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Abstract

Gastrointestinal symptoms are common in most forms of neurodevelopment disorders (NDDs) 

such as in autism spectrum disorders (ASD). The current patient-reported outcome measures with 

validated questionnaires used in the general population of children without NDDS cannot be used 

in the autistic individuals. We explore here the multifactorial pathophysiology of ASD and the role 

of genetics and the environment in this disease spectrum and focus instead on possible diagnostics 

that could provide future objective insight into the connection of the gut-brain-microbiome in 

this disease entity. We provide our own data from both humans and a zebrafish model of ASD 

called Phelan-McDermid Syndrome. We hope that this review highlights the gaps in our current 

knowledge on many of these profound NDDs and that it provides a future framework upon 

which clinicians and researchers can build and network with other interested multidisciplinary 

specialties.
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Introduction to Autism and Gastrointestinal Symptoms

Autism spectrum disorder (ASD) is a condition defined by impairments or difficulties 

with social communication and interaction in association with restricted and repetitive 

behaviors or interests, beginning in infancy or early childhood, and resulting from alterations 

in developmental processes.1 The diagnostic criteria for ASD have evolved over time, 

increasingly reflecting the phenotypic heterogeneity of the condition.2 The prevalence of 

ASD diagnoses has been increasing globally, with recent estimates suggesting a median 

prevalence of around 100/10,000 with a male-to-female ratio of 4.2.3,4 The potential reasons 

for this increase in diagnosis are unclear and may not necessarily be due to an increase in 

incidence; however, it has been difficult to quantify how much various factors contribute 

to this increase.5 Changes in diagnostic practices, coding tendencies, and community 

awareness6 have all contributed to the increase in diagnosis of ASD, but a true increase 

(i.e., one due to changes in etiologic factors) cannot be ruled out.5 Although the exact 

etiology of ASD is unclear, research points to a multifactorial model of interacting genetic 

and environmental factors, leading to developmental aberrations that impact neurological 

function and behavior throughout the lifespan.7,8 An ever-growing body of research into 

the genetics of ASD has described, to date, more than 100 associated genes that play 

critical roles in gene expression and neuronal communication in the developing brain from 

embryologic life to early childhood.9

Co-occurring mental, behavioral, and physical conditions, sometimes referred to as 

comorbidities, are extremely common among autistic individuals. These include anxiety 

disorders, sleep disorders, seizures or epilepsy, and gastrointestinal (GI) conditions.2 

According to a meta-analysis of autism studies between 1980 and 2016, the prevalence 

range for GI symptoms was 4.2 to 96.8% (median: 46.8%).10 The notably wide range of this 

data is a concern, and the challenges that result in this variability will be expanded upon 

below. More recently, a 2022 meta-analysis similarly estimated that about half of autistic 

individuals report GI symptoms, again with high heterogeneity (I2 = 99.5%).11

The most common GI issues in autistic individuals are thought to be chronic constipation, 

abdominal pain, and encopresis, which is a consequence of the constipation.12 GI symptoms 

are often associated with feeding issues (e.g., strong dietary aversions, food sensitivities, 

and food allergies), toileting problems, and internalizing and externalizing behaviors (e.g., 

aggression, irritability, self-injurious behaviors, anxiety, and mood problems).13-23

The various GI symptoms (►Table 1; genetic neurodevelopmental disorders [NDDs]) can 

be incredibly disabling, leading to reduced well-being and quality of life for autistic 

individuals, as well as their family.24,25 As this burden is present across the lifespan, GI 

comorbidities also may contribute to an increased risk of mortality in individuals with 

ASD.26,27

Challenges with Existing GI Questionnaires

The absence of cohesive data on GI symptomology in ASD is partially due to the difficulty 

in obtaining informative data directly from the autistic individual. Autistic individuals—in 
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particular those who have intellectual disability (ID), interoception difficulties, or significant 

language impairments—may have difficulty self-reporting or describing GI symptoms, such 

as abdominal pain, to their caregivers. Even autistic individuals with fluent speech may have 

trouble communicating GI distress to their parent.12,25 Therefore, parents of autistic children 

and dependent adults often rely on nonverbal behaviors (e.g., sleep difficulties, irritability, 

aggression) and bodily signs (e.g., abdominal swelling, gas, diarrhea) to recognize when 

their child is experiencing GI symptoms.12,25,28

Advances in the creation of appropriate questionnaires for capturing the varied GI symptoms 

in ASD have been made, including a 2019 psychometric investigation of the Autism 

Speaks Autism Treatment Network GI Signs and Symptoms Inventory-17.28 Typically, 

questionnaires used in developing children do not usually contain a sufficient range of 

nonverbal expressions (such as facial grimacing, unusual posturing, and self-injurious 

behavior) that can be used to capture GI symptoms in many autistic children.10,12,28 

However, this specific GI symptom-focused questionnaire included GI-motoric items, which 

is particularly helpful in identifying GI distress in a non- or minimally verbal child on 

the autism spectrum. In addition, Holingue et al developed and assessed the psychometric 

properties of the ASD Gastrointestinal and Related Behaviors Inventory (ASD-GIRBI), a 

36-item measure, which draws items from two existing tools, the Autism Treatment Network 

Gastrointestinal Inventory and the Brief Autism Mealtime Behavior Inventory (ASD-GIRBI) 

and also includes de novo items.24,29 The reason for combining these tools was to leverage 

the use of GI-motoric and other nonverbal behaviors from the existing ATN GI Inventory 

and also to complement them with items related to eating times and behaviors, which were 

missing from the GI Inventory but were central to the Brief Autism Mealtime Behavior 

Inventory. Additionally to improve the content validity, new items, such as questions about 

flatulence, alternating constipation and diarrhea, and unexplained irritability, were added 

to the ASD-GIRBI based on a review of literature, qualitative interviews with parents of 

autistic children, and the expertise of the research team (for details, see Holingue et al24). 

Most recently, the ASD-GIRBI has been piloted among autistic children 3 to 17 years old24 

and the next steps of this work include developing self-report and caregiver-report versions 

of both pediatric and adult tools, to accommodate individuals across the autism spectrum 

with a focus on clinical validation to ensure the measure is appropriately capturing GI 

conditions.

However, an ongoing limitation to questionnaires is the absence of more objective markers 

of GI dysfunction. This is particularly relevant because disorders of gut–brain interaction 

(DGBI), formerly referred to as functional gastrointestinal disorders, are primarily 

diagnosed from reporting of symptoms. If a patient or their caregiver cannot reliably 

and accurately report these symptoms, confidently diagnosing a DGBI is impossible. In 

this setting, while advances in questionnaires have provided some insight, they still do 

not provide an objective measure for identifying GI symptoms. Furthermore, established 

treatments that rely on consistent, timely patient feedback (such as proton-pump inhibitor 

[PPI] therapy for gastroesophageal reflux disease [GERD]), which requires patients 

notifying their clinicians when symptoms of heartburn and regurgitation have resolved or 

if they linger, cannot be effectively executed. Moreover, established diagnostic methods, 

such as motility testing, cannot be completed in all autistic individuals or those with other 
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neurodevelopmental conditions due to limitations that will be described later in section 

“Need for Noninvasive, Objective Measures of GI Motility in ASD.”

There is a paucity of evidence-based recommendations for the evaluation and management 

of GI problems in autistic individuals, although the consensus expert opinion is that 

this population deserves the same thoroughness and standard of care as that received by 

others in the diagnostic workup and treatment of GI conditions.12 However, this can be 

difficult to accomplish in practical terms due to difficulties with self-report and caregiver-

report information and the absence and inadequacy of available, noninvasive diagnostics.12 

Recognizing the limitations of the current paradigm, an effort toward improving the 

assessment of GI symptoms, has recently been made by patients, foundations, caregivers, 

and their physicians.30 Expert panels have been meeting with the NIH to not only highlight 

the gaps in knowledge but also to showcase the need for questionnaires that incorporate the 

motor, behavioral, food-related, and GI symptoms reported and can be completed jointly by 

patients/parents and physicians. As the etiology of ASD and its associated GI symptoms 

are so heterogenous, this article focuses on a specific genetic form of the spectrum, Phelan-

McDermid syndrome (PMDS), in the hopes of elucidating potential treatment options 

through elimination of noise from the wider population.

Phelan-McDermid Syndrome and Its GI Comorbidities

PMDS is caused by deletions of the terminal end of chromosome 22 (22q13.3) or mutations 

in the SHANK3 gene specifically.31,32 The array of symptoms experienced by people with 

PMDS is mirrored by what is known about the molecular genetics of SHANK3 gene. The 

SHANK3 protein is best known for its function in the central nervous system (CNS), where 

it serves as a scaffolding protein in the postsynaptic densities of excitatory glutamatergic 

synapses33; consistent with this, loss of Shank3 in mouse models leads to impaired synaptic 

transmission and smaller postsynaptic densities.34-37 In addition to its role in the mature 

CNS, animal and human stem cell models have shown a role for Shank3 in embryonic brain 

development,38,39 WNT signaling,40,41 in peripheral somatosensory neurons,42 in intestinal 

cell type homeostasis and barrier function,43,44 and in uptake of dietary zinc.45 By some 

estimates, PMDS accounts for over 2% of ASD with moderate to profound ID.46

Patients with PMDS experience profound autism characterized by global developmental 

delay accompanied by impaired speech, hypotonia, epilepsy, and stereotyped behavior, 

as well as a significant complement of GI symptoms.31,45,47,48 The most prevalent GI 

symptoms in PMDS are constipation and/or diarrhea (38–41%), GERD (42%), cyclic 

vomiting, and rumination disorder which is a functional GI disease associated with NDDs 

characterized by repetitive regurgitation of undigested food oftentimes incorrectly reported 

as vomiting by caregivers. In the latter disorder, the subject eventually ingests the meal and 

the food regurgitated does not get expelled through the mouth as it does with true vomiting. 

These symptoms frequently result in malnutrition and failure to thrive.32,48,49 Additionally, 

hypotonia often appears after the age of 1 year and also contributes to poor feeding.50 In 

one study utilizing the ROME IV questionnaires, abdominal pain was reported in 41% of 

individuals with PMDS, further limiting oral intake in ASD.51 However, the vast majority 
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of PMDS GI symptom data has been collected retrospectively, with few prospective clinical 

studies specifically focused on GI symptoms.45,51

A more personal sense of symptoms and their respective impacts in PMDS emerges from 

summaries of Phelan McDermid Family Conferences, at which families, clinicians, and 

basic scientists discuss the most pressing challenges facing families. For example, in a 

2018 conference survey, constipation and the “need for toilet training” ranked second only 

to behavioral disturbances as areas of concern. Moreover, caregivers of teens and adults 

with PMDS verbalized concerns about GI dysfunction more frequently than caregivers of 

infants and toddlers.52 Several caregivers report rumination in their children.53 Chronic 

constipation in children with PMDS is often accompanied by regression in developmental 

milestones and behavior, which may explain their delay in toilet training (typically to 

ages 4–5).51,54 Additionally, high rates of non-retentive fecal incontinence (13/17 patients) 

have been reported separately from any constipation.51 A large German study of 41 adults 

and children with PMDS (48% male, age range: 4–55, and mean age: 13.4 years) found 

nocturnal enuresis, daytime urinary incontinence, and daily fecal incontinence requiring a 

diaper during the day to be common (> 70%) in all age groups; conversely, constipation was 

present only in 19% overall and a hard stool consistency was infrequently reported.55 PMDS 

Foundation registry data also have shown that almost a quarter of patients with PMDS 

have feeding tubes, such as gastrostomy tubes or gastrojejunostomy tubes, necessitated by 

diagnosed pyloric stenosis, gastroparesis, or failure to thrive.

Using the framework of PMDS symptomology, we discuss the potential mechanisms of GI 

dysfunction in ASD patients, current attempts at treatments, and insights produced through 

studies in animal models.

Food Selectivity, Nutrition, and GERD

Food sensitivity/selectivity is highly reported in ASD.28,56 This food selectivity tends toward 

a preference for processed foods that are high in simple carbohydrates and fats. From a gut 

motility perspective, carbohydrates and fats, while lacking in vitamins and fiber, are easier to 

digest than more nutritious foods like fruits, vegetables, and complex carbohydrates. In fact, 

neurotypical patients with gastroparesis are advised to follow low residue diets, avoiding 

insoluble fibers, as low residue diets are more easily digested.57,58 This is also in striking 

contrast to the dietary modifications often formulated as comanagement in patients with 

drug-resistant epilepsy (such as the ketogenic diet or modified Atkins diet).59 A downside 

of selective eating is that diets may lack essential nutrients, like zinc. In some studies, the 

zinc/copper ratio is low in autistic patients, and a twofold higher incidence of zinc deficiency 

is reported in PMDS versus the general population.45,60,61 In PMDS, zinc deficiencies 

extend beyond nutrition, since SHANK3 has been shown to co-localize at enterocyte plasma 

membranes with the zinc transporters ZIP2 and ZIP4 in the human intestinal enterocytes. 

Moreover, ZIP2 and ZIP4 mRNAs are downregulated in PMDS enterocytes compared with 

controls, with negative consequences such as weight loss and loss of alertness from zinc 

deficiency.45

GERD is frequent in PMDS (59%), may include manifestations such as choking (41%), 

and often is treated with PPIs (47%) or histamine receptor blockers (H2Ras) (18%).51 
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PPIs, however, may alter the gut microbiome negatively.62 Since therapeutic trials of these 

acid suppressive medications often are used to distinguish GERD from other causes of 

regurgitation (e.g., vomiting due to cyclic vomiting or pyloric stenosis) and since for 

this patient feedback on symptom improvement is essential, other diagnostics must be 

incorporated to accommodate a nonverbal population and avoid misdiagnosis. For example, 

either a catheter-less capsule called the Bravo capsule (Medtronic) or less invasive pH 

probes can be used to diagnose GERD without need for endoscopy.63,64 Pyloric stenosis can 

be ruled out by performing upper endoscopy or obtaining an upper GI series.51

Constipation and GI Motility

Constipation is a frequent manifestation in PMDS (37–65%).31 Potential etiologies include 

GI dysmotility referring to impaired physiologic contractions in the colon which can result 

from neurological or muscular diseases, oftentimes systemic, and which often leads to 

delayed transit, changes in the gut’s microbiome leading to dysbiosis, and lack of dietary 

fiber.65 Constipation is of concern to both patient and caregiver, since it is associated 

with worsening of behavioral issues, such as aggression and sleep disturbances, in several 

monogenic forms of ASD.66,67 The exacerbation of neurological and psychiatric issues, such 

as seizures and aggression, by GI dysfunction has been noted even outside of the profound 

autism cohort.19,26,68,69

Some studies from the Autism Treatment Network and affiliated clinics have suggested 

that constipation symptoms reported in ASD are more common in patients with rigid-

compulsive behavioral patterns who are treated with medications, such as risperidone and 

other anticholinergic and atypical antipsychotic medications (p = 0.01), that may produce 

constipation as an adverse effect. However, an association was found to exist between 

functional constipation symptoms and rigid-compulsive behaviors unrelated to serotonin 

levels mediated by those drugs.70

In the general population, diagnosing constipation is based solely on patient report without 

the need for diagnostics other than physical examination by health care providers. But 

in a nonverbal patient group, physicians must utilize physiological diagnostic markers 

to examine gut transit and motility. Many reported GI symptoms in profound forms of 

ASD like PMDS may be caused by impairments in GI motility that prolong whole gut 

transit. This is similar to what is seen in other neurologic diseases, such as Parkinson’s 

disease.71-73 GI motility is accomplished by contraction of the smooth muscles of the 

intestinal wall propelling food, nutrients, nondigestible products, and metabolites through 

the digestive tract. These peristaltic contractions are mediated in part by serotonin.74,75 

Various animal models of monogenic forms of ASD have displayed disruptions to these 

muscular contractions.43,76-79 In a clinical ASD population, any of these disruptions could 

alter GI transit, impairing food bolus and thus nutrient absorption, potentially resulting in 

increased hospitalization, malnutrition, and emergency department visits.43,76-80

An NIH study by Witmer et al was one of few studies using both patient-reported outcome 

measures (PROMs), such as ROME IV criteria, and diagnostic testing in patients specifically 

with PMDS.51 Transit time in the colon was measured by colonic manometry (invasive 

and performed via colonoscopic placement) and a radiopaque marker study. Colonic transit 
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was abnormal in 2 of 13 (15%) of subjects who completed the testing. This is higher than 

the average of slow transit constipation reported in the general population of children with 

constipation (<1%).51 The laxatives used by parents in this study included osmotic laxatives, 

which comprised 41% of laxative use (e.g., polyethylene glycol was the most common in 

this group), followed by enemas or suppositories for fecal retention (24%), and stimulants 

(18%).

For defecation disorders, noninvasive physiotherapy, which uses pelvic floor exercises to 

improve gut motility and transit, is another treatment often used in children with toileting 

issues and constipation. This type of therapy has been evaluated in a randomized-controlled 

trial in 35 children with various NDDs and shows promise when structured noninvasive 

physiotherapy is used as compared to conventional physiotherapy.80

Serotonin’s Role in Constipation

Serotonin (5-hydroxytryptamine or 5-HT) is a monoamine neurotransmitter commonly 

associated with neurological reward pathways and mood modulation, but is also significant 

in discussions of ASD for its role in physiological processes like GI motility.74 Studies 

across autistic populations have found that 25 to 30% of patients have increased blood levels 

of serotonin.81 However, researchers have yet to find significant correlation between higher 

blood serotonin levels and either constipation or behavioral symptoms.70

The vast majority (about 90%) of the body’s 5-HT is produced by cells in the GI 

tract, including serotonergic neurons and enterochromaffin cells. In a study of SHANK3 

model zebra fish, researchers found a reduction in 5-HT-positive enterochromaffin cells 

when compared to wild-type subjects, which was accompanied by reduced GI transit and 

motility.43 This reduced GI motility mirrors the clinical symptoms of constipation that affect 

more than half of PMDS patients.31 Similarly, reduced GI motility, accompanied by a 50% 

reduction in 5-HT levels in intestinal tissues, has been observed in BTBR model mice, 

another ASD model.82

Changes in serotonin production can also be the result of shifts in microbiome composition. 

The GI microbiome plays a large role in nutrition processing and metabolism, and 

can impact neurological and behavioral function.83-86 For example, serotonin levels are 

positively correlated with increased relative abundance of spore-forming bacteria. These 

spore-forming bacteria produce metabolites that induce elevated TPH1, the rate-limiting 

component of EC-produced serotonin.82,86 In contrast, there is a marked decrease of 

plasma serotonin in germ-free mice.86,87 These findings correspond with those from clinical 

studies, which have identified changes in Clostridiales species concentrations in the gut 

microbiomes of ASD patients. These shifts have been associated with changes in tryptophan 

and serotonin production, similar to those seen in mice studies.86,88 Surveys of autistic 

children have documented altered microbiomes and increased bacterial metabolites, such 

as short chain fatty acids (SCFAs).89,90 This is mirrored in animal models, such as the 

previously mentioned BTBR mouse model.82

In the United States, prucalopride is the only available and Food and Drug Administration 

(FDA)-approved drug that targets serotonin. It has been approved for the treatment of 
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constipation. As an agonist of the serotonin 5-HT4 receptor, prucalopride promotes motility 

through its action on serotonin and the enteric nervous system, and is often used as a 

prokinetic in children.91 This drug also improves symptoms of delayed gastric emptying, 

such as nausea and vomiting, when administered to diabetics with vagal neuropathy.92,93 

Therefore, prucalopride may also be helpful for treating constipation in PMDS and ASD 

more broadly. However, there is a critical need for studies examining the impact of 

prucalopride on GI function throughout the gut which includes gastric, small bowel, and 

colonic motility changes in children and adults with ASD.

Need for Noninvasive, Objective Measures of GI Motility in ASD

To diagnose GI motility disorders, the following validated measures exist: liquid and solid 

gastric and whole gut emptying scintigraphy,94,95 wireless motility capsules96,97 and gastric 

emptying breath tests with either C-Octanoic acid or C-Spirulina,98,99 radiopaque marker 

studies,91 fluoroscopy, and various high-resolution manometric evaluations of the gut. Most 

of these tests have significant limitations (listed in ►Table 2), including the following: 

use of gluten for the meals ingested (gastric and whole gut scintigraphy); radioactive dyes 

(scintigraphy); exposure to radiation (marker studies); long duration of scanning (4 hours 

for gastric scintigraphy and days for whole gut) requiring a compliant patient; lack of FDA-

approval in children; contraindications for swallowing a capsule (radiopaque marker and 

wireless motility capsule); and dislike of/refusal to consume Spirulina-containing meal due 

to food selectivity issues. The current recommended diagnostic studies for the evaluation 

of motility disturbances in NDDs, along with their limitations in applying them to ASD 

patients, are summarized in ►Table 1. Determining if there is a potential pelvic floor 

impairment or slow transit constipation in ASD has been hampered by our inability to 

perform noninvasive diagnostic measures other than imaging of abdomen. This is often 

not helpful other than to show a large amount of stool retention, which is not necessarily 

evidence of slow transit constipation or a pelvic floor disorder. Answering those questions 

with current diagnostic methods would require performance of anorectal manometry or 

colonic manometry—tests that are considered routine in children without developmental 

delay to determine causes of constipation but are not well-tolerated by children with 

ASD.100

The Blue Muffin Pilot Study

To address the shortcomings of current diagnostic options, we developed a new noninvasive, 

nonradioactive method of assaying food transit in the clinical population. Drs. Dallman and 

Moshiree (Provisional U.S. patent 63/283,665) collaborated with families of ASD patients to 

create and refine a muffin recipe that is composed of the meal administered during gastric 

and whole gut scintigraphy testing used as standard for motility evaluation in the general 

population of all ages, along with an organic blue dye (►Table 3). Participants are asked 

to ingest two of these gluten-free, blue-dye muffins. The muffins are equal to 256 calories 

and composed of egg whites, cream of tartar, sugar, jam, gluten-free flour, and either soy 

or whey protein (depending on subjects’ allergies) mixed with 1 tsp of blue food coloring. 

Once ingested and transited through the GI tract, the blue dye can then be detected in the 

stool upon exit. This technique avoids gluten, radiation, scanning, and the need to swallow 
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a capsule. The muffins were also accepted by patients, including those with food selectivity 

issues and those who are profoundly nonverbal, based on our pilot feasibility testing (IRB# 

IRB00083216). However, our approach is limited in that in cannot be applied to those on 

feeding tubes and not orally feeding. Precedence for such a measure had been set by a 

study looking at the feasibility of blue dye to study small intestinal transit in patients with 

ostomies and short gut syndrome.101 Additionally, a nutrition-focused gut microbiome study 

from England called the “blue poo” study showed that in nearly a thousand healthy patients, 

the blue dye meal measure of gut transit time was a better predictor of microbiome function 

than either stool consistency or frequency.102

Although our results presented here in six patients with genetic forms of PMDS are 

preliminary, they establish the feasibility of such analysis for the measurement of whole 

gut transit in children with profound ASD who are fed orally. Moreover, these pilot data 

indicate that this approach can detect delayed transit of up to 10 days from ingestion and 

is a sensitive way to measure lag phase (►Fig. 1). Combined with prospective symptom 

tracking using a caregiver-assisted ePROM, this test can also determine the relationship 

among diverse symptoms in PMDS (►Fig. 2).

Discussion

As a group of clinician-scientists, we have identified the gaps in knowledge surrounding the 

most profound forms of ASD, exemplified here through focusing on PMDS, and discussed 

the challenges in obtaining a history and accurately identifying GI pathologies with the 

currently available diagnostic measures. These challenges have contributed to the systematic 

exclusion of individuals with profound autism who experience limited communication 

and/or ID. This negatively impacts both research and, most importantly, clinical care for 

ASD patients with eating difficulties and/or altered sensory processing, since constipation 

due to motility issues in autistic children carries a high risk of morbidity, ER visits, and 

hospitalizations (►Fig. 3).

Therefore, there is a critical need for noninvasive, objective measures of GI symptoms, 

GI transit, absorption, and motility. Additionally, similar to the cystic fibrosis population 

that now requires longitudinal treatment as a result of longer lifespan due to improved 

therapies, the care of an autistic patient needs both adult and pediatric neurologists and 

gastroenterologists who understand the multidimensional care required, especially by those 

with profound autism. To better clarify the actual temporality and causality between 

neurologic symptoms, behavioral manifestations, and GI dysfunction seen in ASD, a 

longitudinal assessment will be necessary (►Table 3). We hope that with the partnership 

of the NIH, the RARE Diseases Clinical research network, Developmental Synaptopathies, 

and foundations who have already jointly formed a consortium of experts dedicated to 

deciphering these questions, we will be empowered to develop an infrastructure by which 

we can do larger scale studies in the future.
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Fig. 1. 
Blue muffin transit test pilot data. Figure shows days on which two or more blue stools 

were observed for each participant. Each dot represents a blue stool and each line connects 

the observations from a single individual. Y-axis shows the lag phase for each patient, i.e., 

the difference in time between the first and last blue stool observed. Note: PMDS indicates 

Phelan-McDermid syndrome patient.
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Fig. 2. 
Symptom tracking indicates symptom clusters vary across time. Caregivers tracked a limited 

set of GI and neurological symptoms (see key, lower left: bowel movements in brown, 

BM with Bristol Stool Scale that ranges from 1, very hard stool, to 7, diarrhea; dashed 

line indicates normal BM, reflux in orange, sleep disturbances in purple, and aggression 

in red) using the STRIPES symptom tracker web application. Scatter plots show symptom 

occurrences over a period of 40 days for nine participants, three sibling controls (left), and 

six people with Phelan-McDermid syndrome, ranging in age from 11 to 33 (middle and 

right), across six households (see numbered houses).
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Fig. 3. 
Gastrointestinal and neurological manifestations of profound autism and its current evidence 

and mostly non–evidence-based treatments.
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