
performed before vessel cannulation surgery  
(Lam et al. 2005, Castellani et al. 2022).

The experimental flow and many aspects of the 
pancreatic euglycemic clamp are similar to those of the 
hyperinsulinemic euglycemic clamp (Lam  et  al. 2005, 
Castellani  et  al. 2022). Similar to the hyperinsulinemic 
euglycemic clamp, the pancreatic euglycemic clamp 
requires chronic blood vessel cannulation. Moreover, 
the pancreatic euglycemic clamp also has two steady 
states (basal and clamp), usually lasts 2 h, and can 
be combined with tracer methodology. During the 
pancreatic euglycemic clamp, however, somatostatin 
is infused to inhibit endogenous insulin and glucagon 
secretion by the pancreas and exogenous insulin is  
infused at rate so that basal insulin concentrations 
can be achieved during the clamp steady state. Plasma 
glucose is measured throughout the clamp, and the 
rate of infusion of a glucose solution (Ginf) is altered as 
needed to achieve euglycemia (Fig. 1C) (Lam et al. 2005, 
Kowalchuk et al. 2017, Castellani et al. 2022).

Factors to consider when assessing 
glucose metabolism in vivo

Dynamic vs steady state
Techniques that require steady states, like the 
hyperinsulinemic or pancreatic euglycemic clamp, are 
essentially reductionist approaches to assess glucose 
metabolism (Meneses et al. 2023). HOMA-IR and QUICKI 
also assume a steady state during fasting. In contrast, 
GTTs, ITTs, and PTTs are dynamic tests because, in 
addition to the main variable, namely, circulating glucose 
concentration, other variables such as circulating 
insulin may be changing. Another factor to consider 

is when, in the feed–fast cycle, the metabolic tests are 
performed. Clamps, GTTs, ITTs, and PTTs, are usually 
done in the fasting state to minimize the confounding  
effect of changes in nutrients and hormones associated 
with feeding. Moreover, circulating levels of nutrients 
and hormones as well as glucose metabolism have a 
circadian rhythm (Ando et al. 2016, Stenvers et al. 2019). 
Therefore, the time of day when metabolic tests are 
performed should be consistent in a given experiment 
and reported.

Blood sampling
All in vivo glucose metabolism techniques described in 
this review require blood sampling. When obtaining a 
blood sample, ideally the rodent should be free-moving 
and under minimal stress, especially from handling 
and restraint. Chronic cannulation of blood vessels, 
such as jugular vein and carotid artery, in rodents 
allow blood sampling to occur largely under such  
conditions (Ayala  et  al. 2010). The disadvantage of 
chronic vessel cannulation is that rodents cannot be 
kept for long periods of time. In contrast, GTTs, ITTs, and 
PTTs can be done in longitudinal studies of rodents that 
do not have vessel cannulation, where a given rodent 
can be studied multiple times throughout its life as long 
as blood volume limitations are respected. Therefore, 
approaches other than chronic vessel cannulation 
are used to obtain blood in conscious rodents. When 
only blood glucose is measured, a prick/nick in the tail 
performed with a needle is generally enough and does 
not usually require restraint. If larger amounts of blood 
are needed for other measurements, two common 
sources of blood are used: the saphenous vein and the 
tail via tail clipping. Obtaining blood from the saphenous 
vein involves rapid restraint and can be performed 
repeatedly during a test (Abatan et al. 2008, Pereira et al. 
2019). When tail clipping is used, restraint may not be 
necessary if the tail is briefly held (Abatan  et  al. 2008, 
Moore  et  al. 2017). The extent of stress induced by  
sampling from the saphenous vein or via tail clip 
is approximately the same (Abatan  et  al. 2008).  
However, tail clip is not recommended when 
larger blood samples are required, and tail clip  
commonly causes hemolysis (Christensen  et  al. 2009, 
Ayala et al. 2010).

Measuring blood glucose concentration
Blood or plasma glucose concentrations are typically 
measured with glucometers that were designed for 
humans, which usually use ≤5 μL blood (Ayala et al. 2010, 
Togashi et al. 2016). Moreover, glucometers usually have 
a maximal reading of ~33 mM for blood (Pereira  et al. 
2019). The accuracy of glucometers when measuring 
glucose in rodent blood has been compared to results 
obtained with a glucose assay kit or glucose analyzer 
(Togashi  et al. 2016, Morley  et al. 2018). The difference 
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in plasma glucose concentrations between various 
models of glucometers and a glucose assay kit increases 
as plasma glucose concentration rises (Togashi  et  al. 
2016). Furthermore, the direction of this error changes 
depending on whether mice have been fasted or 
not (Togashi  et  al. 2016). Therefore, a glucometer  
type should be used consistently in a given  
experiment (Ayala  et  al. 2010, Togashi  et  al. 2016) and 
its results are usually most reliable when glycemia is 
not excessively high (Togashi  et  al. 2016, Morley  et  al. 
2018). When doing GTTs and PTTs in models  
of diabetes, plasma glucose concentrations can be 
determined after completion of the tests using a  
glucose assay kit (Pereira et al. 2021).

For clamps, circulating glucose concentrations must 
be determined as fast as possible (<5 min), which is 
the case with both glucometers and rapid glucose 
analyzers. The HemoCue glucose analyzer, which 
requires ~5 μL of blood to measure plasma glucose 
concentration in humans, has been used to measure 
plasma glucose concentration during clamps in mice 
(Nahle  et  al. 2021). However, the maximal glucose 
reading for HemoCue is <33 mM. For clamps in rats, 
glucose concentrations in 5–10 μL plasma samples 
can be determined using glucose analyzers such 
as GM9 from Analox (Castellani  et  al. 2022). The 
latter also has the advantage of measuring glucose  
concentrations >33 mM.

Continuous glucose monitoring (CGM) involves  
invasive surgery, namely, surgical implantation of 
a telemetry probe in the aorta (Evers  et  al. 2020, 
Kennard  et  al. 2021, Rubio  et  al. 2023). Assuming  
surgical expertise and funds exist in a laboratory, 
CGM is a great way to determine circulating glucose 
concentrations in rats and mice over weeks without 
handling them (Evers  et  al. 2020, Kennard  et  al. 2021, 
Rubio et al. 2023).

Fasting duration
Unless glucose metabolism is being specifically 
assessed in the feeding and postprandial states, all in 
vivo glucose metabolism tests are done in the fasting 
(postabsorptive) state to avoid the confounding effect 
of altered concentrations of hormones and nutrients 
associated with food consumption. The length of fast 
depends on the species, rodent model, and metabolic 
test. Glucose production is the sum of glycogenolysis 
and gluconeogenesis, and as fasting increases, 
glycogen stores become depleted and the contribution 
of gluconeogenesis to glucose production increases 
(Landau  et al. 1996, Burgess  et al. 2005). An overnight 
fast (~12 h) reduces hepatic glycogen content by ~30% 
in healthy humans (Iwayama et al. 2020), but by ~80% 
in healthy mice (Carper et al. 2020). Overnight fasting, 
which typically lasts 16 h, is considered stressful in 
mice. Fasting for 24 h also causes strain-dependent 

alterations in glycogenolysis, with C57BL/6J mice still 
demonstrating glycogenolysis (Burgess  et al. 2005). An 
important species difference is that while a 24 h fast 
decreases insulin sensitivity in humans (Salgin  et  al. 
2009), a 16–18 h fast increases whole-body and 
peripheral insulin sensitivity in mice (Heijboer  et  al. 
2005, Ayala  et  al. 2006). Thus, shorter fasting times 
are usually advised in mice also for translatability 
(Ayala et al. 2010).

The ideal length of fasting for GTTs and ITTs is an active 
area of investigation. Four to six hours of fasting is 
commonly used and advised (Andrikopoulos et al. 2008, 
Ayala et al. 2010, Pereira et al. 2019, Erener et al. 2021, 
Virtue & Vidal-Puig 2021). Recently, it was reported 
that shorter fasting (2 h) is ideal when performing 
ITTs because hepatic glycogen content is similar to the 
nonfasted state (Carper et al. 2020) and there is less risk 
of fatal hypoglycemia.

Genetic background
Genetic background of mice affects metabolic parameters 
such as insulin sensitivity and counterregulatory 
response to hypoglycemia (Berglund  et  al. 2008); 
therefore, it is important to state mouse strains in 
publications. Furthermore, littermate controls should be 
used (Drucker 2016, Alquier & Poitout 2018).

Sex of rodents
Among healthy mice, females are more insulin 
sensitive and have better glucose tolerance than males 
(Macotela et al. 2009). Similarly, women are more insulin 
sensitive than men (Tramunt et al. 2020). This disparity 
is associated with sex-specific factors such as differences 
in circulating levels of estrogen and testosterone 
(Macotela et al. 2009, Yan et al. 2019, Tramunt et al. 2020). 
Sex hormones also affect body composition (amount 
and distribution of fat tissue), which is an important 
determinant of insulin sensitivity (Elbers  et  al. 1999, 
Macotela et al. 2009, Hocking et al. 2013). The enhanced 
insulin sensitivity associated with being female often 
deteriorates in insulin-resistant states (Tramunt  et  al. 
2020, Pereira et al. 2021).

Although a shift is occurring, preclinical research 
often only uses male rodents (Willingham 2022). 
From a metabolic perspective, one of the reasons may 
be a combination of the often-increased probability  
of finding metabolic disturbances in males and the 
publication bias toward positive findings (Joober  et  al. 
2012, Mauvais-Jarvis  et  al. 2017, Tramunt  et  al. 2020). 
Nevertheless, to maximize the quality of health care 
for all, while minimizing its cost, it is important to  
study both sexes/genders from cellular to rodent and 
eventually clinical research. Results for males and 
females should not be pooled (Willingham 2022) and 
flowcharts to design experiments that examine how 
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sex affects metabolism have been published (Mauvais-
Jarvis et al. 2017).

Another reason why females are less studied than 
males is the fact that females have cyclic alterations 
in circulating gonadal hormones, namely, estrogen 
and progesterone. The estrous cycle and its phases in 
female rats and mice are analogous to the menstrual 
cycle in women (Ajayi & Akhigbe 2020). While the 
menstrual cycle lasts ~28 days, the estrous cycle 
is shorter, lasting 4–5 days (Ajayi & Akhigbe 2020, 
Gutierrez-Castellanos  et  al. 2022). Blood glucose 
concentrations have been found to change throughout 
the menstrual cycle (Lin et al. 2023). It could be argued 
that the estrous cycle increases variance of metabolic 
studies; therefore, data from female rodents should be 
presented by estrous phase (Della Torre  et  al. 2016). 
The process for tracking the four phases of the estrous 
cycle is not complex (Ajayi & Akhigbe 2020). However, 
the requirement to present metabolic data by estrous 
phase may depend on the primary parameter being 
investigated (Mauvais-Jarvis et al. 2017). Indeed, there 
is evidence that in cases where estrous phases are 
not tracked, but sample size is sufficient, females do 
not show increased variance in various parameters 
of glucose metabolism (Berglund  et al. 2012, Mauvais-
Jarvis  et  al. 2017, Pereira  et  al. 2019). This may be 
associated with synchronized estrous cycles of females 
in a given cage, which occurs at <5 mice per cage due to 
minimal stress (Mauvais-Jarvis et al. 2017). Ultimately, 
it is up to each investigator to determine if, in addition  
to studying females, data should be presented by  
estrous phase. Key factors underlying this decision 
include the research question and cost.

Estrous cycle is not the only sex-specific factor that 
can modulate glucose metabolism and potentially 
increase variance. For example, aggression, which 
is associated with stress, is more prevalent in male 
mice (Lidster  et  al. 2019, Benedé-Ubieto  et  al. 2020). 
Moreover, the stress hormone corticosterone causes 
greater insulin resistance in male vs female mice 
(Kaikaew  et  al. 2019). The housing of female mice for 
metabolic studies usually involves nonpregnant or 
nonnursing females and occurs in the absence of males; 
such conditions favor low levels of aggression in female 
mice (Newman et al. 2019).

Body composition
Doses for GTTs, ITTs, PTTs, and clamps in rodents 
are usually expressed per kg of body weight. Glucose 
kinetics in rodents are also usually expressed per kg 
of body weight (Berglund  et  al. 2008, Pereira  et  al. 
2013). Such approaches are appropriate when 
comparing experimental groups that have similar 
body composition, especially the amount of fat and 
lean (fat-free) mass. If this is not the case, then it has 
been suggested that the amount of lean mass should 
be determined and the doses should be normalized to 

lean mass, not body weight (Alquier & Poitout 2018).  
The underlying rationale is that glucose uptake  
is greater in lean tissue than in fat tissue (Alquier & 
Poitout 2018). However, the superiority of lean body 
mass over body weight for the hyperinsulinemic 
euglycemic clamp is being questioned in humans  
(Ter Horst & Serlie 2020). It appears that this  
issue will be resolved when the different contributions 
of adipose tissue during the different metabolic tests 
are clarified (Ter Horst & Serlie 2020).

Age
Insulin sensitivity and glucose tolerance decline with 
age in rodents and humans (Chang & Halter 2003, 
Benedé-Ubieto et al. 2020). Thus, the age of the rodents 
should be reported and matched across experimental 
groups. From a clinical perspective, there is a need to 
study metabolism throughout the life span, including 
menopause and andropause (Kautzky-Willer et al. 2012, 
Alquier & Poitout 2018).

Assessment of in vivo glucose 
metabolism in rodent models in 
obesity and type 2 diabetes research

There are many excellent published papers that 
use in vivo techniques to assess glucose metabolism  
in rodent models of obesity and type 2 diabetes. We will 
highlight some of the key findings from three of these 
papers in the current review. First, hyperinsulinemic 
euglycemic clamps were utilized to conclude that 
knocking down pyruvate carboxylase in adipose tissue 
and liver with antisense oligonucleotides ameliorates 
hepatic insulin sensitivity in male HFD-fed rats, which 
are a model of obesity, and male Zucker diabetic  
fatty rats, which are a model of type 2 diabetes 
(Kumashiro  et  al. 2013). Second, tamoxifen-inducible 
adipocyte-specific insulin receptor and insulin 
growth factor 1 knockout mice were generated and 
characterized (Sakaguchi  et  al. 2017). Two days 
following tamoxifen administration, male double 
knockout mice were hyperglycemic, glucose intolerant 
based on OGTT results and insulin resistant based on 
ITT as well as HOMA-IR results. Moreover, HOMA-IR 
was used to track insulin sensitivity over time, and it 
was found that insulin sensitivity was similar between 
male double knockout and control mice by 30 days 
post tamoxifen administration. Third, male and  
female mice lacking complement factor 5, which is 
part of the innate immune system, were placed on an  
HFD and studied (Winn  et  al. 2023). Using IPGTTs, it 
was concluded that in the context of HFD-induced 
obesity, knocking out complement factor 5 only affects 
(deteriorates) glucose tolerance in male mice. Hence, 
these examples support the importance of in vivo 
techniques for assessment of glucose metabolism 
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in understanding the mechanisms of obesity, type 2 
diabetes, and insulin resistance as well as new treatments 
for metabolic disorders.

Conclusion

Methods of in vivo tests of glucose metabolism should 
be detailed for readers to repeat experiments and to 
understand the context of results. Preclinical research 
is valuable if it is translatable to humans (Drucker 
2016); therefore, one must frequently question and 
answer how metabolic tests in rodents relate to 
human physiology. In this review, we have described 
the commonly used techniques for the assessment of 
insulin sensitivity and glucose metabolism in rodents. 
We have also highlighted the pros and cons of each 
technique. Furthermore, we have discussed key factors 
that can affect glucose metabolism, such as fasting 
duration and sex of the rodents. Other factors that may 
cause stress and alter glucose metabolism have begun 
to be described in the literature, such as temperature, 
method of cage change, and even the sex of the scientist 
(Sorge  et  al. 2014, Drucker 2016, Georgiou  et  al. 2022, 
Kennard  et  al. 2022). Regarding the latter, stress 
responses in mice vary depending on the sex of the 
investigator handling the mice and merely because 
men and women give off different scents (Sorge  et al. 
2014, Georgiou  et  al. 2022). It will be interesting to 
determine how additional factors such as these can be 
utilized to further optimize metabolic tests in rodents 
in the future.
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