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Abstract

Chromatin accessibility, or the physical access to chromatinized DNA, is a widely studied 

characteristic of the eukaryotic genome. As active regulatory DNA elements are generally 

‘accessible’, the genome-wide profiling of chromatin accessibility can be used to identify 

candidate regulatory genomic regions in a tissue or cell type. Multiple biochemical methods 

have been developed to profile chromatin accessibility, both in bulk and at the single-cell level. 

Depending on the method, enzymatic cleavage, transposition or DNA methyltransferases are 

used, followed by high-throughput sequencing, providing a view of genome-wide chromatin 

accessibility. In this Primer, we discuss these biochemical methods, as well as bioinformatics 

tools for analysing and interpreting the generated data, and insights into the key regulators 

underlying developmental, evolutionary and disease processes. We outline standards for data 
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quality, reproducibility and deposition used by the genomics community. Although chromatin 

accessibility profiling is invaluable to study gene regulation, alone it provides only a partial view 

of this complex process. Orthogonal assays facilitate the interpretation of accessible regions with 

respect to enhancer–promoter proximity, functional transcription factor binding and regulatory 

function. We envision that technological improvements including single-molecule, multi-omics 

and spatial methods will bring further insight into the secrets of genome regulation.

Chromatin accessibility refers to the level of physical compaction of chromatin, a complex 

formed by DNA and associated proteins consisting mainly of histones, transcription factors 

(TFs), chromatin-modifying enzymes and chromatin-remodelling complexes1–3. Although 

eukaryotic genomes are generally packed into nucleosomes, which comprise ~147 bp of 

DNA wrapped around an octamer of histones4,5, nucleosome occupancy is not uniform in 

the genome, and varies across tissues and cell types. Nucleosomes are typically depleted 

at genomic locations that represent cis-regulatory elements — enhancers and promoters, 

among others — that interact with transcriptional regulators (for example, TFs), resulting 

in accessible chromatin6–10. Profiling chromatin accessibility on a genome-wide scale is an 

excellent tool to map putative regulatory elements in a cell type or cell state.

Post-translational chemical modifications of chromatin, including DNA methylation 

(in vertebrates) and histone methylation and acetylation, are dynamic and change 

between different cell states, similar to nucleosome positioning. These post-translational 

modifications are often correlated with chromatin accessibility and can reflect specific 

functionalities of genomic regions related to the regulation of gene expression11,12. Changes 

in these post-translational modifications, such as increased or decreased histone methylation 

and acetylation, are affected by a large set of chromatin-modifying enzymes that can be 

recruited to chromatin regions by TFs. These modifications alter the physico-chemical 

properties of the chromatin, which in turn can influence the formation of transcriptional 

condensates13,14. In addition, active chromatin remodelling impacts nucleosome occupancy; 

for example, the SWI/SNF complexes use ATP hydrolysis to alter histone–DNA contacts, 

thereby repositioning or removing nucleosomes15. Dynamic changes in the chromatin 

structure, chemical modifications and nucleosome positioning form a crucial interplay 

with the TFs that drive differentiation of cells during development16,17. Initial changes 

in chromatin accessibility are caused by the binding of TFs, which outcompete histones 

and recruit cofactors, including ATP-dependent chromatin remodellers18,19, or by TFs that 

preferentially bind to their recognition sequence in nucleosomal DNA20,21. The binding of 

these initial TFs, known as pioneer factors, can recruit other TFs to co-bind and further 

stabilize the nucleosome-depleted region, further contributing to the regulation of gene 

expression of target genes22–24. Consequently, the analysis of TF binding sites in regulatory 

regions within accessible chromatin can bring insights into cell type-specific lineage factors 

and gene regulatory networks.

Various changes in the chromatin landscape, as well as mutations in chromatin remodellers 

and in regulatory regions, are linked to a range of traits and diseases25–28. In fact, 

many causal genome-wide association study variants are located in accessible regulatory 

elements29. In order to improve our understanding of chromatin dynamics during 
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development and in disease contexts, researchers and large consortia, including the 

Encyclopedia of DNA Elements (ENCODE) Consortium30, the International Human 

Epigenome Consortium (IHEC)31, the National Institutes of Health (NIH) Roadmap 

Epigenomics Mapping Consortium32 and the BLUEPRINT epigenome project33, have 

collected and compared chromatin landscapes across cell types and during disease 

development.

Over the past decades, several chromatin accessibility profiling methods have been 

developed and widely used34–44. Generally, these methods are based on the physical 

accessibility of the chromatin to enzymes, which mark the accessible DNA by 

fragmentation, tagmentation or chemical labelling (for example, methylation of GpC 

dinucleotides). Initial research in the 1970s showed that regions of active transcription, 

such as promoters and introns of expressed genes, are particularly sensitive to digestion 

by DNA endonucleases such as deoxyribonuclease I (DNase I), indicative of a particularly 

accessible form of the chromatin45. Moreover, chromatin is digested at regularly spaced sites 

due to nucleosome positioning2,46. DNase I is still the reagent of choice for TF footprinting, 

which can determine the location of TF binding sites due to the protection of the site by 

the TF itself47–49. With the advent of next-generation sequencing (NGS) techniques, DNase 

I hypersensitive site sequencing (DNase-seq) was one of the first adaptations to perform 

genome-wide profiling of accessible chromatin35,40, which was followed by a handful of 

other methods. Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) 

and variants36–38 together with DNase-seq are the two most commonly used chromatin 

accessibility profiling methods today50.

Importantly, as regulatory regions co-define a cell type, their chromatin accessibility is cell 

type-dependent10,51–53. When investigating heterogeneous samples, it is therefore advisable 

to measure chromatin accessibility in isolated subpopulations — by flow cytometry-based 

purification53 — or at the single-cell level to avoid averaging over heterogeneous cell 

populations (FIG. 1). Currently, the field of single-cell omics, including single-cell 

epigenomic assays such as single-cell ATAC-seq (scATAC-seq) and single-cell DNase-seq 

(scDNase-seq), provides exciting new opportunities to study genome regulation in complex 

tissues such as the brain, whole embryos and tumours54–61. Accompanied by the rise of 

single-cell chromatin accessibility profiling, a wide range of bioinformatics tools have been 

developed that allow analysis of the generated data, which is intrinsically sparse due to 

experimental limitations. Indeed, single-cell epigenomics is technically more challenging 

compared with single-cell transcriptomics because most loci in a diploid cell are present in 

only two copies of DNA that can be assayed.

Although chromatin accessibility profiling methods may serve as an analytic foundation to 

identify regulatory regions, it is reported that often less than 50% of accessible regions 

in human DNA are active as enhancers62,63. Interestingly, however, work in both the 

Drosophila embryo55 and the Drosophila eye imaginal disc64 shows that when a genomic 

region is uniquely accessible in a specific cell type, more than 80% of the accessible 

enhancers are also active in the corresponding cell type55,64,65. In addition, linking active 

accessible regulatory regions to their target genes solely based on accessibility data remains 

a challenge. Therefore, additional data, including those from transcriptomics, enhancer–
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reporter assays and 3D chromatin conformation maps, help to determine the function of 

an accessible region and identify its putative target genes, especially when combined in a 

multi-omics way64,66–71.

This Primer provides an overview of the commonly used and most recently developed 

chromatin accessibility profiling methods, both in bulk and at the single-cell level 

(Experimentation). In addition, it provides an outline of computational analysis techniques 

(Results) and examples of use in diverse organisms and fields (Applications). Finally, the 

Primer discusses standards for data sharing (Reproducibility and data deposition), and 

examines currently unmet needs (Limitations and optimizations) and future opportunities 

for technological development (Outlook) that will increase our understanding of chromatin 

accessibility landscapes and their functional role in gene regulation during development, 

during evolution and in disease contexts.

Experimentation

Bulk chromatin accessibility

Chromatin accessibility is traditionally probed by assays such as digestion by nucleases 

or restriction enzyme digestion, typically at a few selected genomic regions each time46. 

However, NGS has revolutionized the way chromatin is investigated by allowing us to 

study its accessibility genome-wide. In this section, we will briefly describe the principles 

and the pros and cons of several commonly used experimental techniques to assess 

chromatin accessibility or nucleosome positioning in bulk, including DNase-seq, ATAC-

seq and micrococcal nuclease sequencing (MNase-seq) as well as several single-molecule 

chromatin accessibility profiling methods (TABLE 1). In addition, we discuss chromatin 

immunoprecipitation followed by sequencing (ChIP–seq) and related methods, as these are 

powerful techniques to gain further insights into chromatin landscapes and TF binding. 

Finally, various less commonly used chromatin accessibility and nucleosome positioning 

methods are described in BOX 1.

DNase-seq.

One of the first genome-wide profiling experiments of accessible chromatin was published 

in 2008 by sequencing genomic DNA fragments following digestion by DNase I, an 

endonuclease that preferentially introduces double-stranded breaks in accessible chromatin 

— a technique referred to as DNase-seq35,40 (FIG. 2a). In DNase-seq, nuclei are first 

isolated and permeabilized using a mild detergent such as 0.1% Triton X-100, such that 

the DNase I enzyme can enter the nucleus efficiently. After digestion, the small DNA 

fragments (50–100 bp) are purified and size-selected for downstream library construction 

and sequencing. As DNase I digestion is an enzymatic process, the amount of the enzyme 

can significantly affect the digestion efficiency and, thereby, also the quality of the data. 

Therefore, it is necessary to titrate the amount of DNase I to achieve optimal activity 

when using a new type of cells, or when using DNase I from a different manufacturer or 

from a different batch. In addition to fresh cells, DNase-seq has also been performed on 

formalin-fixed paraffin-embedded samples10,35.
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Beyond this requirement of careful enzyme titrations, major limitations of the traditional 

DNase-seq assay include the large number of cells (tens of millions) required as input 

material and its tedious and lengthy protocol that takes several days72. However, recently, 

a modified DNase-seq assay (scDNase-seq) has been developed to analyse single cells or a 

small number of cells58,73. scDNase-seq requires only hundreds to thousands of either fresh 

or fixed cells for a bulk cell assay and takes 1 day for library construction, without the need 

for fractionation of DNA fragments74. Caution must be taken when interpreting DNase-seq 

results because they show some intrinsic bias in cleavage sites. The DNA minor groove 

shows variation in width depending on the sequence, and a narrower groove is preferentially 

cleaved by DNase I. Also, CpG methylation enhances adjacent DNase I cleavage75,76. These 

factors should be considered when interpreting the footprint of a TF77. DNase-seq is the 

method of choice to detect TF footprints78.

ATAC-seq.—ATAC-seq emerged as an alternative assay to investigate accessible chromatin 

profiles36. In this assay, a genetically engineered hyperactive DNA transposase (Tn5) 

preloaded with monovalent mosaic end adapters simultaneously cleaves and tags accessible 

or nucleosome-depleted chromatin regions36,79,80 (FIG. 2b). The hyperactive Tn5 mutant 

includes three mutations that increase the relatively low activity of the wild-type Tn5 and 

allows for efficient in vitro integration of the mosaic end adapters80. The target DNA 

fragments are purified, PCR-amplified and sequenced by NGS. As both Tn5 transposase and 

DNase I recognize accessible chromatin, the sequences detected by ATAC-seq have been 

found to be highly enriched in DNase I hypersensitive sites (DHSs)81–83.

A major advantage of ATAC-seq and its variants37,38 is that they are very sensitive 

assays that work well on low-input samples (for example, 500–50,000 cells, compared 

with millions of cells for DNase-seq) and use a simpler protocol due to the simultaneous 

chromatin fragmentation and tagging36. If fresh cells are difficult to obtain, slowly cooled 

cryopreserved cells can also be profiled by ATAC-seq. In addition, it is possible to 

generate high signal to background profiles from formaldehyde-fixed cells using an adapted 

method84, as well as from clinically relevant snap-frozen samples using the improved Omni-

ATAC protocol38 or from nuclei collected via flow cytometry85. The Omni-ATAC protocol 

improves the signal to noise ratio by mainly using a combination of multiple mild detergents 

to improve permeabilization across a wide array of cell types and to remove mitochondria 

from the reaction.

Similar to the enzyme-specific cleavage bias of DNase I, the Tn5 enzyme shows steric 

hindrance and sequence bias in chromatin tagmentation79,86,87. Accurate prediction of TF 

footprints from ATAC-seq data requires Tn5 bias correction that is different from DNase-seq 

bias correction88. An initial limitation of the first ATAC-seq protocol was the profiling of 

contaminating organellar DNA, such as mitochondrial DNA and/or chloroplast DNA for 

plants, or Wolbachia DNA in infected Drosophila stocks36,89. Large amounts of sequencing 

reads can be consumed by these contaminations, meaning that deeper sequencing is 

necessary to reach a good signal-to-noise ratio at regions of interest in the data. However, 

this limitation can be significantly reduced either by improved lysis conditions (as is the 

case in Omni-ATAC38), by purification of nuclei via flow cytometry85 or by applying 

clustered regularly interspaced short palindromic repeats (CRISPR) technology to cleave 
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mitochondrial ribosomal DNA prior to the experiment82,90. Another deficiency of the 

original procedure is that half of all fragments are lost as they contain two adapter sequences 

of the same kind. The transposome hypersensitive sites sequencing (THS-seq) version of 

ATAC-seq attempts to rescue the other half of fragments by using a T7 RNA polymerase 

linear amplification protocol91.

Given the speed (a few hours) and straightforward nature of the protocol, combined with 

its sensitivity and requirement for low numbers of cells, ATAC-seq and its newer variants 

(for example, OmniATAC-seq) are currently the most commonly used methods to generate 

comprehensive chromatin accessibility maps in research laboratories (~400 data sets in 

PubMed in 2019 compared with <100 data sets for DNase-seq, MNase-seq and FAIRE-

seq (formaldehyde-assisted isolation of regulatory elements) combined)50. In addition to 

profiling accessible chromatin, ATAC-seq can also be used to detect TF footprints and to 

map nucleosome positioning.

MNase-seq.—Nucleosome positioning and occupancy in the genome play key roles in 

chromatin accessibility. MNase is an endo-exonuclease that cleaves the DNA regions 

without nucleosome protection and leaves the nucleosome core particles undigested, which 

can be purified, ligated to adaptors, PCR-amplified and sequenced (MNase-seq)42 (FIG. 

2c). MNase-seq is thus an orthogonal assay compared with DNase-seq and ATAC-seq as 

it measures nucleosome-occupied regions and is the most widely used method to map 

nucleosome positions genome-wide. A recently developed quantitative protocol for MNase-

seq involves subjecting aliquots of a sample to different levels of digestion by MNase, 

allowing clearer distinction of nucleosome positions and occupancy from higher-order 

chromatin properties, which can also be summarized in a theoretical framework92.

In MNase-seq, 10,000–100,000 either fresh or formaldehyde cross-linked cells can be used 

for library construction. Digestion of chromatin by MNase typically results in a nucleosome 

ladder consisting of mononucleosome, dinucleosome, trinucleosome and so on, depending 

on the concentration of MNase in the reaction. The optimal range of digestion usually leads 

to about 70–80% mononucleosomes and 20–30% higher nucleosome ladders42. Similar to 

DNase-seq, MNase-seq requires careful enzyme titrations and is time-consuming (2-day 

protocol). Another limitation of MNase-seq is that it requires a large number of sequencing 

reads, preferably 150–200 million reads for human samples93. MNase-seq also suffers from 

enzyme-specific cleavage biases, specifically a preferential cleavage of A/T versus G/C94.

MNase-seq has been applied to investigate the dynamics of the nucleosome landscape 

and their function in transcriptional regulation95. However, as nucleosome positioning and 

occupancy revealed by MNase-seq are based on the average profile of a large number 

of cells, caution should be taken when interpreting the results, particularly at inactive 

chromatin regions96.

Assays for single-molecule chromatin accessibility profiling.

An emerging class of methods aim to map chromatin accessibility and TF binding in 

single molecules. The advantage of such approaches is that they do not rely on enrichment 

and provide information about the distribution of accessibility states within the population 
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of chromatin fibres. The assays in this class rely on methyltransferase enzymes that 

preferentially modify accessible DNA (FIG. 2d). For years, the only read-out that such 

methods could rely on was bisulfite conversion of unmethylated cytosines followed by 

Sanger sequencing (for localized analysis of particular loci)97–100 and, later, NGS (for 

both local and genome-wide coverage). The first genome-wide assay of this kind was 

the methylation accessibility protocol for individual templates (MAPit101), followed by 

nucleosome occupancy and methylome sequencing (NOMe-seq)41,102, which both use an 

m5C methyltransferase that modifies cytosines in a GpC context.

As genomes of many eukaryotes contain abundant endogenous CpG methylation, and 

bisulfite sequencing measures methylation on cytosines, exogenous enzymes are required 

that methylate other dinucleotide contexts. The approach has limited spatial resolution, 

as it relies on GpC nucleotides that are rare in mammalian genomes, only found once 

every 20–30 bp, and it is common to find much larger stretches of sequence having no 

informative positions at all103. However, in species such as yeast and Drosophila, which 

lack endogenous methylation, a combination of both a GpC and a CpG methyltransferase 

can be used, which increases assay resolution down to ∼10 bp. This method is known 

as dual-enzyme single-molecule footprinting104. This approach has proven to be very 

powerful in enumerating the distinct functional states of individual promoters, down to 

the ability to footprint the occupancy of individual components of the basal transcriptional 

machinery. The approach has also been recently extended to mammalian genomes with 

sufficient resolution to quantify the single-molecule occupancy patterns of individual TFs 

at regulatory regions105. This requires knock out of endogenous methyltransferases and 

is limited to the fraction of regulatory regions (typically 30–50%) that contain enough 

informative GpC dinucleotides. Moreover, bisulfite sequencing-based methods only provide 

information about the state of individual molecules within, at most, 600-bp stretches of 

DNA, which is the current limit of combined fully sequenced paired-end read length for 

Illumina sequencing.

The limited length of the single-molecule read-out obtained via Illumina sequencing 

reads has been addressed by the advent of long-read sequencing platforms such as 

PacBio and Oxford Nanopore106. In addition to generating multikilobase reads (current 

record of 2.3 Mbp)107, these technologies are capable of reading modified bases directly 

within individual molecules, although with significantly decreased accuracy108–110. Base 

modification detection by long-read sequencing remains challenging, as it may require 

high coverage as well as training and control data sets to reduce erroneous calls111. The 

accuracy can be increased by using PacBio circular consensus sequencing, although this 

reduces the effective read length as there is trade-off between the number of sequencing 

passes and insert sizes112. nanoNOMe-seq and methyltransferase treatment followed by 

single-molecule long-read sequencing (MeSMLR–seq) assays use GpC methylation and 

nanopore sequencing to map accessibility on a multikilobase scale, although they are still 

limited in resolution by available informative positions113,114.

The limit in the number of informative positions can be overcome by taking advantage of 

the ability of long-read platforms to read any modification, not just methylated cytosines. 

For instance, non-specific methylation, such as m6A deposited via EcoGII, or other 
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modifications (Tet-assisted pyridine borane sequencing (lrTAPS)115) can be combined with 

nanop ore or PacBio sequencing to obtain a fine-scale read-out of chromatin accessibility at 

the single-molecule level.

This can be done either on total genomic DNA — with the single-molecule long-read 

accessible chromatin mapping sequencing (SMAC-seq) assay103 or mapping chromatin 

fibres onto a DNA template using methyltransferases (Fiber-seq)116 — or in combination 

with a phasing MNase digestion step (single-molecule adenine methylated oligonucleosome 

sequencing assay (SAMOSA)117). The large number of informative positions allows for 

fine-scale footprinting almost everywhere in the genome. Although the higher error rate in 

base calling for long-read sequencing technologies does not yet allow nucleotide resolution 

for these assays, in practice, the biologically relevant scale of chromatin accessibility 

typically is larger than that of an individual base. Due to high error rates in the calling 

of the nucleotides in a read, obtaining a fully correct single-nucleotide read-out is still a 

challenge. For instance, if 1 in every 20 bp is wrongly identified, then multiple modified 

nucleotides are taken together to obtain an estimate of the accessibility of that part of the 

DNA, thereby compromising on the resolution. Nevertheless, the resolution is much higher 

compared with ATAC-seq, for instance.

ChIP–seq.

ChIP–seq is used to detect the occupancy of chromatin-binding factors (such as TFs) 

or histone modifications at a genome-wide level34,118–120. The aminoterminal tails of 

core histones are enriched with various covalent modifications — including methylation, 

phosphorylation, acetylation, ubiquitylation and sumoylation — that serve as the docking 

sites for many chromatin-binding proteins121,122. Typical histone marks used to define 

regulatory elements include histone H3 acetylated at lysine 27 (H3K27ac), which correlates 

with DNase-seq and ATAC-seq data at transcription start sites, active promoters and distal 

active enhancers123,124; H3 dimethylated at lysine 4 (H3K4me2), which has a similar 

genomic distribution to H3K27ac; and H3 monomethylated at lysine 4 (H3K4me1), which 

correlates with poised or active enhancer regions in animals125,126 when it co-occurs with 

H3K27me3 or H2K27ac, respectively126–128.

For ChIP–seq analysis of chromatin modifications, chromatin can be isolated from either 

formaldehyde-fixed cells or non-fixed cells (native chromatin), and fragmented to 100–

500 bp by sonication or through MNase digestion to profile histone modifications129–131. 

For profiling of protein-bound chromatin, for example to determine TF occupancy, the 

chromatin is cross-linked to stabilize protein–chromatin interactions. Through the use of 

specific antibodies, the target proteins or histone modifications are captured along with 

the associated DNA fragments by protein A/G-coupled agarose beads or magnetic beads. 

Chromatin is then reverse cross-linked and the DNA fragments are eluted, end-repaired, 

ligated to adaptors, PCR-amplified and sequenced by NGS.

Traditionally, ChIP–seq requires at least hundreds of thousands of cells for profiling histone 

modifications and millions of cells for profiling TFs. ChIP–seq data quality critically 

depends on antibody specificity, efficiency of chromatin fixation and residence time of 

the TF on DNA. Each antibody should therefore be screened for ChIP efficiency, and the 
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fixation and sonication conditions need to be optimized for different cell types. The entire 

procedure for ChIP–seq is time-consuming (spanning multiple days) and laborious.

In the past decade, several ChIP–seq derivatives have been developed involving a lower cell 

input, detection of TF binding at higher resolution and/or providing a streamlined workflow. 

These derivatives include ULI-NChIP–seq132, μChIP–seq133, small-scale ChIP–seq134, 

STAR ChIP–seq135, ChIPmentation136, ACT-seq137, ChIL–seq138 and CUT&RUN139. 

ChIP–mentation combines aspects of ChIP–seq and ATAC-seq by performing tagmentation 

on immunoprecipitated chromatin fragments, which reduces the input requirement and leads 

to a simpler, faster assay136. CUT&RUN combines antibody-tagging with MNase cleavage 

in a simple, robust and less expensive protocol for high-resolution profiling of chromatin 

binding139. Recently, some of the above-mentioned methods and other ChIP-derived 

techniques have even been applied at single-cell resolution, including iACT-seq137, ChIL–

seq138, scCUT&Tag140, scChIC-seq141, CoBATCH142, uliCUT&RUN143, Drop-ChIP144 

and scChIP–seq145.

Single-cell chromatin accessibility

Innovations in barcoding and microfluidics have recently enabled high-throughput 

biochemical profiling of chromatin accessibility at single-cell resolution, including 

scDNase-seq58, single-cell MNase-seq (scMNase-seq96) and scATAC-seq146–150. Of these 

protocols, scATAC-seq has emerged as a popular and relatively simple approach to profile 

chromatin accessibility across hundreds to thousands of individual cells, and we will 

focus on the multiple experimental implementations of this technique. Current scATAC-

seq methods rely on either droplet microfluidic or fluorescence cytometrical/plate-based 

partitioning to uniquely label nuclei in isolation. Procedures characteristic to both types of 

scATAC-seq, as well as consideration for experimental design (BOX 2), are described below.

Microfluidics-based scATAC-seq.

Droplet-based single-cell partitioning via microfluidic devices has emerged as a powerful 

approach for single-cell data generation owing to its reproducibility and relative ease of 

use. In combination with standard sequencing library reagents and instruments, popular 

microfluidic approaches for scATAC-seq, such as those commercially available from 10x 

Genomics (Chromium Next Gem Single Cell ATAC-seq Library Kit)150 and BioRad 

(SureCell ATAC-seq Library Preparation Kit)149, provide all of the reagents needed 

to produce scATAC-seq libraries. However, these commercial applications require the 

acquisition of proprietary robotic sample processing devices (Chromium Controller, 10x 

Genomics; ddSEQ single-cell isolator, BioRad) that are non-standard in most laboratories.

Droplet microfluidic-based scATAC-seq methods generally start by performing Tn5 adapter 

integration on a bulk nuclei suspension, while keeping the nuclei intact, similar to traditional 

ATAC-seq. Transposed nuclei are then loaded onto an aqueous channel with PCR reagents 

and suitable buffers and mixed with gel beads containing distinct barcodes. To encapsulate 

individual nuclei in picolitre reaction compartments with a single gel bead, the aqueous flow 

is restricted to channels measuring ~55 μm in width150. Droplets are produced by exposing 

the aqueous flow to a continuous stream of oil. Nuclei droplet loading follows a Poisson 
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distribution, and nuclei are loaded at low concentrations. Barcoded sequences with P5 

adapters and tail sequences complementary to Tn5-inserted adapters are released from gel 

beads following droplet generation, enabling PCR amplification and barcoding of accessible 

chromatin fragments within each droplet in isolation. Finally, the droplet emulsion is broken, 

and the fragments are purified with magnetic beads and subjected to bulk PCR to attach 

sequencing indices and P7 sequences149,150.

Plate-based scATAC-seq.

An alternative to the microfluidics approach is to physically separate cells into the wells of 

plates. Straightforward 96-well and 384-well scATAC-seq protocols have been published147, 

but their throughput remains limited by the low number of wells available. The adaptation 

of scATAC-seq to the ICELL8 Single Cell System (Takara Bio), which has 5,084 nanolitre 

wells, known as μATAC-seq, increased the throughput of the assay to a few thousand 

cells151.

Combinatorial indexing (sciATAC-seq).

Higher throughput can be achieved using a combinatorial indexing strategy, as implemented 

in single-cell combinatorial indexing ATAC-seq (sciATAC-seq)55,56,148. In contrast to 

microfluidic approaches, sciATAC-seq can be performed with access to standard instruments 

and reagents (for example, 96-well or 384-well plates, flow cytometry, Nextera TF buffer 

and so on). Whereas earlier versions of sciATAC-seq require custom-made Tn5, the latest 

version has been adapted to work with commercially available Tn5 (REF.152). The core 

idea behind combinatorial indexing is the repeated pooling and splitting of cells or nuclei 

coupled with labelling of DNA fragments at each step, in such a way that statistically 

each cell or nucleus is tagged with a unique combination of barcodes. In the simplest 

implementation of sciATAC-seq, nuclei are distributed into wells containing uniquely 

indexed Tn5 transposomes, in which tagmentation is performed. Nuclei are then pooled 

and distributed into the wells of a second plate at numbers sufficiently low to minimize 

the generation of doublets. The reactions in these wells are then subjected to indexed PCR, 

generating statistically unique barcode combinations for each cell. Additional rounds of 

barcoding are also possible, using the ligation of barcodes to transposed fragments153–155, 

vastly increasing potential throughput. Another approach for increasing throughput is to 

combine upstream transposition of barcoded Tn5 with a droplet-based scATAC platform 

such as those from 10x Genomics or BioRad, in the form of droplet combinatorial indexing 

or droplet-based single-cell combinatorial indexing for ATAC-seq (dsciATAC-seq)149.

Results

In general, a chromatin accessibility analysis workflow consists of three main steps: 

preprocessing, peak calling and downstream analysis (FIG. 3). The latter can include 

differential accessibility analysis, annotation, footprinting, motif enrichment and integration 

with other omics data. Additional computational steps are needed for scATAC-seq data. We 

will discuss each of the steps in more detail and mention commonly used bioinformatics 

tools (Supplementary Table 1). Although there is not yet a gold standard in the field, 

we will mention parts of some general pipelines, such as the ENCODE ATAC-seq Data 
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Standards and Processing Pipeline156, and we propose specific tools and a guided workflow 

for analysis of chromatin accessibility data. In this section, we focus on bioinformatic tools 

that are used for the analysis of the three most commonly used chromatin profiling methods: 

bulk ATAC-seq, DNase-seq and MNase-seq — we will not discuss the analysis pipeline for 

the methods based on single-molecule chromatin accessibility profiling as these are still in 

their infancy.

Preprocessing

As with most high-throughput sequencing data (FIG. 3a), pre-alignment quality control is 

recommended for chromatin accessibility data and can be performed using FastQC, which 

produces an HTML to examine sequencing quality, GC bias and over-represented sequences 

(FIG. 3b). The FastQC report is also produced by MultiQC157, which includes visualization 

of further processing steps such as the mapping percentage, alignment scores and number 

of reads passing filtering. Next, sequencing adaptors should be removed using tools such as 

cutadapt158, trimmomatic159 and fastq-mcf160, which require the input of known Illumina 

adaptor sequences. For certain experimental techniques or computational goals (for instance, 

for MNase-seq data and footprinting analysis in DNase-seq data), and given that sequencing 

was done in a paired-end fashion, selecting reads with a desired read length — also referred 

to as computational size selection — is recommended at this point. For instance, removal 

of multi-nucleosomal reads is advised for MNase-seq data. This is based on the size of 

the paired-end reads, as mononucleosomal reads should be ~147 ± 30 bp in length161. 

For DNase-seq, as well as removing multi-nucleosomal reads, an additional in silico 

filtering step for fragment inserts between 50 and 100 bp for TF binding site detection 

can be performed, along with the gel-based or solid-phase reversible immobilization-based 

experimental size selection74,77. Trimmed and filtered reads are mapped, or aligned, to 

an organism-specific reference genome, generating an alignment file (represented in a 

BAM file format). The most widely used aligners for chromatin accessibility data are 

Bowtie2 (REF.162) (used in the ENCODE ATAC-seq pipeline156) and bwa-mem163 (used 

in the Cell Ranger ATAC Algorithm) (FIG. 3c). Following alignment, some additional 

filtering steps are advised to discard reads with low mapping quality or multi-mapped reads, 

PCR-duplicated reads, ENCODE blacklisted regions164 and mitochondrial reads. This is 

particularly important for ATAC-seq data in which mitochondrial reads can make up as high 

as 75% of the total amount of mapped reads when using the original protocol36 (FIG. 3d).

A post-alignment quality control step is recommended at this point, involving visualizing 

accumulated read abundance around transcription start sites, which are generally highly 

accessible165 (FIG. 3e). Other quality control metrics include the number of reads, mapping 

percentages, duplication percentages and visualization of nucleosome patterning via a 

fragment size distribution plot50. Such diagnostic plots can, for instance, be generated 

using the package ATACseqQC165. In addition, visually inspecting the distribution of reads 

across the genome using genome browsers such as IGV166, UCSC167, Ensembl168 or 

JBrowse169,170 can further increase insight into the quality of the samples (FIG. 3e).
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Peak calling

Following initial read processing and quality control comes one of the crucial steps in 

chromatin accessibility data analysis, namely defining ‘peaks’, which are genomic regions 

with a high accumulation of reads compared with the background (FIG. 3f). These peaks 

form the basis for most of the downstream analyses. The most widely used tool for 

peak calling is MACS2 (REF.171), which is also the default in the ENCODE ATAC-seq 

pipeline156. MACS2 is a model-based algorithm originally designed for ChIP–seq data 

analysis. It implements a dynamic Poisson distribution to capture local background biases 

in the genome and to effectively detect peaks171. As MACS2 was originally designed for 

ChIP–seq data, specific parameters (for example, --nomodel) need to be used for peak 

calling in ATAC-seq or DNase-seq data. The ENCODE ATAC-seq pipeline contains more 

detailed information on the parameters. Other general and method-specific peak callers 

exist, for example, ZINBA172 (general), HMMRATAC173 and Genrich174 (ATAC-seq), and 

F-seq175 and Hotspot176 (DNase-seq and ATAC-seq). The signal threshold, which influences 

the sensitivity and specificity of peak retrieval, is an important parameter to consider during 

the peak calling step. The default minimum false discovery rate cut-off of 0.05 for MACS2 

has been shown to be optimal for a range of DNase-seq data sets177.

To ensure reproducibility in the data, ENCODE guidelines recommend that each ATAC-seq 

experiment should have two or more biological replicates and that replicate concordance 

should be checked by calculating irreproducible discovery rate (IDR) values. The IDR 

values can also help to define an independent threshold for peak calling178. Specifically, 

following a lenient peak calling with, for instance, MACS2, a core set of IDR peaks can 

be defined by only retaining peaks that pass a set IDR threshold, such as, for example, 5% 

(REF.179).

As data sets often comprise different samples, the construction of a common set of features, 

or genomic intervals, is crucial in order to be able to compare samples with each other in 

downstream steps. Usually, a consensus peak file is used for this purpose, which comprises 

the set of peaks that are shared between samples, and in which the start and end location of 

overlapping peaks are adjusted (through the so-called merging of peaks) to thus yield one 

consensus peak. The ENCODE pipeline provides a workflow with merge and filter steps 

for constructing a consensus peak file156, although other tools can serve the same purpose 

(for example, consensusSeekeR180). Alternatively, a predefined set of regions or a binned 

genome can be used as features in downstream analyses55,64. For human and mouse studies, 

the ENCODE SCREEN regions181 provide comprehensive sets of intervals, as well as two 

recently published catalogues of consensus DHS regions (926,535 for human and 339,815 

for mouse). For species with more compact genomes and higher regulatory density, such as 

Drosophila, a set of 134,000 regions covering the entire non-coding genome may be used64. 

Although these compendia of accessible regions cover a large fraction of the regulatory 

genome, some condition-specific accessible regions could potentially be missing.

Finally, an important quality control step is the calculation of the signal to noise ratio, which 

can done by calculating the fraction of reads in called peaks (FRiP score). For ATAC-seq, 

the FRiP score should preferably be greater than 0.2–0.3 for mammalian species, and the 

signal proportion of tags (SPOT score) for DNase-seq should exceed 0.4 for mammalian 
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species, which signifies that 40% of mapped reads are located within DHSs128,156. These 

metrics vary depending on the organism, and they can be dependent on the size and 

complexity of the genome.

Downstream analysis

Usually, chromatin accessibility profiling is performed on multiple samples, comparing 

treatment versus control, multiple tissues or cells during a differentiation process. A central 

question is to define the set — or signature — of peaks that is differentially accessible in 

each sample (FIG. 3g). For a pairwise comparison between two conditions, differential peak 

calling can be performed, for example using MACS2 (REF.171), in which mapped BAM files 

representing treatment and control samples are provided, and for which biological replicates 

are combined prior to differential accessibility analysis. Alternatively, statistical analyses can 

be performed on the count matrix, a data table containing the number of reads per feature 

across the samples, yielding a matrix with features as rows and the different samples as 

columns. As explained above, these features can be the set of consensus peaks, a predefined 

set of regions or a binned genome. For pairwise comparisons, several approaches have been 

borrowed from the RNA-seq field, including MA plots and statistical analyses based on 

the negative binomial distribution, which are implemented in the DESeq2 (REF.182) and 

edgeR183 packages or in more chromatin accessibility-specific tools such as DiffBind184, 

HOMER185 or DBChIP186 (FIG. 3g). Data normalization is recommended when comparing 

conditions or tissues, as library-specific biases or global chromatin accessibility differences 

can affect differential accessibility results. Multiple data normalization methods exist, for 

instance normalization for library size or for FRiP scores, quantile normalization and 

trimmed means of M value normalization187. Often, the differential accessibility tools 

mentioned above already include one of these normalization methods188. The choice of data 

normalization method can alter differential accessibility results. A typical way to visually 

assess the effectiveness of normalization is through an MA plot: a single cloud should be 

present and the MA distribution should not display an upward or downward shift188,189.

For differential accessibility analysis in multi-sample studies, several options are possible. 

One way is to use the normalized count matrix for dimensionality reduction and clustering, 

for example by hierarchical clustering and k-means clustering (FIG. 3g). Clustering 

allows one to group together samples with similar chromatin accessibility profiles, as 

well as to distinguish sets of regions that are differentially accessible across the samples 

and to generate groups of co-accessible regions (meaning regions that show concordant 

accessibility patterns across the different samples). Such clustering algorithms are, for 

instance, implemented in the deepTools package190 and can be visualized with a heat map 

(FIG. 3g). Other researchers have drawn inspiration from tools designed for clustering of 

regions in single-cell epigenomics data using factor analysis and unsupervised learning 

in order to identify differentially accessible regions. For instance, topic modelling or non-

negative matrix factorization, in which a high-dimensional data set is approximated by a 

reduced number of representative components, can be applied directly to bulk data sets, or 

to a matrix with simulated single cells, created from bulk samples using a bootstrapping 

procedure191,192.
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To gain biological insight into the sets of cell type-specific regions identified via differential 

accessibility analysis, region set enrichment analysis using GREAT193, ChIPseeker194, 

ChIPpeakAnno195, Enrichr196, cisTarget197,198, GIGGLE199 and LOLA200 is used to 

identify correlations of peak sets with genome annotation (for example, promoter, intronic, 

intergenic) or with existing ChIP–seq data sets and to couple peaks to the nearest gene, 

followed by Gene Ontology or pathway enrichment (FIG. 3h). In addition, chromatin 

segmentation approaches such as ChromHMM201, EpicSeg202 and Segway203 are used 

for genome-wide classification of genomic regions into chromatin states (such as ‘active 

promoter’ or ‘weak/poised enhancer’) based on epigenomic marks. These enrichment 

analyses and genome or chromatin state annotations can be useful in interpreting gained 

or lost accessible regions in a study. Finally, the generation of tracks — which are a way to 

display data per sample across the genome, specifically, here, chromatin accessibility data 

— and visually inspecting them together with such annotations or other public ChIP–seq or 

RNA-seq data can help to gain further biological insights, such as providing indications on 

the putative functionality of accessible regions or of the TFs bound to them (FIG. 3i).

As combinatorial binding of TFs to accessible regulatory regions forms the basis of gene 

regulation, one of the major downstream analysis steps is unravelling which TFs are bound 

to a set of cell type-specific or differentially accessible regions. As many TFs recognize 

and bind to TF-specific DNA sequences, we can leverage the enrichment of TF motifs in a 

set of sequences (FIG. 3j). Two major classes of motif analysis tools exist. The first class 

includes HOMER185, MEME204 and cisTarget197,198, and relies on databases of predefined 

TF motifs (position weight matrices205) such as JASPAR206, CIS-BP207, TRANSFAC208 

and HOCOMOCO209. These approaches scan the DNA sequences of accessible regions 

with position weight matrices and perform an enrichment analysis compared either with a 

background set or with the entire genome as background. The second class of tools includes 

RSAT210, MEME204, Weeder211 and HOMER185, and performs de novo motif discovery, 

allowing unsupervised identification of enriched TF motifs. Although the identification of 

de novo motifs does not require a motif database, motif databases are still needed to link de 

novo motifs to known TFs.

Recently, machine learning methods such as the convolutional neural network models 

Basset212, DeepSea213, DeepLIFT214 and DeepMEL215 have shown promising results to 

predict TF motifs in accessible regions in a more precise and unbiased manner. Such 

models are trained on large sets of co-accessible peaks per cell type, can capture important 

TF motifs across the training regions and are able to predict their importance at single-

nucleotide resolution within the regulatory sequences. Altogether, motif detection on a set of 

specifically accessible regulatory regions allows the decoding of genome sequences and may 

reveal possible master regulators that bind to these regions.

An alternative approach to identify TF binding sites from chromatin accessibility data is 

TF footprinting (FIG. 3k). TF footprints are small regions (8–30 bp) that display relative 

protection from cleavage due to binding of a TF and thus correspond to dips in the 

accessibility peak47,216,217. DNase I has been, and is still, the preferred footprinting reagent. 

Analytic genomic footprinting approaches such as the Wellington algorithm218, HINT219, 

DBFP220 and DNase2TF (REF.221) de novo annotate DNase I footprints, or they determine 
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TF occupancy at a specific genomic location, such as CENTIPEDE222 and the footprint 

likelihood ratio223,224. TF footprinting comes with some limitations as it requires extremely 

deep sequencing, ideally at least 200 million uniquely mapped reads from a DNase-seq 

experiment for human samples224. In addition, TF footprinting is biased by the short 

residence times of some TFs on DNA and by intrinsic sequence preferences of the cleavage 

enzymes, which should be corrected for78. In general, ATAC-seq footprinting has been 

shown to be less accurate than DNase-seq footprinting225, which might be attributed to the 

large size of the Tn5 dimer and Tn5-specific cleavage biases that are not accounted for 

in DNase-seq-designed footprinting algorithms36,226. Nevertheless, footprinting analysis on 

ATAC-seq data has been performed with success by several groups, for instance in the initial 

ATAC-seq publication36, using DeFCoM227 or by using ATAC-seq-specific footprinting 

algorithms (such as HINT-ATAC226 and TOBIAS228) that consider ATAC-seq artefacts and, 

for instance, correct for Tn5 transposase cleavage biases.

MNase-seq is orthogonal compared with the other discussed chromatin accessibility 

profiling methods as it measures nucleosome-occupied regions. It is therefore the method 

of choice to map nucleosome positions genome-wide, for which specific tools (for example, 

DANPOS229) have been developed229,230 (FIG. 3l). Note that similar to TF footprinting 

analysis, correction for enzymatic cleavage bias should be performed in nucleosome 

footprinting analysis. ATAC-seq also lends itself to nucleosome positioning by partitioning 

paired-end reads based on their size to separate putative nucleosome free reads and 

mononucleosomal, dinucleosomal and trinucleosomal reads36 or by using specific tools 

such as NucleoATAC231. In addition, Zhong et al. have shown that DNase-seq data can also 

be used to infer nucleosome positions with high accuracy by using a Bayes factor-based 

nucleosome scoring method232. Therefore, all three commonly used chromatin accessibility 

profiling methods lend themselves to detect nucleosome positioning genome-wide (provided 

that the data are sequenced paired-end), although MNase-seq is still the most frequently 

method for this purpose.

Single-cell data analysis

Single-cell chromatin accessibility data require similar upstream processing steps to bulk 

data, including alignment, feature definition and the generation of a count matrix (FIG. 

4a). However, due to the substantial scale and sparsity of the region by cell count 

matrix, specialized bioinformatics tools have been developed — mostly for scATAC-seq 

data — to handle these assay-specific challenges191,233–242. One major point in which 

these tools differ is the way they define genomic regions to be used as features, either 

as peaks from bulk or aggregated single-cell data (chromVar239, Cicero238, cisTopic191, 

scABC241, Scasat233, MAESTRO242), peaks from pseudo-bulk samples56 or fixed-size 

bins56 (SnapATAC243). Another difference between the bulk and single cell-based 

algorithms is what the count features represent, for example, counting reads in peaks 

(cisTopic56,191, scABC241, Scasat233, MAESTRO242), counting gapped k-mers under peaks 

or around transposase cut sites (BROCKMAN234, chromVAR239), or counting reads 

overlapping TF motifs in peaks or genome-wide (chromVar239, SCRAT237)244. ArchR236 

uses an iterative feature definition method; it first defines a feature-by-cell count matrix of 

the number of reads per feature (in this case, 500-bp genomic bins) across all single cells, 
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which then undergoes an iterative latent semantic indexing reduction to generate the cell 

clusters and pseudo-bulk samples on which peaks are called.

Important follow-up steps are transformation and dimensionality reduction of the feature 

by cell count matrix to visualize the cells in a 2D or 3D space and performing further 

downstream analyses, for example clustering, to uncover the different populations in 

the sample and their specifically accessible regions (FIG. 4b,c). Once cell clusters are 

obtained, BAM files of all cells belonging to the same clusters can be aggregated to 

generate pseudo-bulk BAM files and tracks to visualize the data (FIG. 4d). Recently, ten 

computational methods for the analysis of scATAC-seq data have been benchmarked244, 

demonstrating that SnapATAC243, the method used in REF.56 and cisTopic191 performed 

best in distinguishing cell populations. Next to these, extensions of popular scRNA-seq 

analysis toolkits specifically designed for single-cell chromatin accessibility data, including 

Signac (an extension to Seurat245) and EpiScanpy246 (an extension to Scanpy247), are used 

in the field.

There are currently no designated tools that correct for batch effects in scATAC-seq data. 

Inexplicit batch correction is performed during the processing steps such as during feature 

selection or dimensionality reduction248. Batch correction tools designed for scRNA-seq 

data249–252 may be used with precautions not to remove biological variance, for instance 

by assessing the retainment of biological variation between easily defined cell labels and 

cell trajectories253. To avoid overcorrection, it is recommended to compare multiple batch 

correction methods to obtain the best result for a given data set. Batch correction becomes 

especially important when combining multiple runs into atlases or when integrating scRNA-

seq data, for which BBKNN249, Scanorama250 and scVI251 performed best in a recent 

benchmark253. As in scRNA data, reconstruction of a pseudo-time trajectory based on 

scATAC-seq data can be helpful when studying a system following a cellular differentiation, 

for instance during embryonic development254 or haematopoiesis255 (FIGS 4f,g). Tools such 

as Cicero238 (which implements modified aspects of the scRNA-seq trajectory inference tool 

Monocle256, and STREAM255) have been used to infer such trajectories from scATAC-seq 

data.

As the complexity of a system or disease exists across all molecular layers, computationally 

integrating multiple omics modalities holds great promise to achieve a systems biology 

view and to reconstruct gene regulatory networks. The integration of chromatin accessibility 

profiles with ChIP–seq and RNA-seq data is of particular interest for inferring the binding 

of specific TFs and for reconstruction of regulatory networks (FIG. 3m). The integration of 

epigenomics and transcriptomics may predict links between accessible regulatory regions 

and target genes (FIG. 4e). An example from the single-cell field involves the use of a least 

absolute shrinkage and selection operator (LASSO) model to correlate a gene’s expression 

level with the accessibility of all peaks within 100 kbp around its transcription start site, 

linking 1,260 distal regions to 321 potential target genes257. This improved the prediction of 

gene expression based on accessibility profiles fourfold compared with only using chromatin 

accessibility at promoters.
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Applications

Chromatin accessibility profiling is widely useful for applications in biology and 

biomedicine, ranging from the analysis of gene regulation and cellular states to the 

dissection of healthy and diseased tissues and organs, and the investigation of populations 

and species. These applications benefit from the high genomic resolution of chromatin 

accessibility profiling, from robust and straightforward assays with low input requirements 

and from the ability to process many samples in a fast and reasonably cost-efficient manner.

Regulation of chromatin accessibility

As nucleosome occupancy of DNA is refractory to TF binding and transcription, regulation 

of chromatin accessibility is key to gene regulatory mechanisms. Multiple mechanisms for 

accomplishing chromatin accessibility have been proposed. Nucleosomes appear to have 

clear preference for certain sequences, and this bias seems to play some role in establishing 

nucleosome positions in yeast258,259. However, as this bias is less predictive of nucleosome 

positioning in metazoan genomes260,261 and accessible regions are mostly relatively large 

(that is, hundreds of base pairs) and associated with active cis-regulatory elements, sequence 

preference of nucleosomes is likely not a major contributor to the regulation of chromatin 

accessibility. Controlling regulatory element accessibility and activity is accomplished 

through the combined action of TFs, RNA polymerases, chromatin-remodelling complexes, 

histone chaperones and histone variants1,262.

Many developmental processes involve chromatin remodelling, especially to make 

previously inaccessible regions accessible. This process is most noticeable in zygotic 

genome activation during embryonic development, when transcription of the zygotic 

genome is turned on. Chromatin remodelling is also important for subsequent lineage-

specifying developmental transitions, responses to many external and internal stimuli, 

and cellular reprogramming. Pioneer factors are particularly important in regulating these 

processes as they are capable of binding at previously inaccessible chromatin and they 

subsequently initiate the formation of an accessible state23. Well-known examples of pioneer 

factors include Zelda, which acts upon zygotic genome activation in Drosophila263–265, 

the Nanog/Oct/Sox pluripotency factors266–268, FoxA21 and numerous others269. Pioneer 

factors do not create and maintain an active and accessible state on their own. Rather, they 

recruit other TFs and chromatin remodellers, and reposition nucleosomes and chromatin 

modifiers that deposit histone marks characteristic of active regulatory elements23,269. Note 

that general TF binding can form a constraint for the reappearance of nucleosomes in 

accessible regions.

Cell state transitions also involve the decommissioning of previously active regulatory 

elements, which is accomplished by recruiting transcriptional repressors and chromatin-

modifying complexes removing active chromatin histone marks and depositing repressive 

ones such as H3K27me3, H3K9me3 and, eventually, DNA methylation270. This process 

effectively remodels the chromatin to an inaccessible state.
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Cell types and organs

Chromatin accessibility at gene-regulatory regions is highly dynamic during cellular 

differentiation and organ development17,271. Chromatin accessibility profiling has 

contributed to our understanding of chromatin regulation across a broad range of organs 

and cell types in human, mouse, Drosophila and other model organisms53,56,128. The 

haematopoietic lineage, in particular, has served as a blueprint for deciphering the role of 

chromatin accessibility and epigenetic changes in cellular differentiation33,272. Application 

of ATAC-seq and/or ChIP–seq to flow cytometry-purified haematopoietic cell populations 

has established comprehensive maps of regulatory regions and their dynamic changes 

in the haematopoietic lineage of human and mouse37,125,273,274. Detailed investigations 

of macrophages have connected the regulation of these immune cells to their tissue 

environment275,276, whereas analyses of CD4+ T cells36,277,278 and innate lymphoid 

cells279,280 have uncovered a striking degree of plasticity in these immune cell populations. 

Chromatin regulation in immune cells also contributes to the generation of memory T 

cells281 that are poised to actively respond upon re-exposure to pathogens, as well as to the 

more limited memory of inflammation in regulatory T cells282. Importantly, immune cell 

memory is not restricted to B cells and T cells but also includes monocytes and natural killer 

cells283, and the regulation of such trained immunity appears to involve tightly regulated 

changes in the epigenomes of the affected cells284,285.

Beyond the haematopoietic lineage, RNA-seq, ATAC-seq and ChIPmentation profiling 

in epithelial cells, endothelial cells and fibroblasts from many different organs have 

uncovered widespread immune gene regulation in these structural cells, and an epigenetic 

potential that appears to preprogramme these cells for contributing to pathogen response286. 

Chromatin accessibility has also been studied in neural development61,287–289 and in 

brain samples of humans57,59,290 and non-human primates291. Notable applications of 

chromatin accessibility profiling to other cell types and organs include the analysis of 

cardiac development292,293, epidermal progenitor cells in the skin294 and mammary gland 

development295. Finally, initial single-cell atlases of chromatin accessibility across tissues 

and organs are emerging55,56,60,152, which have the potential to discover new cell types 

and to define the chromatin states of cell types that are difficult to purify or enrich using 

flow cytometry. In summary, chromatin accessibility profiling has uncovered a transcription-

regulatory landscape that is cell type-specific and organ-specific, and dynamically changes 

over the course of cellular differentiation and organ development.

Human diseases

Changes in chromatin accessibility are implicated in multiple diseases, where they reflect 

disease-linked changes in cell composition, gene regulation and epigenetic cell states. 

Alterations in gene regulation are ubiquitous in cancer296. In blood cancers, chromatin 

accessibility patterns are shown to reflect the cancer’s cell of origin as well as regulatory 

changes that appear to contribute to the process of malignant transformation and cancer 

evolution37,297–300. Changes in chromatin accessibility have been investigated over the 

course of targeted therapy in patients with chronic lymphocytic leukaemia301 and combined 

with chemosensitivity screening to identify promising drug combination therapies302. 

Chromatin accessibility landscapes have also been mapped in solid tumours, including 
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breast cancer145, colon cancer303,304, glioblastoma305,306, gastric cancer307 and lung 

cancer308,309. Paediatric cancers tend to carry particularly pronounced regulatory changes, 

contrasting with their comparatively low rate of somatic mutations. For example, the EWS-
FLI1 fusion oncogene in Ewing sarcoma has been shown to impose de novo enhancers 

and super-enhancers on the tumour cells310,311; and epigenome profiling has uncovered 

subtype-specific regulatory mechanisms in atypical teratoid rhabdoid tumours312 and in 

Langerhans cell histiocytosis313.

An interesting line of research has investigated the role of the tumour-associated immune 

cells in solid tumours. Regulatory changes are implicated in T cell exhaustion in the context 

of chronic inflammation and the tumour microenvironment314,315, which compromises the 

ability of these T cells to fight the tumour. Immunotherapy, most notably blocking of 

the PD1/PDL1 pathway, can revert some of the regulatory changes associated with T cell 

exhaustion150,316,317 and is widely useful for the treatment of those solid tumours that have 

a high degree of immunogenicity318. However, not all exhausted T cells are rejuvenated by 

immune checkpoint blockade, as some T cells appear to transition to a fixed regulatory state 

that renders them resistant to reprogramming314.

Beyond cancer, where chromatin accessibility has been studied most extensively, changes in 

chromatin accessibility have also been observed in immune diseases such as inflammatory 

bowel disease319 and rheumatoid arthritis320. Changes in epigenome and chroma tin 

accessibility profiles have been observed in post-mortem brain tissue from patients with 

Alzheimer disease321, schizophrenia322 and autism spectrum disorder323. In summary, 

chromatin accessibility profiling of primary patient samples is already widely used for 

identifying disease-linked changes in chromatin structure and transcription regulation, and 

there is substantial scope for new discoveries as researchers move beyond cancer and 

are investigating regulatory mechanisms in many diseases that have as yet received little 

attention.

Variation within populations

Extension of chromatin accessibility assays to populations of diverse genetic backgrounds is 

valuable for advancing our understanding of how sequence variation impacts cis-regulation 

within a species. A striking 90% of disease-associated variants in humans, identified via 

genome-wide association studies, localize to non-coding loci distant from the affected gene, 

obfuscating functional predictions29,324,325. Mounting evidence implicates the alteration 

of gene regulation as a key driver of phenotypic evolution and disease proliferation. 

Quantitative trait loci (QTL) mapping of molecular traits, such as gene expression variation 

(expression QTL), provides an attractive approach for deciphering the gene regulatory 

potential of genetic variants within a population. Leveraging a molecular QTL framework, 

a large-scale DNase-seq panel of 70 lymphoblastoid cell lines from the Yoruba HapMap 

showed that approximately 50% of chromatin accessibility-associated variants coincide 

with variants associated with expression variation, with the allele conferring increased 

accessibility generally associated with increased gene expression326. This study also 

provided evidence that sequence alterations underlying cis-regulatory elements perturb TF 

binding affinities, leading to weakened or ablated binding.
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An analysis of CD4+ T cell chromatin accessibility from 105 healthy donors revealed that 

only 15% of genetic variants embedded within accessible chromatin regions affect the 

relative accessibility of the related locus327. Thus, the majority of genetic variants located 

within accessible chromatin appear to lack functional consequences on gene regulation. 

The same study further demonstrated that pairwise correlations of accessible regions (co-

accessible regions) readily recapitulate 3D higher-order chromatin interactions as defined by 

in situ Hi-C (high-throughput chromosome conformation capture). This similarity suggests 

that local chromatin accessibility among pairs of regions is coordinated with higher-order 

genome structure, particularly within the same topologically associated domains. In line 

with these findings, local chromatin accessibility in a subset of regions has been associated 

with variants located tens to hundreds of kilobase pairs away, reflecting putative long-

distance functional interactions. Importantly, integration of population-scale accessibility 

data captured 10–30% of previously reported autoimmune-associated variants and explained 

1–7% of disease heritability. In model organisms, chromatin accessibility can be performed 

across a cohort of homozygous inbred individuals, making the identification of chromatin 

accessibility QTL more straightforward. A critical subset of chromatin accessibility QTL 

could be explained by making or creating binding motifs for pioneer factors328. In an 

alternative approach, chromatin accessibility can also be compared between alleles, within 

the same individual, to identify allele-specific chromatin accessibility329.

Taken together, population-based and/or allele-specific analysis of chromatin accessibility 

provides a powerful approach for dissecting the regulatory potential of genetic variants 

associated with a trait of interest. Future studies in other tissues and disease states leveraging 

single-cell technologies have the potential to systematically map all chromatin accessibility-

modifying variants in a cell type-specific fashion.

Evolution of chromatin accessibility

Chromatin accessibility profiling facilitates the identification of causal genetic variants 

underlying disease and trait variation. Similar methods and analyses have also proven useful 

to study the evolution of gene regulation and morphological evolution between species. 

For example, major morphological transitions, such as the loss of limbs in snakes and eye 

degeneration in subterranean mammals, are linked to loss of regulatory elements330. These 

regulatory regions were discovered using a combination of tissue-specific ATAC-seq and 

comparative genomics. In another study, chromatin accessibility data in combination with 

H3K27ac and H3K4me3 were used to identify promoters and enhancers in the liver tissue 

of 20 mammalian species259. The rate of sequence variation was much greater for enhancers 

in comparison with promoters. This was reflected in a lower conservation of enhancers 

between species, yet newly evolved enhancers are more likely to be under positive selection 

in a lineage-specific manner.

In plants, incorporating chromatin accessibility data into evolutionary studies helps with 

the identification of cis-regulatory elements, as this identification through sequence-based 

alignment alone is often hindered by the high proportion of DNA sequence variation in 

intergenic regions331,332. Chromatin accessibility profiling can help reveal important clues 

about the evolution of gene regulation. For instance, a comparative epigenomics study 
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of numerous flowering plant species, ranging in genome size from ~150 to 5,000 Mbp, 

revealed rapid evolution of cis-regulatory sequences within accessible chromatin regions 

where DNA sequence conservation was detected333. The frequency of distal accessible 

chromatin regions was correlated with genome size and their distance from genes was 

mostly due to transposon and repeat expansion in these plants69,330,334.

The lack of distal regulatory regions in Capsaspora owczarzaki, a unicellular eukaryotic 

organism sister to other animal species, has led to the hypothesis that distal regulation is a 

feature of animal multicellularity335. However, with the increase in profiles of chromatin 

accessibility across taxa, it seems more likely that distal regulation is a consequence 

of genome size333. Additional comparative epigenomic studies of chromatin accessibility 

across diverse taxa and of species that represent key nodes in the tree of life will further 

unveil diverse mechanisms in the evolution of gene regulatory mechanisms.

Reproducibility and data deposition

The genomics community has been leading the way in creating standards for data 

information, data quality and data deposition for decades (TABLE 2). Many genome-wide 

data sets serve as community resources and, as a result, are repeatedly used and incorporated 

into future studies by individual laboratories. To increase the usability of epigenomics 

data, it is common practice to submit the data to well-funded and stable data archive 

facilities such as the Gene Expression Omnibus (GEO) repository336 at the National Center 

for Biotechnology Information (NCBI) or the ArrayExpress database337 at the European 

Bioinformatics Institute (EBI). These databases host records of genomics data containing 

not only count matrices and other useful processed output files (for example, bigWig 

files or BED files enriched for chromatin modification or accessibility) but also a short 

description of the experimental design and processing steps to reach the submitted output 

files, as well as a link to the archived raw sequencing data. For both bulk and single-cell 

chromatin accessibility data, researchers are expected to submit their FASTQ files to specific 

databases. In the case of scATAC-seq, specifically for data generated via the 10x Genomics 

platform, preferably three FASTQ files are submitted, namely the FASTQ file containing 

the barcode read and the two FASTQ files containing the paired-end feature reads. For 

non-human species and open-consent human donors, the raw sequencing data should be 

submitted to, for instance, the Sequence Read Archive (SRA)338, European Nucleotide 

Archive (ENA)339 or DNA Data Bank of Japan (DDBJ)340. For human donors where 

controlled access is required for adequate data protection, the raw sequencing data should 

be submitted, for instance, into the European Genome–phenome Archive (EGA)341 or the 

database of Genotypes and Phenotypes (dbGaP)342 from the NCBI.

To facilitate interpretation and reproducibility, the deposited data should include metadata. 

For example, data entry requirements that are useful to address issues associated with 

reproducibility could include sources of possible biological and technical variation. Sources 

of biological variation include genotype, sex of samples, age and tissue/organ/cell type, 

whereas sources of technical variation could relate to antibodies (requiring reporting of 

the lot number) and nucleases/integrases (requiring reporting of the lot number, sequencing 

library procedure, instrument used for sequencing and type of sequencing run). These 
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possible sources of technical and biological variation are important variables that can be 

incorporated into data analyses as covariates or to correct for batch effects. The versions of 

genome assemblies and genome annotations used in data analyses should also be provided.

As well as the mentioned general epigenomic databases (GEO336 and ArrayExpress337), 

several secondary databases make chromatin accessibility data, or other types of omics 

data, easily available — often by including an experiment matrix providing a visual 

representation of the available data, classified based on assay type, tissue type, organism 

and so on. Such databases include data portals set up by large consortia that produce large 

numbers of epigenomes (for example, ENCODE30, Roadmap Epigenomics32, IHEC343 and 

BLUEPRINT33), data portals that originate from reanalysis or meta-analysis (ChIP-Atlas344 

and ReMap345), UCSC track hubs346 or interactive web-based tools hosted by individual 

laboratories. The latter, although useful for initial exploration of the generated data, are often 

less sustainable and vary in their set-up, and are therefore not the preferred platform to 

disseminate epigenomics data in a reproducible way. Nevertheless, custom websites often 

provide integrated downstream analysis results that are context-specific and go beyond 

standard data formats56,347. There exist dedicated tools and websites to host and visualize 

single-cell chromatin accessibility data, including the use of SCope348, a Shiny app237 or 

ASAP349. Specifically for single-cell chromatin accessibility data, we envision that in the 

near future specific platforms will arise that provide an overview of large amounts of public 

data and facilitate their easy dissemination, similar to the Single Cell Expression Atlas350, a 

data portal hosted by the Human Cell Atlas.

Finally, the distribution of custom code and the documentation of computational methods 

are also paramount to reproducibility. The ENCODE Consortia has developed extensive 

open-source software that is accompanied with a document of best practices and descriptive 

details on the rationale for data processing steps, thresholds and quality metrics for data 

evaluation. In general, software used for data analyses should include the software version 

and parameter options applied. Custom code should be disseminated through public hosts 

such as GitHub, or can be archived in a static digital repository such as Zenodo or in more 

specialized repositories such as Kipoi351 for ready to use trained machine learning models 

for genomics. Efforts to address the biological, experimental and computational variables 

described above will increase reproducibility in addition to the usability of these data for 

years to come.

Limitations and optimizations

Although chromatin accessibility has proven a powerful and informative window into gene 

regulation, it is often combined with other measurements and with perturbations to build a 

causal or mechanistic understanding of genomic function. Whereas accessibility dynamics 

can be readily profiled, the specific molecular factors that drive accessibility changes may 

only be inferred by changes in the accessibility or footprints associated with DNA motifs. 

However, directly inferring the specific TF that is possibly bound based just on the observed 

DNA motifs is tricky, as a DNA motif may be bound by various related TFs, often within 

a TF family of structurally similar DNA binding domains. One way of narrowing down the 

specific TF of a TF family that is bound to DNA motifs enriched in regions undergoing 
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accessibility changes is by determining which of the TFs undergoes concomitant changes 

in gene expression. Still, to mechanistically link the binding of a specific TF, subsequent 

experiments are needed, such as TF knockdown or ChIP–seq targeting the specific TF 

implicated.

Additionally, chromatin accessibility of a putative regulatory locus is usually necessary but 

not in itself sufficient for bona fide functional regulation. Other marks, such as H3K27ac 

or the presence of nascent transcription of enhancer RNA, appear to mark a subset of 

accessible elements that are more highly enriched for function352–354. Therefore, chromatin 

accessibility data should be combined with other genomic assays to build a stronger set of 

inferences on the functionality of specific elements.

Finally, chromatin accessibility profiling using DNase-seq and, to a lesser extent, ATAC-seq 

may require optimization of the reaction time, lysis protocols, cell handling and freezing 

or thawing, as well as library purification, to produce optimal data. For methods such as 

ATAC-seq, numerous quality metrics exist prior to sequencing, such as relative PCR cycles 

required to amplify the library or the periodicity of the length distribution of fragments 

generated by the transposition reaction, which allow for relatively rapid and inexpensive 

optimization of sequencing libraries.

Outlook

The current and future challenge in the study of chromatin accessibility is to dissect 

the function of these regulatory regions in relation to other regulatory layers and gene 

expression (FIG. 5). Chromatin accessibility alone provides no information on the functional 

properties of the region — whether it acts as a promoter, enhancer, silencer or replication 

origin — or its activity state. Information on which TF factors are likely bound to the region 

must be inferred through sequence analysis.

Many of these challenges can be overcome by a more holistic multi-omics approach, by 

profiling the transcriptome, histone modifications and TF occupancy from the same sample, 

in addition to chromatin accessibility. A common approach is to run multiple omics methods 

on fractions of the same sample, using protocols optimized separately for each assay, thus 

generating comparable data sets355,356.

Chromatin accessibility profiling in single cells has surged dramatically in recent years, and 

we expect further improvements in the coming years as this trend increases. The analysis 

of accessibility and other regulatory features at the single-cell level is challenging. There 

are only two loci that can be measured simultaneously in a diploid genome by single-cell 

regulatory genomics-based methods. As a result, the data are mostly binary and very sparse 

due to the low coverage per cell. A certain degree of data aggregation across cells or features 

is usually required. Specialized computational tools have been developed that address the 

sparsity and binary nature of scATAC-seq data and facilitate more integrated analyses across 

groups of cells191,233–241. However, tools designed for scATAC-seq for specific analysis 

tasks, such as pseudo-time and trajectory inference, remain limited. Although comparisons 

of performance and applicability of scATAC-seq methods have been performed244, there 
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are no uniform pipelines being widely used by the community, which complicates the 

systematic comparison and interpretation of results coming from different laboratories. 

In the coming years, we foresee major efforts in the standardization of comprehensive 

computational pipelines for the analyses of single-cell epigenomic data. In addition, it is 

difficult to estimate the sensitivity of scATAC-seq. Roughly, ~10–15% of known peaks 

are recovered per single cell146, but it is not known how many regulatory elements are 

accessible in any given cell at any instance in time. Technical advances have improved 

cell coverage, which ameliorates both issues and has led to a significant increase in assay 

sensitivity, allowing a sharper distinction between cell types as well as regulatory changes. 

Nevertheless, when homogeneous or flow cytometry-purified samples are used as input, then 

bulk ATAC-seq will likely remain the preferred assay.

Recent advances in single-cell methods are pushing technologies to perform multi-omics 

measurements simultaneously from the same single cell. Multiple methods have already 

been published for simultaneous scATAC-seq and transcriptome profiling. These include 

sci-CAR257, Paired-seq155 and SHARE-seq153, which are all based on combinatorial 

indexing, as well as SNARE-seq357 and 10x Genomics Chromium Single Cell Multiome358, 

which are droplet-based microfluidics methods. Other achievements include joint profiling 

of chromatin accessibility with either protein-level quantification (Pi-ATAC359) or with 

DNA methylation (scNOMe-seq360, COOL-seq361, EpiMethylTag362, methyl-ATAC-seq363, 

ATAC-Me364) and chromatin accessibility profiling with both DNA methylation and 

transcriptome measurements (scNMT-seq365).

Several technical challenges have so far limited the widespread application of multi-omic 

methods. Sample fixation, reaction conditions and other experimental parameters are often 

not compatible for multiple omic assays, complicating the optimization of joint protocols. 

Given that single-cell omic methods often suffer from sensitivity issues — meaning a low 

number of detected features (such as genes or regions) per single cell — running and 

combining two such methods could result in a very small set of overlapping features. 

Profiling multiple molecular layers raises the non-trivial computational challenge of 

integrating the data sets. Methods that can handle the harmonization of bulk and single-cell 

multi-omic measurements have recently been developed (MOFA366, Seurat v3 (REF.240)). A 

key feature required for future computational methods is flexibility; methods need to handle 

data sets coming from very different modalities, coming from the same cell or from the 

same sample, and will need to impute missing molecular layers based on the ones that were 

profiled. Measuring multiple parameters from the same single cell should greatly advance 

our ability to link regulatory properties and deconstruct regulatory connections. Having 

information on coordinated changes in distal open chromatin regions, such as putative 

enhancers, and gene transcription from the same cell, for example, would facilitate the 

linking of enhancers to their potential target genes. We anticipate important developments in 

both experimental and computational multi-omics approaches in the coming years.

The function of accessible chromatin regions can also be probed by perturbation, for 

example by mutating key TFs. Single-cell accessibility profiling can detect the impact of 

the mutations directly in the affected cell types, revealing both changes in regulation as 

well as alterations in cell fate decisions. Large-scale perturbation and profiling of regulatory 
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networks has been performed in cell culture models by coupling CRISPR screening with 

scATAC-seq (Perturb-ATAC367). In more complex systems, where high-throughput targeted 

mutagenesis is not feasible, natural sequence variation can be exploited for large-scale 

perturbation. In this context, profiling accessibility within and between species provides 

insights into regulatory variation and functionality. These approaches, in combination with 

multi-omics measurements, may lead to more accurate and predictive models of gene 

expression, and to a causal understanding of enhancer and TF function.

Finally, a particularly exciting area of future development is the integration of chromatin 

accessibility profiling with imaging-based approaches. Current chromatin accessibility 

profiling protocols involve tissue dissociation to extract cells or nuclei, which leads to 

the loss of the native spatial context. ATAC-see84 mitigates this problem by performing 

the Tn5 reaction in situ on microscope slides and using fluorescent adaptors that are 

compatible with both imaging and sequencing. sciMAP-ATAC368 provides medium-level 

spatial mapping of single-cell chromatin accessibility profiles for a tissue by taking a 

select amount of microbiopsies of a tissue prior to the sciATAC-seq workflow. Further 

integration of ATAC-seq with high-throughput fluorescence in situ hybridization and other 

imaging-based methods will lead to new ways of interrogating the genome of complex 

systems in situ after stimuli and perturbations368,369. Such developments hold promise to 

advance discovery in multiple fields. For example, in the context of developmental biology, 

it would help to decode the functional impact of morphogen gradients and cellular signal 

transduction by measuring the regulatory response in the cells receiving the signal while 

maintaining information on each cell’s spatial positioning to both the source signal and their 

neighbouring cells. Integration with multi-omics measurements will lead to the generation 

of virtual models of developing embryos with enhanced resolution and predictive power. 

In the medical setting, this could reveal the relationship between cell growth and spatial 

positions within a tumour, the dependencies between the point of injury or infection, and the 

efficacy of drugs to elicit cellular responses depending on the cells’ position, to name but a 

few. Given the sensitivity of these methods and the rapid speed with which they are being 

developed, this will open up new, exciting avenues for diagnosis, prognosis and therapeutic 

intervention.
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Refer to Web version on PubMed Central for supplementary material.
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Glossary

Nucleosomes
The basic structural unit of DNA packaging, consisting of ~147 bp of DNA wrapped around 

an octamer of histones

Cis-regulatory elements
Non-coding DNA regions involved in the regulation of expression of neighbouring genes. 

The regions contain binding sites for transcription factors

Accessible chromatin
A permissive state of the chromatin in which nuclear macromolecules are able to physically 

access and interact with the DNA

Transcriptional condensates
Membraneless compartments of the genome formed by liquid–liquid phase separation, in 

which the transcription machinery is concentrated to efficiently activate transcription

Pioneer factors
Transcription factors that can recognize and bind their target sequence in closed chromatin 

and trigger opening of the chromatin, allowing binding of other transcription factors

Tagmentation
Transposases cut DNA into fragments while simultaneously adding adaptor sequences. Used 

in Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq), as well as 

for general sequencing library construction to randomly fragment double-stranded DNA

TF footprinting
Small stretches of nucleotides that are protected from cleavage or tagmentation and 

represent the location of transcription factor (TF) binding sites. TF footprints can be inferred 

from the analysis of high-resolution chromatin accessibility data

Mosaic end adapters
Hyperactive versions of the two inverted 19-bp end sequences of the wild-type Tn5 

transposon that, during an Assay for Transposase-Accessible Chromatin using sequencing 

(ATAC-seq) experiment, are end-joined to accessible DNA by the transposase

Nucleosome ladder
A characteristic ‘ladder’ pattern that originates from the cleavage of the linker DNA between 

nucleosomes, due to the periodic arrangement of nucleosomes

Combinatorial indexing
A technique that uniquely labels a large number of single molecules or single cells by 

split-pool barcoding of nucleic acids

Doublets

Minnoye et al. Page 26

Nat Rev Methods Primers. Author manuscript; available in PMC 2024 February 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Artefactual libraries generated from two cells in single-cell omics experiments. For instance, 

in droplet-based methods, doublets arise if two cells are captured in a single droplet

BAM file
An alignment file format that is the compressed binary version of a SAM file, used to 

represent aligned sequences

Irreproducible discovery rate
(iDr). A measure of consistency between biological replicates of high-throughput 

sequencing experiments. Also used to determine highly stable peak calling thresholds based 

on reproducibility

Genomic intervals
Consecutive stretches on a genomic sequence, specified as a chromosomal location range or 

as a cytoband designation

Fraction of reads in called peaks
(FRiP score). The fraction of all mapped reads that fall into the called peak regions

Signal proportion of tags
(SPoT score). The fraction of reads that fall in tag-enriched regions identified using the 

Hotspot algorithm

Signature
A set of peaks that is differentially accessible between studied samples and can be used to 

define a studied cell type or state

Differential peak calling
A process in which peaks with significantly differentially accessibility between samples are 

identified

MA plots
Visual representations of genomic data used to compare two samples or two groups of 

samples. The x axis represents the base mean value of the samples and the y axis the 

difference between them

Hierarchical clustering and k-means clustering
Clustering algorithms that group similar objects in a data set into groups called clusters. in 

k-means clustering, the data are divided into a predefined number (‘k’) of clusters, whereas 

in hierarchical clustering, a hierarchy of clusters is built without requiring a predefined 

number of clusters

Pseudo-time trajectory
A computational reconstructed path of a dynamic biological process, such as differentiation, 

undergone by the cells in a single-cell omics experiment. Single cells are ordered along the 

trajectory based on their ‘pseudo-time’, or their inferred progression through the biological 

process
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Zygotic genome activation
A process by which transcription is turned on after fertilization, making the switch from 

an unfertilized oocyte with nearly any gene expression to a state where up to thousands of 

genes are transcribed

Quantitative trait loci
(QTl). Small regions of the genome at which a genetic variant is associated with a 

quantitative trait of a cell or an organism, based on statistical association between genetic 

markers and the measurable trait

Yoruba HapMap
A resource set up by the Yoruba HapMap project that aims to catalogue the common 

patterns of human genetic variation and associate SNPs with genotypes across human 

populations

Hi-C
(High-throughput chromosome conformation capture). A genome-wide sequencing 

technique used to investigate 3D chromatin conformation

Chromatin accessibility QTL
Quantitative trait loci (QTL) associated with chromatin accessibility. Specifically, chromatin 

accessibility QTL represent an SNP that is correlated significantly with accessibility changes 

in their encompassing region

Morphogen gradients
gradients of signalling molecules within developing tissues and embryos, which illicit 

different responses across the gradient, leading to diverse outcomes in terms of cell fate 

decisions, controlling pattern formation during embryogenesis
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Box 1 |

Less commonly used bulk chromatin accessibility profiling methods

• Nicking enzyme assisted sequencing (NicE-seq)370 uses a nicking enzyme to 

probe accessible DNA.

• Formaldehyde-assisted isolation of regulatory elements (FAIRE-seq)39,371 

profiles accessible chromatin based on its preferential release during 

sonication of cross-linked cells.

• Transposase-mediated analysis of chromatin looping (TrAC-looping)372 uses 

Tn5 transposase and a bivalent mosaic end adaptor to detect genome-wide 

chromatin accessibility in addition to providing genome-wide chromatin 

interaction information on regulatory regions.

• Protect-seq373 measures strongly heterochromatinized genomic regions, based 

on their resistance to nuclease digestion.

• Differential viral accessibility (DIVA)374,375 uses preferential viral insertion 

into accessible DNA to map accessible chromatin regions.

• Chromatin accessibility profiling using targeted DamID (CATaDa)376 labels 

open chromatin using ectopic expression of the Escherichia coli Dam 

methyltransferase.

• Dimethyl sulfate sequencing (DMS-seq)377 probes protein-bound regions 

based on their escape from DMS attacks.

• Methidiumpropyl-EDTA sequencing (MPE-seq)378 uses the chemical MPE-

Fe(II) to map nucleosome positions.

• Nuclease-accessible site sequencing (NA-seq)379 uses HpaII and NlaIII 

restriction enzymes to cleave and select for accessible sites in isolated nuclei.

• Restriction endonuclease digestion of chromatin coupled to deep sequencing 

(RED-seq)380 is a modified NA-seq method, applicable to permeabilized 

cells.

• Quantitative DNA accessibility assay (qDA-seq)381 uses restriction enzyme 

AluI to measure absolute accessibility and the rate at which accessible sites 

are cut.

• Occupancy measurement via restriction enzymes and high-throughput 

sequencing (ORE-seq)382 uses restriction enzymes and has been applied to 

profile chromatin accessibility in yeast.

• Methods developed by Brogaard et al.383, Voong et al.384 and Chereji et 

al.385 use chemical cleavage or modification reactions for direct mapping of 

nucleosome positions and are conceptually based on the original method by 

Flaus et al.386.
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Box 2 |

Experimental design for scATAC-seq

Similar to other chromatin profiling methods, single-cell Assay for Transposase-

Accessible Chromatin using sequencing (scATAC-seq) is susceptible to batch effects that 

can obscure biological variation. Careful attention to experimental design is central to 

mitigating batch effects and other sources of technical variation, but this depends on the 

goals of the experiment248,387. For example, in atlas mapping and in case–control studies, 

a common objective is to contrast regulatory patterns within and between cell types found 

in different tissues and organs, or between treatments and control samples. To allow for 

robust statistical tests on such contrasts, the inclusion of at least two biological replicates 

is highly recommended. Replicates are useful to identify failed runs and batch effects, 

and to increase cell counts. Indeed, independent scATAC-seq experiments are often done 

under the same condition, and subsequently computationally combined to increase the 

number of cells in the final data set, for instance to yield more power to distinguish 

small cell populations. Prioritizing sample type diversity in preparations from individual 

batches aids in the mitigation of technical effects and allows researchers to average 

environmental and genotype influences across replicates. By contrast, comparison of two 

scATAC-seq libraries produced from separate preparations and from different samples 

will be confounded by batch effects, resulting in misleading or even erroneous results 

due to inflated variance between samples. Computational removal of batch effects 

from single-cell data has been a major focus of many informatics laboratories and 

shows promise in correcting mistakes stemming from poorly constructed experimental 

design248. However, there is currently no accepted method to reliably remove all batch 

effects while preserving biological variation in the absence of true biological replicates. 

Thus, in cases where generating and sequencing scATAC-seq libraries in different batches 

is unavoidable, it is pertinent that the researcher takes note of possible sources of 

variation among samples.
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Fig. 1 |. Chromatin accessibility profiling in bulk and at single-cell level reveals putative 
regulatory regions.
a | Representation of a chromatin landscape is shown in which transcription factor (TF)-

bound enhancers and the promoter of a gene are nucleosome depleted and thus accessible. 

The TFs are represented as coloured circles and the arrows represent 3D looping of the 

enhancers to the promoter of the target gene. b | Bulk and single-cell chromatin accessibility 

profiles of a heterogeneous sample containing three different cell populations. When 

performing single-cell chromatin accessibility profiling, sparse single-cell data are used 

to cluster cells, often followed by aggregating the reads per cluster, thereby reconstituting 

pseudo-bulk profiles per cluster or cell type. H3K27ac, histone H3 acetylated at lysine 27; 

Pol II, polymerase II; TSS, transcription start site.
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Fig. 2 |. Experimental approaches for measuring chromatin accessibility and nucleosome 
positioning.
a | In deoxyribonuclease I (DNase I) hypersensitive site sequencing (DNase-seq), the 

DNase I enzyme (represented as yellow scissors) is used to preferentially cleave accessible 

chromatin, generating fragments that can then be amplified into sequencing libraries. b | In 

Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq), a hyperactive 

version of the Tn5 transposase (represented by the dark grey circle) is used to preferentially 

insert into accessible chromatin while simultaneously attaching adapters (represented by the 

red and blue lines on the Tn5 transposase) to the resulting fragments that can be used to 

directly amplify sequencing libraries. Both DNase-seq and ATAC-seq generate peaks in read 

coverage over accessible regions in the genome. c | In micrococcal nuclease sequencing 

(MNase-seq), the MNase enzyme (represented as red scissors) is used to digest DNA that 

is not protected by bound proteins, leaving intact fragments protected by protein occupancy 

(primarily nucleosomes). These fragments are then amplified, resulting in increased read 

coverage over positioned nucleosomes. d | DNA methyltransferase-based approaches rely 

on the labelling of accessible DNA with DNA methylation modifications (represented 
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by drawing pins), which can either be sequenced using Illumina platforms following 

bisulfite conversion or via long-read sequencing platforms that directly read the modified 

bases (unmodified and modified bases are represented as light and dark blue circles, 

respectively). These single-molecule chromatin accessibility profiling approaches tend to 

provide a simultaneous read-out of both nucleosome positioning and accessible chromatin 

regions. Accessible chromatin regions represent themselves as higher peaks due the fact that 

they have more nucleotides that are accessible to the methyltransferases and are therefore 

more frequently methylated, compared with the internucleosomal sequences that are thus 

not methylated in every single-molecule read. In all four panels, bound transcription factors 

(TFs) are visualized via coloured circles on the accessible chromatin.
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Fig. 3 |. Overview of common tasks in the analysis of bulk chromatin accessibility data.
a | Starting from raw sequencing reads. b | Bulk chromatin accessibility data generally 

undergo several preprocessing steps, including a pre-mapping quality control (QC) and 

adaptor trimming step. c | Mapping of the trimmed reads to a reference genome for the 

studied species. d | Mapped reads are filtered. e | An additional post-alignment QC step 

is recommended through several metrics and data visualizations. f | An important step 

in chromatin accessibility data analysis is calling peaks, as these usually form the basis 

of several downstream analyses. g | Differentially accessibility analysis can be performed 
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pairwise (condition A versus B) or across multiple conditions. h–m | Additional downstream 

analyses include annotation and enrichment analysis for the identified peaks (part h), visual 

inspection of chromatin accessibility data tracks (part i), motif enrichment within peaks 

(sets) using predefined databases or de novo (part j), transcription factor (TF) footprinting 

analysis (part k), mapping of nucleosome positions (part l) and integration with RNA 

sequencing (RNA-seq) or chromatin immunoprecipitation followed by sequencing (ChIP–

seq) data to link different omics layers or to generate gene regulatory networks (part m). 

TSS, transcription start site.
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Fig. 4 |. Overview of common tasks in the analysis of scATAC-seq data.
a | Outline of key steps in processing single-cell Assay for Transposase-Accessible 

Chromatin using sequencing (scATAC-seq) data sets, six of which are illustrated in panels 

b–g. b | An important step in the analysis of scATAC-seq data is clustering the cells via 

dimensionality reduction of the feature by cell matrix (via UMAP, for example) to discover 

the different cell populations. In the given example, dots represent the single cells, and 

their colours and numbers represent the nine identified cell clusters or cell populations. c 
| Identification of marker genes and/or peaks for each of the cell clusters allows further 

study of the putative cell populations. d | By aggregating the accessibility profiles of all 

cells within a cluster, pseudo-bulk genome browser tracks can be generated for each cell 

population. e | Specific tools allow the identification of peak to gene links, which can reveal 

putative target genes of identified peaks. f | Assessing peak co-accessibility allows grouping 

peaks into sets of co-regulated regions. g | When analysing scATAC-seq from a time-series 

or differentiation experiment, trajectory analysis allows study of the dynamic changes in 

chromatin accessibility along a pseudo-time axis. QC, quality control.

Minnoye et al. Page 53

Nat Rev Methods Primers. Author manuscript; available in PMC 2024 February 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5 |. Schematic overview of future roads and opportunities for chromatin accessibility 
profiling.
In the coming years, our ability to measure chromatin accessibility concurrently with 

multiple regulatory layers in the same single cell will continue to expand. New insights into 

regulatory biology will be gained by applying these methods in the native spatial context and 

in systems undergoing perturbations. Development of computational tools that can dive into 

the complexity of the emerging data sets will be crucial for the success of these endeavours. 

Ultimately, these approaches will empower us to functionally dissect the role of regulatory 

elements and their relationship to gene expression. TF, transcription factor.
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