
Household immunity and individual risk of infection with dengue 
virus in a prospective, longitudinal cohort study

Marco Hamins-Puértolas1, Darunee Buddhari2, Henrik Salje3,4, Derek A. T. Cummings4,5, 
Stefan Fernandez2, Aaron Farmer2, Surachai Kaewhiran6, Direk Khampaen6, Sopon 
Iamsirithaworn6, Anon Srikiatkhachorn7,8, Adam Waickman9, Stephen J. Thomas9,10, Alan 
L. Rothman7, Timothy Endy9,11, Isabel Rodriguez-Barraquer1,12, Kathryn B. Anderson9,10,12

1Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.

2Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, 
Thailand.

3Department of Genetics, University of Cambridge, Cambridge, UK.

4Department of Biology, University of Florida, Gainesville, FL, USA.

5Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.

6Ministry of Public Health, Nonthaburi, Thailand.

7Institute for Immunology and Informatics, Department of Cell and Molecular Biology, University of 
Rhode Island, Providence, RI, USA.

8Faculty of Medicine, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand.

9Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, 
USA.

10Institute for Global Health and Translational Sciences, SUNY Upstate Medical University, 
Syracuse, NY, USA.

11Coalition for Epidemic Preparedness Innovations (CEPI), Washington DC, USA.

12These authors jointly supervised this work: Isabel Rodriguez-Barraquer, Kathryn B. Anderson.

Abstract

Correspondence and requests for materials should be addressed to Kathryn B. Anderson. AndeKath@upstate.edu.
Author contributions
The study was conceived and designed by D.B., H.S., D.A.T.C., S.F., A.F., A.L.R., T.E., I.R.-B. and K.B.A. The data were collected 
by D.B., S.F., S.K., D.K., S.I. and A.S. The analysis and interpretation of results was performed by M.H.-P., H.S., D.A.T.C., A.F., 
S.J.T., A.W., A.L.R., T.E., I.R.-B. and K.B.A. The draft manuscript was prepared by M.H.-P., I.R.-B. and K.B.A. All authors reviewed 
the results and approved the final version of the manuscript.

Competing interests
The authors declare no competing interests.

Additional information

Extended data is available for this paper at https://doi.org/10.1038/s41564-023-01543-3.

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/
s41564-023-01543-3.

Reprints and permissions information is available at www.nature.com/reprints.

HHS Public Access
Author manuscript
Nat Microbiol. Author manuscript; available in PMC 2024 July 01.

Published in final edited form as:
Nat Microbiol. 2024 January ; 9(1): 274–283. doi:10.1038/s41564-023-01543-3.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.nature.com/reprints


Although it is known that household infections drive the transmission of dengue virus (DENV), it 

is unclear how household composition and the immune status of inhabitants affect the individual 

risk of infection. Most population-based studies to date have focused on paediatric cohorts 

because more severe forms of dengue mainly occur in children, and the role of adults in 

dengue transmission is understudied. Here we analysed data from a multigenerational cohort 

study of 470 households, comprising 2,860 individuals, in Kamphaeng Phet, Thailand, to evaluate 

risk factors for DENV infection. Using a gradient-boosted regression model trained on annual 

haemagglutination inhibition antibody titre inputs, we identified 1,049 infections, 90% of which 

were subclinical. By analysing imputed infections, we found that individual antibody titres, 

household composition and antibody titres of other members in the same household affect an 

individual’s risk of DENV infection. Those individuals living in households with high average 

antibody titres, or households with more adults, had a reduced risk of infection. We propose that 

herd immunity to dengue acts at the household level and may provide insight into the drivers of the 

recent change in the shifting age distribution of dengue cases in Thailand.

The number of individuals infected with dengue virus (DENV) ranges from 100 to 400 

million per year1–3, primarily in tropical and subtropical regions of the world. A substantial 

proportion of DENV transmission occurs in and around the home, with infections having 

a high likelihood of being spatiotemporally correlated4–9. However, individuals living in 

neighbouring but separate households can experience persistent differences in risk of 

infection4,5,9. The drivers of heterogeneity in risk of DENV infection among households 

and villages are unknown, potentially limiting the capacity for targeted interventions. There 

is evidence supporting focal transmission at either the school10,11 or household level4–

7,9. Immunity, or susceptibility, of household members may impact the individual risk of 

infection.

Analysing the role of immunity in household transmission is complicated. This is because 

most infections are subclinical and are therefore missed by surveillance systems12,13. 

Studies characterizing risk factors for DENV infection are therefore biased towards 

symptomatic infections rather than the entire population of infected individuals. In addition, 

DENV has historically been concentrated in children so most studies have focused on 

understanding infection dynamics in this subpopulation2,14. This has resulted in large gaps 

in knowledge about risk factors for DENV infection in either adults or entire households. 

There have been recent shifts in the average age of dengue cases towards adults in several 

countries in South Asia15–19. For example, the mean age of individuals with dengue 

haemorrhagic fever has risen in Thailand from approximately 8 years to 24 years between 

1981 and 2017 (ref. 15), making the understanding of risk factors for DENV infection in 

adults now more pressing than ever.

Identifying subclinical DENV infections in individuals is difficult because it requires data 

either from the longitudinal serological testing of large cohorts20–23 or from the follow-

up of index cases and their close contacts at the household level24–28. Estimates of the 

proportion of subclinical cases vary substantially29 in published observational studies, 

owing to differences in how susceptible the population is to the major circulating DENV 

serotype, definitions of symptomatic and subclinical infections, and differences among 
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follow-up monitoring protocols. Most studies that have analysed longitudinal serological 

data to identify subclinical infections have defined infections as ‘a fourfold increase in 

antibody levels between two samples for both haemagglutination inhibition (HAI)20,22,30 

and enzyme-linked immunosorbent assays (ELISAs)’21,23. However, while there is good 

support for using cut-off points in the context of acute and convalescent samples obtained 

weeks apart, their accuracy in identifying infections from samples obtained months or 

years apart in this way is unclear. Due to antibody decay in the months following an 

acute infection31, the sensitivity of the ‘fourfold’ approach to identifying infection is likely 

to diminish over time, resulting in underestimates of the true number of infections. In 

addition, it is unclear whether the ‘fourfold’ method underperforms in individuals with high 

initial antibody titres. Other approaches have reconstructed subclinical infections by fitting 

full probabilistic models that simultaneously characterize antibody kinetics and infection 

histories, but this method is data intensive, requiring large numbers of longitudinal serum 

samples collected frequently and virologically confirmed infections to estimate antibody 

kinetics32. Such detailed and prospective datasets are not commonly available, and therefore, 

alternative approaches are needed to study the transmission of dengue, understand its drivers 

and quantify the impact of interventions including vaccines.

Here we analyse data from an ongoing longitudinal study in Kamphaeng Phet, Thailand, to 

characterize risk factors of DENV infection and disease. A key feature of our longitudinal 

study is that it enrolled multigenerational households, which enabled us to study the risk 

profiles of children, adults and full households in parallel33. Instead of relying on fixed 

cut-points, such as the fourfold approach, we applied a flexible classification algorithm that 

takes yearly paired antibody titres to determine whether an individual was infected between 

sampling events. Using confirmed DENV infections to train this algorithm, we characterized 

the dynamics of DENV infections in this cohort, including the association between infection 

and individual and household factors, and report our findings here.

Cohort description

This study used data from an ongoing cohort study in Kamphaeng Phet, Thailand, that 

has enrolled 3,514 individuals living in 515 households (Supplementary Fig. 1). The study 

started in September 2015 with the aim of defining immunological correlates of protection 

from DENV and illness as well as factors shaping DENV transmission in multigenerational 

households. A second stage of this cohort is planned to continue through 2028. This study 

included yearly follow-up of participants in which serum samples were obtained as well as 

active illness investigations and household investigations triggered whenever a participant 

reported a fever (defined as an index case). Yearly serum samples were tested using HAI, 

and illness and household investigations included multiple assays (reverse-transcriptase 

polymerase chain reaction (RT-PCR), immunoglobulin M, immunoglobulin G and HAI). 

Our analysis included 2,868 individuals within 470 households who had been followed 

up at least once after enrollment and before March 2022. The analysed dataset contains 

data on 11,131 ‘yearly’ intervals, with an average of 3.90 intervals per enrolled individual 

(95% confidence interval (CI) 1–6). Characteristics of the analysed intervals are reported 

in Table 1, and the age pyramid is shown in Extended Data Fig. 1a. The intervals were an 

average of 407.8 days long (95% CI 229–642.75) and took place over 6 sampling periods 
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(Fig. 1a). Not all individuals in a household consented to being sampled at every visit, such 

that approximately 80% of potential individuals were sampled. Over the study period, there 

were 469 index cases, which resulted in laboratory confirmation of 90 infections between 

paired yearly samples. These 90 infections consisted of 61 PCR-positive individuals, and 

the remaining 29 cases were identified using serological evidence and constitute the gold 

standard data used in model training.

Model performance

We fit gradient-boosted regression models to infer subclinical infections in individuals, from 

antibody titres measured during yearly visits after training on gold standard infections. Our 

best-fitting model was able to classify our training data with 93.3% sensitivity and 98.0% 

specificity (Extended Data Fig. 2a). The longitudinal design of the cohort study allows 

visualization of HAI trajectories across time for enrolled individuals. Figure 2a illustrates 

imputed infections for three individuals enrolled in the cohort. The average and maximum 

ratios of pre- to post-interval HAI titres are the features of greatest importance for accurate 

classification defined by the information gain metric (Fig. 2b).

Characterizing subclinical infections

Using our best-fitting prediction models on the evaluation dataset (n = 9,885), we imputed 

959 subclinical infections. When incorporating the 90 laboratory-confirmed infections, a 

total of 1,049 infections are identified in 11,131 intervals of observation, or 9.4% of 

intervals. This translates to 12.44 infections per 100 susceptible people per year (95% CI 

11.01–13.88). Application of the fourfold increase in antibody levels to infer infections, 

as done previously to interpret paired serological data, identified a total of 956 infections, 

suggesting that our method identifies ~10% more infections. This is similar to an estimated 

annual proportion of seronegative individuals being infected per year of 10.8% derived using 

a serocatalytic model from age-stratified seroprevalence data (95% CI 9.9–11.8%, using 

seropositive cut-off as HAI ≥ 20) (Fig. 1b). We note that the model had high certainty in 

the assigning of infections for the majority of infections, with 673 of the 1,049 intervals 

with infection being given a probability of greater than 90%. Similarly, the model had high 

certainty for the absence of infections in the remaining intervals, with 8,458 of the 11,131 

intervals being assigned a probability of less than 10% (Extended Data Fig. 2b). Figure 

2c shows where these imputed infections fall when comparing the average HAI across all 

four DENV serotypes pre- and post-interval while a breakdown by serotype can be found in 

Extended Data Fig. 3.

We found that the incidence of infections varied by year, with 2018 having higher incidence 

(Fig. 3a). Hospitalizations peaked in Kamphaeng Phet in 2018 during the analysed study 

period (Fig. 1a). The incidence of infection rates peaked among school-aged children (Fig. 

3b). As expected, the proportion of primary infections (infections occurring in individuals 

without detectable antibodies to any serotype in any previous visit) was directly related 

to age, with almost all infections being post-primary (occurring in individuals with HAI 

antibody titres against at least one serotype greater than 20) after age 25. The ratio of 

subclinical to symptomatic infections was 13.8:1 (95% CI 10.0–17.8:1) in the cohort. There 
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was some variability across years and age, with the highest risk of symptomatic disease 

occurring between the ages of 15 and 25 (Fig. 3d,e). We note that there were only 77 

symptomatic infections out of 1,049 total infections, leading to wide confidence intervals 

for these ratios, particularly for years of age groups with few cases. It is possible that 

additional mildly symptomatic infections were missed by the surveillance platform during 

yearly follow-up, and in turn, these estimates probably represent lower bounds on the 

true number of symptomatic infections. Out of these 1,049 infections, 139 individuals had 

multiple infection events throughout the study (Supplementary Fig. 3a), with the average 

time between infections found to be 733 (95% CI 677–791). The probability of having a 

second or third infection, given that the individual had a previous infection, peaks between 

the ages of 10 and 15, similar to the age range of highest incidence (Supplementary Fig. 3b).

Risk factors for DENV infection

Using imputed infections from our classification algorithm, we investigated which individual 

and household risk factors were associated with infection risk. We found that individuals 

aged between 5 and 18, and between 18 and 30, were at higher risk of infection, with 

an adjusted odds ratio (aOR) of 1.44 (95% CI 1.16–1.77) and 1.41 (95% CI 1.06–1.89), 

respectively, compared with children aged 1–5 years. In an unadjusted analysis, there was 

no significant difference in odds of infection by sex (odds ratio (OR) 1.11, 95% CI 0.98–

1.27). However, our data are consistent with an observed interaction between age and sex 

in infection risk of women between the ages of 18 and 40, who had an increased risk of 

infection compared with their male counterparts (Extended Data Fig. 1c). We also found 

no significant association between occupation and risk of infection in an adjusted analysis 

(Supplementary Table 2).

We studied how household-level factors affect an individual’s risk of infection. No 

covariates describing the surrounding built environment had a significant impact on dengue 

risk. However, we found strong associations between household composition and risk of 

infection. While the number of individuals living in the household was not associated 

with risk of infection (aOR 1.00, 95% CI 0.97–1.04), we found that each additional adult 

in the household reduced the likelihood of infection in the other household members, 

with an aOR of 0.95 (95% CI 0.90–0.99). The presence of each additional newborn and 

individual between the ages of 5 and 18 increased the odds of infection for the other 

household members, with an aOR of 2.13 (95% CI 1.65–2.75) and 1.09 (95% CI 1.01–

1.19), respectively. Although not significant, the presence of each additional individual 

aged between 1 and 5 increased the odds of infection for household members, with 

an aOR of 1.13 (95% CI 1.00–1.28; Fig. 4a). Analyses stratified by sex revealed a 

more complex association between household composition and risk. For either sex, each 

additional newborn increased infection risk for the other individuals living in that household. 

For older-age groups, however, the associations varied by sex. Each additional male between 

the ages of 1 and 5 and between 5 and 18 increased risk, with an aOR of 1.25 (95% CI 

1.08–1.44) and 1.18 (95% CI 1.06–1.31), respectively, while additional adult males had no 

impact on risk. Additional females provided no changes in risk except for adults, in which 

each additional female adult reduced risk, with an aOR of 0.88 (95% CI 0.81–0.95; Fig. 4b).
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Beyond characterizing the association between household characteristics and composition 

on dengue risk, we sought to understand the impact of individual and household immunity. 

Consistent with previous findings, the most important predictor of infection risk during 

an interval was an individual’s HAI titres at the beginning of the interval (Fig. 5). In 

our analysis, the magnitude of average HAI log2 titres was inversely associated with risks 

of both subclinical and symptomatic infections. On average, each log2 increase in titres 

was associated with a 26.4% (95% CI 23.5–29.2%) decrease in risk of infection and a 

38.7% (95% CI 27.9–47.9%) decrease in having a symptomatic infection. Interestingly, we 

also found that household immunity impacted an individual’s risk of infection even when 

accounting for that individual’s antibody titre. The distribution of these variables is found 

in Supplementary Fig. 4. Individuals living in households with high immunity (average HAI 

titres greater than 66) had decreased risk, with an aOR of 0.78 (95% CI 0.63–0.96) when 

compared with those with an average below 40 (Fig. 4d). As household titres are likely to 

be associated with recent household infection history, we also investigated how household 

attack rates during a preceding interval (the proportion of individuals within a household that 

had an imputed DENV infection in the preceding interval) impact future risk. Individuals 

living in households that had moderate to high attack rates (greater than 20% of household 

members experiencing an infection) during the previous year were at decreased risk of 

infection, with an aOR of 0.61 (95% aOR CI 0.49–0.77), compared with individuals coming 

from a household with no infections in the previous year (Fig. 4c). We also found that higher 

proportions of immune individuals at the household level decreased the risk of infection for 

household members (Supplementary Fig. 5).

Sensitivity analyses were generally consistent with original findings. We want to highlight 

that if infections are imputed using a fourfold increase in any DENV serotype HAI titre, 

instead of the classification model developed here, the protective association between 

individual and household titres and infection risk remains (Extended Data Fig. 4). 

Specifically, for each log2 increase in an individual’s titres, there was an associated 28.5% 

(95% CI 25.5–31.4%) decrease in risk of infection and a 40.1% (95% CI 2.1–50.7%) 

decrease in having a symptomatic infection. Sensitivity analyses in which we restrict 

the data to households with more than 80% of individuals sampled and just seronaive 

individuals were also consistent with the main findings (Extended Data Figs. 5 and 6).

Discussion

We developed a classification algorithm using longitudinal data from a multigenerational 

cohort in Kamphaeng Phet, Thailand, to reconstruct subclinical DENV infections. Inferring 

subclinical infections with more precision enabled us to analyse individual- and household-

level factors that affect risk of DENV infection. We report a protective effect of higher HAI 

titres at both the individual and household levels. Although previous work has shown that 

higher antibody titres protect individuals against infection32,34,35, we report an independent 

indirect effect of household immunity and composition on infection risk.

We studied how several household factors including composition, immunity and infection 

history each independently affect risk of infection with DENV. We found that all three 

factors determine an individual’s risk. When analysing household composition, we found 
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that each additional adult reduced the likelihood of an infection, while each additional 

young child (1–5 years old) increased the likelihood of infection. These findings might 

be explained by the fact that children are more susceptible to infection than their adult 

counterparts who have already experienced infection and developed immunity in the past. 

We also found that higher levels of household immunity, and higher attack rates in the 

previous year, have protective effects against infection. These associations were evident even 

though there are other potential locations in an individual’s daily routine outside the home 

that impact risk of DENV infection, limiting the indirect protection in the home. Taken 

together, households with more adults or more recent infections will have more immunity to 

DENV and in turn reduce subsequent infection risk for household members.

At the individual level, our results are consistent with those of previous studies showing 

that individual antibody titres are the most important predictor of future DENV infection 

risks32,34,35. How this relationship varies across adults is less understood. Here we find that 

the risk of infection for adults over the age of 30 remains high, at approximately half that 

of younger individuals. These infections occur in individuals who have been infected two or 

more times and are in turn multi-typically protected. This is particularly relevant to the open 

question of how long boosting post-infection confers immunity and protection from clinical 

manifestations. For these same individuals, we find a higher subclinical to symptomatic 

ratio, suggesting that these adults are probably exposed to DENV while simultaneously not 

experiencing symptoms.

We hypothesized previously that the aging population of Thailand resulted in a decrease 

in the force of infection, potentially driven by longer-living adults that have multitypic 

immunity who reduce the risk that younger individuals living in the same household 

experience an infection15,36. Our results lead us to propose that a combination of immunity 

and recent infection history in a household can confer a form of ‘herd immunity’ for 

an individual, regardless of their own immune status. Children are more likely to be 

seronaive than adults and may present a means by which DENV can be introduced into 

the household. Introduction of DENV would subsequently increase the risk that the virus 

will be transmitted (by mosquitoes) to others in the household, a mechanism that would 

explain some of the spatial correlations found in another study of the same population37. It 

is intriguing that household composition, immunity and infection history have a significant 

impact on infection risk, whereas covariates measuring the surrounding built environment do 

not.

Our work provides a framework upon which machine learning classification models could 

be used to predict infection events from yearly serological data. Although application 

of a fourfold rise in titres as a barometer for infection can be useful when analysing 

acute and convalescent titres, our approach is a more robust and sensitive way to 

characterize subclinical infections. Previously, Bayesian-based approaches have been 

successful at reconstructing dengue infection events32,38, but they require substantial 

temporal information to inform the underlying mechanistic model of antibody kinetics. Our 

method provides a flexible framework that removes some of the bias of potential model 

misspecification and instead takes a fully data-driven approach to reconstruct infection 
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events. This methodology could more broadly be applied to other infectious diseases in 

which longitudinal serological data are collected.

Our results highlight the importance of multigenerational household studies to fully 

understand the population dynamics of infectious diseases. The protective effects of 

household immunity had been hidden in previous analyses, some in the same setting, that 

have focused on children. However, our work has some limitations. Our model training 

is limited by the fact that there are only 90 data points used to inform the classification 

algorithm. If these illness investigations are biased, this would propagate to our predictions. 

In particular, as primary and subclinical DENV infections are underrepresented, then we 

may be less capable of identifying these DENV infections. In addition, development of 

the training data required that we define individuals who had no infection event during 

an interval, a difficult task that could further limit our approach. We were unable to 

differentiate between homologous and heterologous infections owing to HAI data being 

cross-reactive across DENV serotypes (Supplementary Fig. 6). Instead, we are only able 

to determine whether an individual had an exposure or not during a given interval. If 

plaque reduction neutralization test data were used instead, it is possible some additional 

serotype-specific information could be elucidated; however, cross-reactivity is also an issue 

for plaque reduction neutralization tests in post-primary infections. Another limitation of the 

study was the fact that serum samples were taken at yearly intervals. This made it impossible 

to fully disentangle the timing of infections that would provide important information on 

how infections propagate in a household. Incorporating additional active sampling events 

throughout the year in household studies like this one could provide important temporal 

information to understand this further. Finally, due to study design, most female participants 

of reproductive age give birth upon enrollment. We are therefore not in a position to examine 

whether the sex differences found between the ages of 18 and 40 are due to age or to other 

biological or behavioural factors (Extended Data Fig. 1) related to pregnancy and giving 

birth. Further work must be done to fully understand this relationship.

There is a critical need to better understand how immunity impacts the spread of infectious 

diseases like DENV. With DENV infections being highly spatiotemporally correlated 

in endemic settings, the success of future intervention efforts hinges on the ability to 

accurately quantify infection risk. Disentangling risk into the component contributions 

from individual-, household- and community-level factors could help direct these efforts. 

Individuals with higher immunity are protected from infection and disease, while entire 

populations can also experience similar protective effects from population-level immunity. 

Here we show evidence of protective effects of immunity at the household level.

If household immunity is a major driver of spatiotemporal clustering, interventions may 

be effectively targeted towards households with lower immunity. Considering immunity at 

multiple scales when mapping dengue risk and making public health decisions is important.
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Methods

Kamphaeng Phet family-based cohort study

This study used data from an ongoing family-based longitudinal cohort study in Kamphaeng 

Phet, Thailand. Details of the design have been previously described33. Briefly, we enrolled 

pregnant mothers and their multigenerational households. Per the inclusion criteria, a 

household was eligible for enrollment if a minimum of three members in addition to 

the newborn consented or assented to participation: the pregnant woman, another child 

and an older adult aged at least 50 years. Active surveillance began with the birth of the 

newborn, with enrollment specimens for the remainder of the household collected before 

the birth of the newborn. To ascertain subclinical infections, serum samples were obtained 

from all participants roughly annually after enrollment. Acute febrile illness events were 

detected through a combination of active and passive surveillance strategies. Individuals 

were instructed to notify study staff if an acute febrile illness event occurred. In addition, 

participants were contacted by the study team on a weekly basis to determine if any member 

of the household had been febrile since the last contact. Upon discovery of a febrile episode, 

an illness investigation was triggered, in which acute and convalescent blood samples were 

obtained from the febrile case. If the illness investigation identified a PCR-confirmed case, 

a household investigation was triggered in which acute and convalescent samples were taken 

for the remaining household members. The convalescent samples were taken at 14 and 28 

days after the acute sample collection.

This study was approved by the Thailand Ministry of Public Health Ethical Research 

Committee; Siriraj Ethics Committee on Research Involving Human Subjects; Institutional 

Review Board for the Protection of Human Subjects, State University of New York Upstate 

Medical University; and Walter Reed Army Institute of Research Institutional Review Board 

(protocol number 2119).

Laboratory methods

All samples obtained during routine visits were tested using HAIs to quantify antibody titres 

against all four DENV serotypes and Japanese encephalitis virus (JEV)39. In addition, all 

acute and convalescent samples were tested using HAI for all four DENV serotypes and 

JEV as well as immunoglobulin M and immunoglobulin G capture ELISAs for DENV and 

JEV40. All acute samples also underwent DENV RT-PCR41. For the purpose of this analysis, 

we defined a confirmed DENV infection as any case that is RT-PCR positive for any 

DENV serotype or in which both HAI and ELISA results using the acute and convalescent 

samples were diagnostic of an infection33. Further details on the specific laboratory methods 

used have been described in previous work42–44 and are summarized in Supplementary 

Information.

Statistical analysis

The purpose of this analysis was to investigate individual and household risk factors for 

DENV infection in this multigenerational cohort. To do this, we first fit a classification 

algorithm to the yearly HAI data to identify subclinical infections. We then used these 

imputed infections to investigate individual- and household-level drivers of infection.
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Training data

We define a positive- and negative-person period as follows: a total of 90 confirmed 

DENV infections were identified through the case investigations. Data from the yearly HAIs 

surrounding these confirmed DENV infections were defined as the positive-person periods. 

For negative-person periods, we took the remaining full dataset and removed any interval 

in which an individual had a confirmed DENV infection via the illness investigation, or 

in which individuals had a larger-than-fourfold increase in any one of their yearly DENV 

serotype HAIs. We then removed any individuals living in the same household during these 

aforementioned intervals as DENV transmission is known to be clustered within households. 

This left 3,466 intervals that could potentially be used as negative controls from the available 

11,131 observed intervals (Supplementary Fig. 1). We randomly sampled a third of these 

to be added to the training data, creating a total of 1,246 intervals in our training set. The 

first interval of sampling for newborns was excluded in this analysis because of limited 

representation in the serologically supported infections that could provide information on 

maternal antibody kinetics.

Prediction model

Using training data described above, we ran a gradient-boosted regression using the R 

package xgboost45,46. Unlike in random forest models in which multiple independently 

trained decision trees are combined to determine the overall likelihood of a model, in 

gradient-boosted regression, each decision tree is fit on what the previous trained ensemble 

of trees have misclassified, allowing for refinement on difficult classification problems. 

The candidate predictors we used to train this model are listed in Supplementary Table 1. 

Variables used to summarize the ratio and difference between pre- and post-interval DENV 

titres across serotypes (maximum, minimum, geometric mean and variance) were calculated 

at the individual serotype level, and then the summary statistic of interest was quantified 

across all four serotypes.

Model fit

For hyperparameter tuning, we used a random-search approach within a nested cross-

validation approach in which we initially split the training data into four cross-validation 

sets and subsequently performed hyperparameter tuning on each subset using fivefold cross-

validation. Model performance was quantified using the hold-out set. Before each random-

search run, we randomly downsampled the dataset to balance the number of positive- and 

negative-person periods. We performed this random-search approach a total of 5,000 times 

and saved the top 100 performing models evaluated on the held-out cross-validation set with 

the lowest log-loss value. The average predicted classification score (bounded between 0 

and 1) for these 100 runs was taken to be the probability the individual was infected in that 

yearly interval. Intervals assigned a value greater than or equal to 0.5 were considered to be 

DENV infections.

Predicting subclinical DENV infections

We subsequently fit the models with the lowest log-loss values on the entire training dataset 

and predicted the presence or absence of infections in the remaining intervals that make up 
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the evaluation dataset. We used the training labels as ground truth and subsequently analysed 

risk factors for the entire dataset.

Characterizing risk factors of DENV infection and disease

We fit a series of univariate and adjusted logistic regressions to characterize how DENV 

infection risk is a function of temporal, individual and household factors. These models were 

run using the glmmTMB function found within the glmmTMB package in R47,48. We fit all 

models using a binomial GLM with a logit link function. All generalized linear models were 

optimized using the nlminb method found in the stats package. Only household random 

effects were incorporated into the model as the inclusion of both household and individual 

random effects led to singular fits.

Individual- and household-level risk

We first tested whether demographic factors were associated with risk, including age, 

sex and employment. We binned individuals into five age bins (1–5, 5–18, 18–30, 30–

50 and 50+). Individuals under 1 year were excluded as they will usually have maternal 

antibodies, which would complicate this analysis owing to different kinetics. Sex was 

defined upon enrollment into the cohort. Further information on individual- and household-

related covariates can be found in Supplementary Information.

We subsequently performed analyses to quantify how household composition and infection 

history impacted risk for an individual. Data on household composition consisted of the 

number of newborns, individuals between 1 and 5, individuals between 5 and 18, and 

adults, all of whom were broken down by sex. We fit models to estimate how the number 

of individuals in each of these bins impacted infection risk. For the analysis on infection 

history, we fit models to assess how the attack rate, the proportion of the household members 

who were inferred to have an infection, in the previous interval (categorized into three 

sets defined as containing strictly 0, (0.2) and [0.2,1]) impacted the infection risk. The 

distribution of these values was zero inflated and skewed right owing to many households 

having no infections in the previous interval. Note that we removed the individual of 

interest in determining both the household composition and attack rate of the household 

to isolate how the household is impacting risk. For both of these covariates, we fit three 

logistic regression models, a univariate model, a univariate model with random effects and 

a multivariate model with random effects. As the goal of these models was to characterize 

the independent effect of the household-level covariates, each of these multivariate models 

also accounts for the individual’s average pre-interval HAI titre as well as the month and 

year of sampling as these have been shown to be important predictors of risk. This ensured 

that the individual’s age, titres and infection history did not impact subsequent calculations. 

Confounding effects of household-related factors were accounted for in adjusted analyses 

in which household random effects were incorporated. Note that as this analysis required at 

least two consecutive intervals, around 25% of the intervals were not included leaving 6,913 

intervals.

We then performed logistic regressions to understand how individual and household 

immunity impact DENV infection risk. We defined individual immunity to be the geometric 
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mean of HAI titres transformed into log2 space. We defined household immunity for a 

particular individual to be the geometric mean of HAI titres of the household transformed 

into log2 space with the individual of interest removed from the calculation. HAI cutoffs 

of 40 and 66 were chosen for the household immunity covariate as these constituted the 

33rd and 66th percentiles. Similar to the previous analysis, we fit three logistic regressions 

for each, a univariate model, a univariate model with random effects and a multivariate 

model with random effects. In addition to these random effects and the covariate of interest, 

each multivariate model also accounts for the month and year of sampling. The household 

immunity adjusted model also accounted for the individual’s average pre-interval HAI titre.

Sensitivity analysis

To assess whether our main findings were robust to methodological assumptions or potential 

biases in the data, we performed three sensitivity analyses. The first sensitivity analysis that 

we performed was based on the fact that at times not all individuals in a household were 

sampled. Those that went unsampled in a household were more likely to be adult males 

potentially leading to confounding effects of households with more missing data. We, in 

turn, reran the analyses with the fourfold increase in titres rule often used as the standard 

in longitudinal serological studies. This sensitivity analysis allows for the direct comparison 

between our prediction algorithm and the most commonly implemented approach in the 

literature (Extended Data Fig. 4). We also conducted analyses on all intervals taken from 

households with more than 80% of their members sampled, limiting the analysis to 6,453 

intervals (Extended Data Fig. 5). Lastly, we reran the analyses in individuals who were 

seronaive at the beginning of the interval to investigate whether the identified associations 

were also observable in the fully susceptible subpopulation, limiting the analysis to 2,066 

intervals (Extended Data Fig. 6). Further descriptions of these results can be found in the 

‘Sensitivity analysis‘ section of Supplementary Information.

Data exclusion

Note that we excluded data from newborns in the analysis to avoid potential biases from 

maternal antibodies49.

Reporting summary

Further information on research design is available in the Nature Portfolio Reporting 

Summary linked to this article.
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Extended Data

Extended Data Fig. 1 |. Cohort age distribution and various characteristics broken apart by sex.
(a) Age pyramid of enrolled subjects in five-year bins separated by sex (n = 3539). (b) 

Seroprevalence curve for subjects enrolled before 2017 in solid line, the analysis was 

conducted separately by sex. Points are mean seroprevalence in each fifth percentile for 

non-newborns under 30 years old (n = 6197). Confidence bounds are found using a basic 

nonparametric bootstrap. (c) Pre-interval DENV titers averaged across all four serotypes and 

their impact on probability of infection. (d) Relationship between pre-interval DENV titers 

averaged across all four serotypes and age. Both analyses included n = 11131 intervals with 

points and intervals representing the mean and 95% confidence interval. Shaded regions 

represent the 95% confidence intervals of fits.
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Extended Data Fig. 2 |. Model training information and resulting probability of infection 
distribution.
(a) Confusion matrix for XGBoost model on training data. Reference values are found as 

outlined in the Methods section titled Training data while prediction values are found using 

the approach outlined in the Model fit section of the methods section. (b) Histogram of 

model predictions for probability of infection between sequential blood draws conducted on 

the full dataset.
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Extended Data Fig. 3 |. Pre and post interval HAI titers by DENV serotype and JEV.
Pre and post interval HAI titers for all DENV serotypes and JEV grouped by age at post 

interval age and colored by whether the model predicted a DENV infection. Yellow and 

blue dots represent points that were or were not identified as infections respectively by the 

model while black and red points represent a similar dichotomy but in laboratory confirmed 

seroconversions. A four-fold increase in titers between samples is represented by the black 

diagonal line.
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Extended Data Fig. 4 |. Sensitivity analysis on household related factors when utilizing the 
four-fold increase in DENV antibodies.
Sensitivity analysis on how household composition (a, b), infection history (c) and 

immunity (d) impact risk of infection when infections are defined to occur if there is a 

four-fold increase in antibody levels between paired serological samples (n = 11131). (a) 

Odds ratio for the number of total individuals in various age bins (newborn [NB], from 

1–5 years old, from 5 to 18, and those 18 years or older [GE18]) defined at the time of 

the post-interval sample. (b) Odds ratio for the number of males and females of various 

age bins (newborn [NB], from 1–5 years old, from 5 to 18, and those 18 years or older 

[GE18]) defined at the time of the post-interval sample. (c) Previous interval’s attack rate 

(AR) and subsequent odds ratio of infection risk relative to having no infections in the 

previous interval. (d) Geometric mean of DENV HAI titers for the rest of the household 

and subsequent odds ratio of infection risk relative to having an average household HAI 

titer under 40. All models are adjusted for household random effects, individual pre-interval 

titers, as well as the year and month of post-interval sample. The vertical dashed line 

represents an aOR of 1 (no significant impact on risk).
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Extended Data Fig. 5 |. Sensitivity analysis on household related factors in households with high 
sampling rates.
Sensitivity analysis on how household composition (a, b), infection history (c) and 

immunity (d) impact risk of infection in households where more than 80% of samples 

are recorded (n = 6435). (a) Odds ratio for the number of total individuals in various age 

bins (newborn [NB], from 1–5 years old, from 5 to 18, and those 18 years or older [GE18]) 

defined at the time of the post-interval sample. (b) Odds ratio for the number of males 

and females of various age bins (newborn [NB], from 1–5 years old, from 5 to 18, and 

those 18 years or older [GE18]) defined at the time of the post-interval sample. (c) Previous 

interval’s attack rate (AR) and subsequent odds ratio of infection risk relative to having no 

infections in the previous interval. (d) Geometric mean of DENV HAI titers for the rest 

of the household and subsequent odds ratio of infection risk relative to having an average 

household HAI titer under 40. All models are adjusted for household random effects, 

individual pre-interval titers, as well as the year and month of post-interval sample. The 

vertical dashed line represents an aOR of 1 (no significant impact on risk).
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Extended Data Fig. 6 |. Sensitivity analysis on household related factors in seronaive individuals.
Sensitivity analysis on how household composition (a, b), infection history (c) and 

immunity (d) impact risk of infection in individuals who were seronaive at the start of 

an interval (n = 2066). (a) Odds ratio for the number of total individuals in various age bins 

(newborn [NB], from 1–5 years old, from 5 to 18, and those 18 years or older [GE18]) 

defined at the time of the post-interval sample. (b) Odds ratio for the number of males 

and females of various age bins (newborn [NB], from 1–5 years old, from 5 to 18, and 

those 18 years or older [GE18]) defined at the time of the post-interval sample. (c) Previous 

interval’s attack rate (AR) and subsequent odds ratio of infection risk relative to having no 

infections in the previous interval. (d) Geometric mean of DENV HAI titers for the rest 

of the household and subsequent odds ratio of infection risk relative to having an average 

household HAI titer under 40. All models are adjusted for household random effects, 

individual pre-interval titers, as well as the year and month of post-interval sample. The 

vertical dashed line represents an aOR of 1 (no significant impact on risk).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Cohort data summary (n = 11,131).
a, Hospitalization counts for Kamphaeng Phet from 2015 to 2021 (blue solid line). The bars 

represent the timing of the confirmed DENV infections used to train the model (n = 90). 

Serotype information was ascertained via RT-PCR with those confirmed using only serology 

labeled as NA. The shaded time periods represent active sampling periods during the cohort 

study when yearly blood draws were taken. b, Age-stratified seropositive individuals at 

enrollment for participants enrolled before 2017. The points are mean seroprevalence found 

at each tenth percentile age bin, and the line is the resulting fit using the serocatalytic 

model for non-newborns below 30 years old (n = 6,197; details found in Supplementary 

Information). c, Average DENV HAI titres at enrollment age binned into each tenth 

percentile. Confidence bounds (95%) for b and c are found using a basic non-parametric 

bootstrap, while a generalized linear model is fit in black. Mean and 95% confidence 

interval are presented as the line and shaded region.
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Fig. 2 |. Model performance and fit.
a, Three examples of HAI titre trajectories for all four DENV serotypes and JEV in three 

participants. Alternating white and grey time periods represent distinct intervals, separated 

by the sampled HAIs. The imputed probability of an infection having occurred within 

an interval is represented by point size at the post-interval sample date, and red arrows 

represent an imputed infection. The black arrows represent JEV vaccination events. b, 

Feature importance for model fits (n = 100). Gain represents the relative contribution of 

each feature. The bars represent the mean, and the whiskers represent the 95% credible 

intervals. c, Pre- and post-interval HAI titres for the DENV serotype with the largest ratio 

grouped by age at the post-interval sampling event and coloured by whether the model 

predicted a seroconversion. The yellow and blue dots represent points that were or were not 

identified as infections, respectively, by the model, and the black and red points represent a 

similar dichotomy but in laboratory-confirmed seroconversions. A fourfold increase in titres 

between samples is represented by the black diagonal line.
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Fig. 3 |. Incidence, proportion of primary infections and ratio of subclinical to symptomatic 
cases.
a,b Incidence (infections per person–year) of both symptomatic (red, n = 77) and subclinical 

(yellow, n = 972) infections across interval year (a) and age (b). c, Proportion of primary 

infections as a function of age. d,e, Ratio of subclinical to symptomatic DENV incidence 

in the cohort as a function of interval year (d) and age (e). The mean and 95% CIs for the 

ratio of subclinical to symptomatic DENV incidence are represented by the dotted lines and 

grey regions, respectively. The mean and 95% CIs for polynomial fits to time and age are 

represented by the solid blue lines and blue regions, respectively.
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Fig. 4 |. Household composition and risk of infection across n = 11,131 intervals.
a–d, Household composition (a,b), infection history (c) and immunity (d) and their impact 

on the risk of infection are shown across n = 11,131 intervals. In a, the odds ratio is shown 

for the total number of individuals in various age bins (newborn (NB), 1–5 years, 5–18 

years, and 18 years or older (GE18)) defined at the time of the post-interval sample. In b, the 

odds ratio is shown for the number of males and females of various age bins (NB, 1–5 years, 

5–18 years, and 18 years or older (GE18)) defined at the time of the post-interval sample. 

In c, the previous interval’s attack rate (AR) and the subsequent odds ratio of infection risk 

relative to having no infections in the previous interval are shown. In d, the geometric mean 

of DENV HAI titres is shown for the rest of the household members and subsequent odds 

ratio of infection risk relative to having a mean household HAI titre under 40. All models are 

adjusted for household random effects, individual pre-interval titres and the year and month 

of post-interval sample; both means and 95% CIs are presented. The vertical dashed line 

represents an aOR of 1 (no significant impact on risk).
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Fig. 5 |. Impact of pre-interval DENV titres and probability of infection and symptoms across n = 
11,131 intervals.
We first calculated the annualized probability of infection and then fit splines of order three 

to the data using a generalized logistic regression with 95% confidence intervals presented 

as shaded regions. All panels also contain means and 95% confidence intervals derived from 

basic non-parametric bootstraps. a, The annual probability of infection is a function of their 

pre-interval DENV titres. b, The annual probability that an individual is symptomatic is a 

function of their pre-interval DENV titres. c, The annual probability that an individual is 

symptomatic given that they were infected is a function of their pre-interval DENV titres.
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