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Background
Single-cell RNA sequencing (scRNA-seq) has enabled the high-throughput measure-
ment of gene expression in single cells, enabling the interrogation of cell-type-specific 
changes in gene expression and regulation. Recently, decreases in cost and advances 
in protocol efficacy have led to a rapid increase in the number of scRNA-seq datasets 
used in biological research [1]. Over the same period, there has been a corresponding 
increase in the number of methods available to analyze scRNA-seq data. As of July 2023, 
there were over 1500 tools available to perform various steps of an scRNA-seq data anal-
ysis [2, 3].

A ubiquitous step in the analysis of scRNA-seq data is the selection, by a computa-
tional method, of so-called marker genes. These marker genes are a small (typically ≤ 20 ) 
subset of genes that have expression profiles able to distinguish the sub-populations of 
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cells present in the data. Most commonly, marker genes are selected with respect to a 
specific computational clustering of the data and are used to annotate, and understand, 
the biological cell type of the defined clusters (Fig. 1a). Annotation of the cell-type of 
clusters is critical both to guide the clustering and to interpret the results of downstream 
analyses performed with respect to the clustering, such as differential expression test-
ing [4] or single-cell eQTL mapping [5]. In addition to cluster annotation, some authors 
treat the marker genes as new biological discoveries in their own right [6], as candidates 
for further perturbation or differential analyses [7], or as evidence for the quality of a 
particular clustering [8]. As well as their direct use, marker genes are a component of 

Fig. 1  Overview of marker genes usage and benchmarking. a A visual overview of the use of marker genes 
to annotate clusters. First, a clustering algorithm is performed to separate cells into putative clusters. Then, 
for each cluster, a marker gene selection method is used extract a small number of marker genes. This 
gene list is inspected and the expression of the genes visualized to give an expert-annotation of cell type 
for each cluster. b A visual overview of the benchmarking performed in this paper. First, the real datasets 
are processed and the marker gene selection methods are run on the processed datasets. The output of 
the methods is extracted and used to calculate the methods’ predictive performance and ability to recover 
expert-annotated marker genes. The processed datasets are also used to simulate additional datasets, 
on which the methods are run and their ability to recover true simulated marker genes calculated. c The 
proportion of shared genes in the top 20 genes selected by the default methods implemented by Scanpy 
and Seurat for each cluster across 10 real datasets (127 clusters in total). d A visual comparison of the rankings 
of the top 20 selected genes by the default Scanpy and Seurat methods in the CD8 T cell cluster in the 
pbmc3k dataset
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computational approaches that aim to annotate clusters automatically [9–11]. Ulti-
mately, marker genes provide a “human interpretable” summary of the transcriptomic 
profiles of cell sub-populations.

Today, many marker gene selection methods are available. These methods range 
from relatively simple differential expression based methods to those based on modern 
machine learning ideas. The most commonly used methods are implemented as part of 
the Seurat [12] and Scanpy [13] analysis frameworks, which both implement a variety 
of method options. More recently, bespoke tools have also been developed, as marker 
gene selection continues to be an active area of method development [7, 14, 15]. How-
ever, unlike other areas of scRNA-seq data analysis such as normalization, differential 
expression analysis or trajectory inference [16–18], no impartial and comprehensive 
comparison of the different marker gene selection methods is available. The lack of such 
a comparison leaves analysts unaware of the relative performance of different methods. 
Furthermore, because the most commonly used methods are implemented in larger 
analysis frameworks, no publications exist that describe in detail or justify their marker 
gene selection methods. Therefore, their widely used methods are not supported by pub-
licly scrutinized evidence of their effectiveness.

The concept of the marker gene is closely related to that of the differentially 
expressed (DE) gene, but the two concepts are not synonymous. Strictly, marker gene 
selection is a subset of the identification of DE genes, but effective and useful marker 
genes have specific characteristics that are not shared by all DE genes. Broadly, we 
define a marker gene as a gene that can be used to distinguish between sub-popu-
lations of cells. Good marker genes typically exhibit a large difference in expression 
between cell types and, canonically, are strongly up-regulated in a cell type of inter-
est, exhibiting high expression in that cell type and no or low expression in other cell 
types. Thus, a marker gene is a narrower, more specific concept than that of a DE 
gene, which is context dependent. In the analysis of scRNA-seq data, the term DE 
gene does not have a unique meaning as it refers generally to a gene that shows a sta-
tistically significant difference in expression in a specific comparison. DE genes can 
therefore refer to genes found in a comparison between cells in different clusters in 
the same sample [17, 19] or in the same cluster between different samples [4, 20, 21], 
or to a comparison between arbitrary groups of cells [22]. When DE methods are used 
to identify marker genes a decision has to be made about how to map the idea (and 
desirable characteristics) of marker genes to a concrete between-groups comparison. 
Indeed, different methods use different concrete comparisons: Seurat and Scanpy 
use a “one-vs-rest” cluster comparison strategy, while scran employs a “pairwise” 
approach (see the “Methods” section for details). Significantly, both of these strategies 
are different to those compared in previous benchmarks of single-sample DE meth-
ods [17, 23] that focused on comparing two specific cell sub-populations. For exam-
ple, the “one-vs-rest” strategy creates a situation with highly imbalanced sample sizes 
and increased biological heterogeneity in the pooled “other” group, both of which we 
would expect to pose significant challenges to DE methods. As such, marker gene 
selection used for distinguishing between sub-populations of cells is conceptually and 
practically a distinctly different task from the more general challenge of identification 
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of all genes with statistically significant differences in expression in a given compari-
son context, with no consideration for whether or not detected DE genes are useful 
for distinguishing a given group of cells from others.

The realization that marker gene selection and DE gene detection are distinctly 
different tasks motivated the current study. We identified that the conclusions from 
previous, often excellent, benchmarking studies of methods to detect DE genes from 
scRNA-seq data [17, 23] are not directly portable to the task of marker gene selection. 
Thus, dedicated benchmarking of marker gene selection methods is necessary given 
the centrality of marker genes in scRNA-seq analyses and the fact previous DE gene 
identification benchmarking efforts do not provide actionable advice for marker gene 
selection. Of course, many methods for marker gene selection are also more general 
DE gene detection methods, but while many methods can be used for both DE gene 
detection and marker gene selection we observe that their performance and suitabil-
ity can differ greatly on the two tasks. Here, we designed and conducted a rigorous 
benchmarking of methods for the specific and distinct task of the selection of marker 
genes from scRNA-seq data, taking inspiration and some important lessons from pre-
vious DE gene detection benchmarking studies [17, 23].

In this paper, we compared 59 methods for selecting marker genes in scRNA-seq 
data. The methods were benchmarked using 14 scRNA-seq datasets, encompassing 
a range of protocols and biological samples, as well as over 170 additional simulated 
datasets. We benchmark a variety of methods (applying both traditional statistical 
and modern machine learning approaches) that have been designed specifically for 
the task of marker gene selection and are not applicable to more general DE gene 
detection. This study has a substantially different simulation setup compared to DE 
gene benchmarking studies, one that we designed specifically for the distinct context 
and challenges of marker gene selection. More than half of the datasets used in this 
study are bolstered by expert identification of marker genes to which we can compare 
the marker genes selected by computational methods. This work uses new and spe-
cific analyses for assessing marker gene selection methods, compared with prior work 
benchmarking general DE gene detection methods. Specifically, methods were com-
pared on their ability to recover simulated and expert-annotated marker genes, the 
predictive performance and characteristics of the gene sets they select, their memory 
usage and speed, and their implementation quality (Fig. 1b). To scrutinize the meth-
odologies of the most commonly used methods, we created case studies based on 
specific observations made during benchmarking. These case studies highlight several 
notable issues with, and inconsistencies between, the methods implemented in the 
Scanpy and Seurat packages. Importantly, we make different recommendations about 
preferred methods for marker gene selection compared with recommendations for 
the more general DE gene detection task from prior DE gene detection benchmarking 
work, providing immediate, actionable information for researchers relying on marker 
gene selection in their scRNA-seq data analyses.

Our comparisons and case studies demonstrated that while most methods perform 
well there is still variability in the quality of the marker genes selected. Significantly, 
more recent methods were not able to comprehensively outperform older methods. 
The case studies emphasized that there are large but unappreciated methodological 
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differences even between similar methods, which can have large effects on their out-
put in some scenarios. Overall, our results highlight the efficacy of simple methods, 
such as the Wilcoxon rank-sum test, for selecting marker genes.

Results
Scope of benchmarking

In this paper, we use the phrase “marker gene” as shorthand for “cell-sub-population-
specific marker gene”; that is, a gene whose expression distinguishes a particular cell 
sub-population in a given dataset. As described above, marker genes can be used for 
a range of purposes, but in this paper, we focus on their use in the annotation of the 
biological cell-type of clusters. This use of marker genes is by far their most common 
application in scRNA-seq data analysis. This focus, however, precludes an assessment 
of other types of methods that also select so-called marker genes. We do not consider 
methods that aim to select a small set of genes maximally informative for a given full 
clustering, rather than for each identified cluster [23–25]. We also do not consider the 
ability of selected marker genes to be used in designing spatial transcriptomics analy-
ses [7, 25]. (See the “Methods” section for more details on these out-of-scope methods.) 
Finally, we only directly consider the quality of the marker genes in their use for annota-
tion, rather than for other purposes, such as to gauge the quality of a clustering [8] or to 
provide markers that can be used in wet-lab applications [6]. We believe, however, that 
methods that select high quality marker genes for annotation will likely also perform 
well at these other tasks.

Method characteristics

The methods benchmarked in this paper (summarized in Table 1) differ in a number of 
important ways. First, they differ in the methodology they use to quantify the extent to 
which each gene can ‘distinguish’ cell types and is therefore a strong marker gene. Most 
methods use some form of differential expression (DE) testing (Seurat, Scanpy, scran 
findMarkers(), presto, edgeR, limma). Conversely, other methods use ideas of feature 
selection (RankCorr), predictive performance (NSForest, SMaSH) or alternative statis-
tics (Cepo, scran scoreMarkers(), Venice) to select marker genes. Within methods 
based on DE testing, most (Scanpy, Seurat) use one-vs-rest testing while scran uses an 
alternative pairwise strategy (see the “Methods” section for details). Among DE-based 
methods a variety of multiple-hypothesis correction methods are used (see the “Meth-
ods” section for details). Most DE-based methods compare the overall expression dif-
ference between clusters for each cell. This comparison takes into account both the size 
of any expression difference and the number of cells in which an expression difference 
exists. The scran-binomial method, however, discretizes expression values as either 
expressed or not expressed, and therefore only takes the number of cells expressing a 
gene into account. In addition to differences in methodology there are substantive dif-
ferences in the outputs of the methods: RankCorr and NSForest return only a specific 
set of genes determined to be marker genes, while other methods return a ranking of 
all genes for strength of marker-gene status, generally by p-value. While these methods 
do provide a strategy for selecting a set of marker genes, say taking those with a p-value 
below a given threshold, in practice the strategy is not feasible due to the small size of 
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Table 1  Marker gene selection methods benchmarked in this paper

Package Version Language Parameters Description Citation

Seurat 4.0.5 R test.use = t Welch’s t-test [12]

- - - test.use = “wilcox” Wilcoxon rank-sum test (with 
tie-correction)

-

- - - test.use = “LR” Genewise Logistic regression -

- - - test.use = “neg-
binom”

Two group Negative Binomial 
GLM

-

- - - test.use = “poisson” Two group Poisson GLM -

- - - test.use = “roc” ROC assessment of gene 
expression as classifier

-

- - - test.use = “bimod” Bimodal likelihood ratio test -, [27]

- - - test.use = “MAST” MAST -, [19]

COSG 0.9.0 R None Cosine score [15]

Scanpy 1.8.1 Python test_use = “t-test” 
rankby_abs = True

Welch t-test ranking by the 
absolute value of the score

[13]

- - - test_use = “t-test_
over_estimvar” 
rankby_abs = True

Welch t-test with overesti-
mated variance ranking by the 
absolute value of the score

-

- - - test_use = “t-test” 
rankby_abs = False

Welch t-test ranking by the raw 
score

-

- - - test_use = “t-test_
over_estimvar” 
rankby_abs = False

Welch t-test with overesti-
mated variance ranking by the 
raw score

-

- - - test_use = “wil-
coxon” rankby_abs = 
True tie_correct = 
True

Wilcoxon rank-sum test ranking 
by absolute value of the score 
with tie-correction

-

- - - test_use = “wil-
coxon” rankby_abs = 
False tie_correct = 
True

Wilcoxon rank-sum test ranking 
by the raw score with tie-
correction

-

- - - test_use = “wil-
coxon” rankby_abs = 
True tie_correct = 
False

Wilcoxon rank-sum test ranking 
by absolute value of the score 
without tie-correction

-

- - - test_use = “wil-
coxon” rankby_abs = 
False tie_correct = 
False

Wilcoxon rank-sum test ranking 
by the raw score without tie-
correction

-

scran 1.22.1 R findMarkers() test.
type = “t”, pval.type 
= “any”

Pairwise t-test up-ranking 
genes with “any” small p-values

[28]

- - - findMarkers() test.
type = “t”, pval.type 
= “all”

Pairwise t-test up-ranking 
genes with “all” small p-values

-

- - - findMarkers() test.
type = “t”, pval.type 
= “some”

Pairwise t-test up-ranking 
genes with “some” small 
p-values

-

- - - findMarkers() test.
type = “wilcox”, pval.
type = “any”

Pairwise Wilcoxon rank-sum 
test up-ranking genes with 
“any” small p-values

-

- - - findMarkers() test.
type = “wilcox”, pval.
type = “all”

Pairwise Wilcoxon rank-sum 
test up-ranking genes with “all” 
small p-values

-

- - - findMarkers() test.
type = “wilcox”, pval.
type = “some”

Pairwise Wilcoxon rank-sum 
test up-ranking genes with 
“some” small p-values

-

- - - findMarkers() test.
type = “binom”, pval.
type = “any”

Pairwise Binomial test up-
ranking genes with “any” small 
p-values

-
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Table 1  (continued)

Package Version Language Parameters Description Citation

- - - findMarkers() test.
type = “binom”, pval.
type = “all”

Pairwise Binomial test up-
ranking genes with “all” small 
p-values

-

- - - findMarkers() test.
type = “binom”, pval.
type = “some”

Pairwise Binomial test up-
ranking genes with “some” 
small p-values

-

scran 1.22.1 R scoreMarkers(), mean.
logFC.cohen

Pairwise Cohen’s d, mean 
across genes

NA

- - - scoreMarkers(), min.
logFC.cohen

Pairwise Cohen’s d, minimum 
across genes

-

- - - scoreMarkers(), 
median.logFC.cohen

Pairwise Cohen’s d, median 
across genes

-

- - - scoreMarkers(), max.
logFC.cohen

Pairwise Cohen’s d, maximum 
across genes

- - - scoreMarkers(), rank.
logFC.cohen

Pairwise Cohen’s d, min rank 
across genes

-

- - - scoreMarkers(), mean.
AUC​

Pairwise AUC, mean across 
genes

-

- - - scoreMarkers(), 
median.AUC​

Pairwise AUC, median across 
genes

-

- - - scoreMarkers(), min.
AUC​

Pairwise AUC, minimum across 
genes

-

- - - scoreMarkers(), max.
AUC​

Pairwise AUC, maximum across 
genes

-

- - - scoreMarkers(), rank.
AUC​

Pairwise AUC, min rank across 
genes

-

- - - scoreMarkers(), mean.
logFC.detected

Pairwise lfc in detection pro-
portion, mean across genes

-

- - - scoreMarkers(), min.
logFC.detected

Pairwise lfc in detection pro-
portion, minimum across genes

-

- - - scoreMarkers(), 
median.logFC.detected

Pairwise lfc in detection pro-
portion, median across genes

-

- - - scoreMarkers(), max.
logFC.detected

Pairwise lfc in detection 
proportion, maximum across 
genes

-

- - - scoreMarkers(), rank.
logFC.detected

Pairwise lfc in detection pro-
portion, min rank across genes

-

presto 1.0.0 R None Optimized Wilcoxon rank-sum 
test

NA

edger 3.36.0 R GLM Negative Binomial GLM with 
empirical Bayes (EB) shrinkage

[29, 30]

edger 3.36.0 R QL - With quasi-likelihood fitting [29, 30]

RankCorr NA Python lambda = 2 Sparse seperating hyperplane 
selection

[26]

RankCorr NA Python lambda = 5 - [26]

RankCorr NA Python lambda = 10 - [26]

glmGamPoi 1.6.0 R None Negative Binomial QL GLM 
with EB shrinkage

[31]

limma 3.50.0 R Standard Linear model with EB shrinkage [32, 33]

limma 3.50.0 R Voom - With weighting [32, 33]

limma 3.50.0 R Trend - [32, 33]

Cepo 1.0.0 R None Stability statistic [34]

NSForest 3.0 Python None Random forest classifier [14]

Venice 0.0.11 R None Classification scoring [35]

SMaSH 0.1.2 Python None Deep neural net classifier [7]
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the returned p-values even after multiple testing correction (Additional file 1: Fig. S3, 
see below), which makes selecting a principled threshold challenging. To account for 
the difficulty of selecting a fixed set of markers we follow convention and select only a 
fixed-size set of the top n marker genes (for n = 5, 10, 20 say) as ranked by the method. 
In addition, another difference between methods is the direction of regulation of genes 
the method is designed to select. In this context, a gene is up-regulated (down-regu-
lated) if it is more (less) highly expressed in the cluster of interest relative to other clus-
ters. Up-regulated marker genes are likely to be more interpretable as the presence of 
gene expression is easier to reason about, and historical use of marker genes has favored 
selection of up-regulated markers for tasks such as cell sorting. Some methods, includ-
ing Scanpy by default, will only select up-regulated marker genes, while other methods 
can select genes that are either up- or down-regulated (Fig. 2b). The marker gene meth-
ods also differ greatly in the log fold-changes between the cluster of interest and all other 
clusters. In particular, Scanpy’s methods select large positive log fold-changes, while 
most methods select marker genes with log fold-changes around 1. Marker genes with 
large log fold-change are easier to visualize and interpret. Finally, a notable feature of the 
space of methods is duplication in methodology amongst the most commonly used Seu-
rat, Scanpy, and scran methods. We explore the relationship between Scanpy and Seurat 
methods in particular in case studies in this paper.

Benchmarking strategy

To compare the performance of the different methods, we use a variety of metrics 
intended to provide a holistic assessment of a method’s performance. The diversity of 
techniques used by the methods to select marker genes means it is important that the 
metrics used to benchmark methods are not biased towards a particular set of tech-
niques. For example, a simulation-based comparison could employ a similar generative 
probabilistic model to those used to perform statistical testing, potentially leading to 
overoptimistic conclusions. For this reason, we compare methods based on both their 
ability to recover simulated marker genes and the predictive performance of the gene 
sets they select. In addition, whether a gene is a marker gene depends on whether it 
is “known” to be a marker gene [26]. Methods may be most useful if they find known 
marker genes, even if genes which better distinguish cell subpopulations are present in a 
dataset. To benchmark the methods’ ability to select “known” marker genes we compare 
their ability to select expert-annotated marker genes in 8 datasets. In addition, we com-
pare the methods based on their speed and memory efficiency and the quality of their 
software implementations. Overall, we benchmarked the performance, computational 
efficiency, and output characteristics of 59 methods (Table  1) across 14 real datasets 
(Table 2) and over 170 additional simulated datasets. The real datasets were chosen to 
represent a range of protocols—including 10X Chromium, Smart-seq3, CITE-seq, and 
MARS-seq—and a range of sizes, from approximately 3000 to 60,000 cells.

Method concordance and selected marker gene characteristics

First, we compared the extent to which the different methods produced concordant 
gene sets. To motivate this analysis and the benchmarking more broadly, we com-
pared the concordance of the default methods implemented by Scanpy and Seurat, 
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which are the two most commonly used methods. For the top 20 genes selected by 
the methods, we calculated the proportion of genes shared between the methods 
and visualized the difference in their rankings. Despite their similar methodology the 
methods showed only poor to moderate concordance. Across datasets many clusters 
showed less than 50% overlap between the two methods (Fig.  1c). Even in clusters 
with a high proportion of shared genes, such as the CD8 T cluster in the pbmc3k 
dataset, the methods’ rankings were quite different (Fig. 1d).

To examine the concordance of all the methods more generally, we performed a 
hierarchical clustering based on the proportion of genes shared between methods 
averaged across clusters and datasets (Fig. 2a; see the “Methods” section for details). 
This analysis recapitulated many known features of the space of methods: the den-
drogram groups together similar methodologies implemented in different packages, 
such as the Wilcoxon-based methods in Seurat of Scanpy or methods based on nega-
tive binomial regression, and methods that only select up-regulated genes (Fig.  2). 
In addition, the clustering also revealed that some Seurat methods with different 
methodologies give similar rankings. Calculating the dendrogram on the results for 
specific datasets showed qualitatively similar conclusions (Additional file 1: Fig. S1). 
Also, the proportion of genes shared between methods did not show a relationship to 
the number of cells in a given cluster (Additional file 1: Fig. S2).

Next, we examined the characteristics of the marker genes produced by the analy-
sis. First, we calculated a series of metrics that summarize general properties of the 
selected marker genes, including the overall mean expression of the gene selected 
and the proportion of selected marker genes that were up-regulated (Fig. 2b). In this 
context, up-regulated means that the gene is more highly expressed in the cluster of 
interest than in other clusters. These metrics were calculated for the at most top 5 
genes selected by each method in the all real datasets and the median over clusters 

Table 2  scRNA-seq datasets used in this paper

Dataset N. cells N. cell 
populations

Description Technology Citation

Zeisel 3005 7 Mouse brain 10X Chromium [72]

pbmc3k 2638 9 PBMC 10X Chromium [37]

Lawlor 604 8 Human pancreas SMARTer v1 [38]

Endothelial 30,641 7 Human lung endothelium 10X Chromium [39]

Astrocyte 3013 10 Mouse brain astrocytes Single-nucleus RNA-seq [8]

Paul15 2730 19 Mouse hematopoietic stem 
cells

MARS-seq [40]

Zhao 60,672 29 Human liver resident immune 
cells

10X Chromium [41]

SS3 PBMC 3128 17 PBMC Smart-seq3 [42]

CITE-seq 8617 12 CBMC CITE-seq [12]

Mesenchymal 11,408 9 Human lung mesenchymal 10X Chromium [39]

Stephenson 25,000 15 Human blood 10X Chromium [43, 44]

Ren 25,000 16 Human blood 10X Chromium [43, 45]

Yoshida 46,431 19 Human blood 10X Chromium [43, 46]

Dominguez Conde 25,980 11 Human blood 10X Chromium [43, 47]
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and datasets was visualized. These metrics highlight a number of patterns amongst 
the marker genes that the different methods select. Most methods select a majority of 
up-regulated marker genes. Indeed, some methods including including presto, scran’s 
findMarkers() Wilcoxon and scoreMarkers() methods, and the Scanpy’s raw 
methods select almost all up-regulated genes, while SMaSH and methods based on 
negative binomial GLMs, Welch’s t-test and binomial tests select more down-regu-
lated marker genes. In addition, the genes that methods select differ in terms of the 
mean and variance of their cluster-specific expression. For example, scran’s score-
Markers() methods that binarised expression (“detected” expression) select genes 

Fig. 2  Method concordance and output characteristics. a A dendrogram representation of the hierarchical 
clustering of methods based on the proportion of shared genes in the at most top 20 genes they select. 
Methods are labeled by the package which implements them, whether they select only up-regulated marker 
genes or both up- and down-regulated marker genes, and whether they output a set of marker genes or 
a ranking of genes by strength of marker gene status. b A variety of features summarizing (averaging over 
datasets) the characteristics of the at most top 5 marker genes methods select. Methods are sorted by 
alphabetical order. c Three features (Area under the curve, log fold-change and Cohen’s d) summarizing 
(averaging over datasets) the one-vs-rest effect size of the at most top 5 marker genes that methods select. 
The three features are quantile normalized and methods are ranked by the median score across datasets



Page 11 of 37Pullin and McCarthy ﻿Genome Biology           (2024) 25:56 	

with systematically lower expression. On the other hand, Seurat’s methods show 
systematically higher variance in the cluster of interest compared to scran’s score-
Markers() methods.

Second, we calculated measures of effect sizes for the selected marker genes. Ide-
ally, methods would select genes which have a large difference in gene expression in the 
cluster of interest, compared to expression in all other clusters. To measure the effect 
size, we used AUC (i.e., area under the receiver operator characteristic curve using the 
expression data as a classifier for binary cluster status) and absolute values of Cohen’s d 
statistic and the log fold-change, all in a one-vs-rest manner. These metrics were calcu-
lated for the at most top 5 genes selected by all methods. For visualization the median 
was taken over clusters and datasets, and quantile normalization was applied to make 
the metrics’ distributions comparable. Methods are ranked by their median values over 
the three metrics (Fig. 2c). Of the three metrics, Cohen’s d and AUC are highly concord-
ant. Presto and Scanpy’s methods select genes with the largest overall effect sizes, while 
scran’s findMarkers() “any”  methods, Scanpy’s t-test (abs), and ranking by the abso-
lute value of the log-fold change have the lowest effect median effect sizes. The genes 
selected by ranking by the absolute value of the log fold-change generally have extremely 
low expression in the cluster of interest and low expression in all other clusters causing 
large log fold-changes but small differences in other effect sizes.

Finally, for the DE-based methods we extracted and visualized p-values calculated by 
the methods. As noted above, the p-values were extremely small even after conventional 
multiple testing correction (Additional file  1: Fig. S3a, b). The small magnitude of the 
p-values is caused by the large sample sizes in the datasets (where each cell is treated 
as a replicate) and double dipping inherent in performing clustering and statistical test-
ing on the same data. Surprisingly, many methods showed p-values of exactly 0, espe-
cially in the larger Zhao and Endothelial datasets (Additional file 1: Fig. S3c). This feature 
occurred for methods implemented in both R and Python, and has a large impact on 
Seurat’s methods as described in the case studies section.

Performance on simulated marker genes

To critically assess the performance of the methods, we first compared their ability to 
recover true simulated marker genes. We use the splat simulation model implemented in 
the splatter R package to simulate scRNA-seq datasets [48]. The splat model is the most 
widely used simulation model in scRNA-seq benchmarking studies [49] and was recently 
shown to be in the top tier of simulation methods [50]. To simulate marker genes specifi-
cally, we designed and implemented a novel marker gene score to select and rank marker 
genes using the splat model’s cluster-specific differential expression parameters (Meth-
ods). A limitation of the splat model is that it does not allow these cluster-specific differ-
ential expression parameters to be estimated from data. Indeed, no current simulation 
scRNA-seq method incorporates this facility [49]. To overcome this limitation in prac-
tice we performed analyses comparing simulated and true marker genes to identify val-
ues of the parameters that were able to recapitulate true expert-annotated marker genes 
(Additional file 1: Figs. S8-9: compare with e.g., S5-6). Our simulations also include sen-
sitivity analyses using a range of plausible values for these parameters.
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Ten simulation scenarios were considered, each with parameters estimated from one 
of the real datasets (Table  2). All simulations used to compare performance had 2000 
genes, 2000 cells, and 5 clusters. In this analysis we only simulate up-regulated marker 
genes and the outputs of the methods are also filtered to include only up-regulated 
marker genes (see the “Methods” section for details). Each simulation scenario was 
repeated 3 times to gauge variability. For each method in each simulated cluster we 
select the top 20 simulated marker genes and the (at most) top 20 marker genes selected 
by each method. If a method returns less than 20 marker genes per cluster, we use only 
the genes the method returns. With the top sets of genes we computed the precision, 
recall, and F1 score of each method in each cluster and replicate (Additional file 1: Fig. 
S12). This analysis showed little replicate- and cluster-specific variability so we sum-
marized the performance of each method in each scenario by taking the median across 
clusters and replicates (Fig. 3).

Overall, we found concordant results across simulation scenarios. Assessed by 
recall (the proportion of all true marker genes that are selected as marker genes by 
the method), the best performing methods were edgeR, scran’s Binomial-any method, 
Wilcoxon rank-sum based methods (Seurat and Scanpy), Student’s t-test, and Rank-
Corr with the lambda parameter set to 10. The worst methods were NSForest, Cepo 
and RankCorr ( � = 2) (Fig. 3a). Despite the strong performance of scran’s Binomial-any 
method the rest of scran’s methods showed relatively weak performance. Assessed by 
precision (the proportion of marker genes a method selects that are true marker genes), 
the best performing methods were RankCorr and NSForest as well as scran Binomial-
any (Fig. 3b). The discrepancy between precision and recall for RankCorr and NSForest 
occurs because RankCorr and NSForest only select a very small number of genes. To 
provide an overall ranking of the methods we calculated the F1 score (a combination 

Fig. 3  Comparison of methods using simulated datasets. a Calculated recall for all methods on simulation 
scenarios based on all real datasets. The marker genes selected based on the simulation model parameters 
are used as the ground truth. Methods are ranked top to bottom in the heatmap by median recall across 
scenarios. b As in (a) but now with precision. c As in (b) but calculating F1 score. These results average over 
simulated clusters and simulation replicates and are conducted with 20 genes selected and a location 
parameter for the DE factor in the splat simulation model of 3



Page 13 of 37Pullin and McCarthy ﻿Genome Biology           (2024) 25:56 	

of recall and precision) for each method and dataset and then ranked the methods by 
their median performance over datasets (Fig. 3c). In this ranking, the best performing 
methods were RankCorr ( � = 10), the Wilcoxon rank-sum based methods, and edgeR’s 
methods. NSForest, Cepo, and scran’s other Binomial methods showed the worst per-
formance. While the results were generally concordant between scenarios the Lawlor 
dataset-based scenarios showed some differences: here the log fold-change methods and 
Seurat’s Poisson GLM were more effective, while scran Binomial-any was less effective. 
This difference is likely caused by the higher mean counts of the Lawlor dataset relative 
to other datasets (Additional file 1: Fig. S4).

Further analyses assessed the sensitivity of these results to different analysis param-
eters. Using different values ( n = 5, 10, 20, 40 ) for the number of genes had little effect 
on the overall ranking, though edgeR showed improved performance when 20 and 40 
genes were used (Additional file 1: Fig. S10). Using different values of the cluster-specific 
differential expression parameters also had little effect, except that the COSG method 
performed better when smaller values were used (Additional file 1: Fig. S11).

Expert‑annotated marker gene recovery

Next, we compared the ability of the methods to recover expert-annotated sets of marker 
genes. This analysis is intended to assess the ability of methods to select genes which 
are known marker genes. We used expert-annotated marker gene sets for four datasets: 
the Lawlor, Smart-seq3, pbmc3k, and Zeisel datasets, derived mainly from the papers 
and tutorials describing these datasets (see the “Methods” section for details). In addi-
tion, for the four harmonized blood datasets (Ren, Stephenson, Yoshida and Dominguez 
Conde) we used marker genes drawn from a recent immune-cell atlas, created by the 
same group that harmonized those datasets [43, 47]. Initially, we hoped to perform a 
comparison based on genes available in online databases such as CellMarker [51] and 
PangloDB [52], however we found that there were substantial differences between data-
bases, and that marker-gene coverage for specific cell types was typically sparse. In addi-
tion, it was difficult to harmonize cell-type labels between databases.

Concretely, for each method and cluster we computed recall using the expert-anno-
tated marker genes as the ground truth. Furthermore, we calculated the number of 
clusters that could be successfully annotated using the method’s selected marker genes. 
For this calculation we considered a cluster to be successfully annotated if all its associ-
ated expert-annotated marker genes were selected by the method. In these analyses, the 
number of selected marker genes used was based on the number of expert-annotated 
marker genes per cluster. First, for the Lawlor dataset, we used the canonical mark-
ers used for classification in the paper describing the dataset [38] and selected the top 
gene for each method. In this dataset, Venice, Seurat’s ROC, logistic regression, Poisson 
GLM and Bimod methods, presto, limma, ranking by the raw log fold-change, Scanpy’s 
Wilcoxon methods, scoreMarkers()’s min-cohen, min-AUC and mean-AUC meth-
ods and Student’s t-test successfully selected all expert-annotated marker genes while 
SMaSH and again scran’s findMarkers() methods and Cepo showed poor perfor-
mance (Fig. 4a, c). Second, for the pbmc3k dataset we used the marker genes given in 
the Seurat Guided Clustering Tutorial and used the (at most) top 10 selected genes. In 
this dataset, the best performing methods were the log fold-change (raw), and Student’s 
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t-test, while the worst performing methods were the t-test-based scran methods, Cepo, 
and RankCorr (Fig. 4b, d). For example, the Student’s t-test selected marker genes could 
be used to annotate 7 clusters, while those selected by Cepo could only annotate 2 
(Fig. 4d). Strikingly, all methods struggled to select the expert-annotated marker genes 
for the Memory and Naive CD4 T cell clusters. This effect occurs because the expert-
annotated marker genes for these clusters, especially IL7R, have expression profiles that 
separate all T cells from other clusters, not the specific T cell subtypes of interest (Addi-
tional file 1: Fig. S7).

Similarly, we calculated the performance of the methods on the expert-marker genes 
for the Smart-seq3 and Zeisel data. In these comparisons the relative performance of the 
methods was similar to the pbmc3k and Lawlor datasets but the absolute performance 

Fig. 4  Comparison of methods based on expert-annotated marker genes. a Recall of methods when 
selecting marker genes in the Lawlor dataset using a set of expert-annotated marker genes as the ground 
truth. The marker genes used to annotate the clustering in the original publication describing the Lawlor 
dataset were used as the set of expert-annotated marker genes. The top gene was selected from the output 
of each method. b As in (a) but for the pbmc3k dataset, using the (at most) top 10 marker genes from each 
method and taking the set of expert-annotated marker genes to be those used in the Seurat package’s 
“Guided Clustering Tutorial.” c The number of clusters that are successfully annotated using the selected 
marker genes in the Lawlor datasets (other details as in a). A specific cluster is defined as successfully 
annotated if the selected marker genes include all the expert-annotated marker genes for that cluster. 
d The same success of annotation analysis as in (c) but for the pbmc3k dataset, with the details of the 
expert-annotated marker genes and number of selected marker genes as in (b)
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of methods was generally worse, although some scran methods did show improved per-
formance in the Smart-seq3 dataset (Additional file 1: Figs. S13-14). Examination of the 
results suggested that the poor absolute performance was mainly due to marker genes 
being difficult to select or because the methods selected other strong marker genes. 
For example, PECAM1, the marker of Naive/Memory CD8 T cells in the Smart-seq3 
PBMC dataset, is not found because its expression profile means that it is only a good 
marker relative to other T cells and not globally, which is the implicit frame of reference 
of the methods (Additional file 1: Fig. S17). On the other hand, in the Zeisel dataset’s 
oligodendrocyte cluster Seurat’s Wilcoxon method’s top 10 selected marker genes are all 
strong markers, but the expert-annotated marker gene HAPLN2 is simply not selected 
(Additional file 1: Fig. S6). In addition, examining the genes selected by poor performing 
methods for these datasets reveals reasons for their poor performance. For the interneu-
ron cluster of the Zeisel dataset the top 2 genes selected by Seurat’s t-test method are 
strongly up-regulated in the interneuron cluster but are also up-regulated in most other 
clusters (Additional file 1: Fig. S6a). In contrast, the top 2 genes selected by scran’s t-test-
any method for the interneuron cluster of the Zeisel dataset show strong up-regulation 
only in a different (i.e., not interneuron) cluster, making them poor marker genes of the 
interneuron cluster (Additional file 1: Fig. S6b).

In the harmonized blood datasets, most methods failed to select all marker genes 
across clusters (Additional file 1: Figs. S15-16). The best performing methods across the 
four datasets were Wilcoxon methods, SMaSH, RankCorr with � = 2 , Student’s t-test, 
and limma. The scoreMarkers() methods in scran performed poorly (Additional 
file 1: Figs. S15-16).

Predictive performance

To gain a different perspective on marker gene selection, we compared the predictive 
accuracy of the gene sets selected by competing methods. The idea of this comparison 
is that better gene sets should capture more “information” about which cells are in each 
cluster. We quantify the amount of information by measuring the predictive perfor-
mance of a classifier for multi-class cluster status trained on only the gene sets selected 
by the methods. Specifically, we select the top 5 marker genes for each method, dataset, 
cluster combination. Three different classifiers were tested: a KNN classifier, an SVM 
classifier, and a more direct alternative: classifying each cell as the cluster with the high-
est summed expression across that cluster’s marker genes. (In general, the methods gave 
highly concordant results so we only visualize the results from the KNN classifier in the 
main text.) The KNN and SVM classifiers were trained using the marker genes pooled 
across cell types and assessed using 5-fold cross validation, while the summed max clas-
sifier was tested using the 5-fold test sets as it had no tunable parameters. While concep-
tually distinct from other comparison methods applied in this paper, this comparison 
was able to reproduce features seen in other comparisons, such as the difficulty of dis-
tinguishing between the Naive CD4 T and Memory CD4 T cells in the pbmc3k dataset 
(Fig.  5a). To assess the performance of the methods we calculated a median F1 score 
across clusters for each fold and dataset (Fig. 5b). The classifiers gave similar F1 scores, 
though the summed maximum expression classifier had generally lower performance 
(Fig. 5b, Additional file 1: Figs. S18a, S19a). To summarize each method’s performance 
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across datasets, we computed the z-score transformation of median F1 score within 
datasets, noting the low between-fold variability, and then ranked the methods by their 
mean z-scores (lowest first) across datasets (Fig. 5c, Additional file 1: Figs. S18b, S19b). 
Using z-scores accounts for the wide variability in F1 scores observed across datasets, 
likely due to differences in the quality of their clusterings. The three classifiers gave simi-
lar rankings. Across datasets and classifiers the best performing methods are limma 
(trend), Seurat logistic regression, Wilcoxon-test methods, and t-test methods other 
than Seurat’s t-test; the worst performing methods included Cepo, scran’s scoreMark-
ers() methods, Seurat’s t-test method, NSForest, absolute value log fold-change rank-
ing, and scran’s binomial test methods.

Computational performance and implementation quality

Finally, we compared the computational performance of the methods and the quality 
of their implementations. First, the methods were compared based on their speed and 

Fig. 5  Comparison of methods using predictive performance. a A confusion matrix representation of the 
performance of a KNN (three nearest neighbors) classifier using the set of genes selected by the Seurat 
Wilcoxon method in the pbmc3k dataset. b Median F1 score of the KNN classifier using genes selected by 
all marker gene selection methods in the Zhao dataset. Each point is the F1 score in one of the 5 folds. c The 
z-score of the median F1 score of the KNN classifier (averaging across folds) in each dataset. Methods are 
ranked top to bottom by their mean z-score across datasets



Page 17 of 37Pullin and McCarthy ﻿Genome Biology           (2024) 25:56 	

memory consumption (see the “Methods” section for details of how these were meas-
ured). Speed is particularly important for marker gene selection methods given the 
common need to run them multiple times when iterating through different clusterings 
of the data. The methods were run on all datasets as well as additional simulated data-
sets where the total number of cells and number of clusters were varied. Running the 
methods on all datasets highlighted that the methods had a very wide range of speeds 
(Fig.  6a). For example, on the large Zhao dataset (60,672 cells) edgeR runs in over 10 
h while Scanpy’s default method runs in less than 15 s. Overall, the slowest methods 
were the edgeR methods, Seurat’s NB GLM and MAST methods, and NSForest, while 
the fastest were most of Scanpy’s methods, presto, Cepo RankCorr, and COSG. Further-
more, we observed that Seurat’s methods are substantially slower than the scran and 
Scanpy methods even when implementing the same statistical tests. For example, on the 

Fig. 6  Comparisons of methods’ computational performance and implementation quality. a Heatmap 
displaying the time taken for all methods to run across all 10 real datasets. Methods are ranked top to bottom 
in the heatmap by median time taken over datasets, largest at the top. Note that the color scale of the 
heatmap is a log scale. b Heatmap displaying the memory usage of all methods across all datasets. Methods 
are ranked top to bottom in the heatmap by median memory usage over datasets, largest at the top. c Time 
taken for all methods on simulated datasets with increasing numbers of total cells. Points are averages over 
3 simulation replicates. All simulations had parameters estimated from the pbmc3k dataset and a location 
parameter for the DE factor of 3. d Assessment of the implementation quality of packages which implement 
methods for selecting marker genes based on 5 criteria
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Zhao dataset Seurat’s t-test method took over 90 minutes to run, while the equivalent 
Scanpy method took 14 seconds. These results were strongly concordant across simula-
tions with varying numbers of total cells and number of clusters, which showed little 
change in the ordering of methods as the number of cells or clusters increased (Fig. 6c, 
Additional file 1: Fig: S20a). Next, we compared the memory usage of all methods across 
datasets (Fig.  6b). These measurements showed that memory usage was substantially 
higher across methods for the larger datasets (Endothelial, Mesenchymal, Zhao) studied. 
The SMaSH method used the most memory, while edgeR, limma (voom), and glmGam-
Poi methods were also memory intensive, while scran methods, presto and Venice used 
the least. Simulations with varying numbers of total cells and clusters particularly high-
lighted the high memory usage of edgeR, glmGamPoi, and limma when the total number 
of cells was high (Additional file 1: Figs. S21, S20b)

For a final assessment of usability, we compared the quality of the software implement-
ing each method. Although this analysis is somewhat subjective, how easy a method is 
to install and run is one of the strongest determinants of its practical utility. For this 
analysis, we consider methods on the level of packages. To compare the packages, we 
assessed their performance as either good, adequate or poor for five criteria: accessibil-
ity, installation, documentation, ease of use and the interpretability of output (Fig. 6d; 
see the “Methods” section for details). Overall, the Seurat, Scanpy, and scran packages 
have excellent implementations. The SMaSH method’s implementation is good, though 
with limited documentation. Cepo’s implementation is very good except for difficult-
to-use output that mangles cluster names. COSG has a good implementation, though 
with somewhat limited documentation and output interpretability. Next, edgeR, limma, 
glmGamPoi, and presto all have good implementations with particular issues: the gen-
eral purpose edgeR, limma and glmGamPoi methods need additional code to be used 
to select marker genes, while presto is difficult to install and is not available from stand-
ard repositories. Finally, NSForest and RankCorr are implemented only in the form of 
Python scripts in GitHub repositories with little documentation.

Impact of dataset characteristics

To better understand the performance of different methods, we also assessed the impact 
of various dataset characteristics on method performance and concordance. First, we 
visualized the predictive-performance of methods broken down by cell type (Addi-
tional file 1: Fig. S22). The effect of cell type was larger than differences between meth-
ods in many datasets. Methods performed better on cell types that were phenotypically 
very distinct from other cells in the dataset, such as the platelet or B cell clusters in the 
pbmc3k dataset. Next, we visualized the predictive performance of all methods by the 
number of cells in the cluster (Additional file 1: Fig. S23) and numbers of clusters (Addi-
tional file 1: Fig. S24). Generally, methods performed better on smaller clusters, possibly 
because they represent better defined biological cell types. However, unlike most meth-
ods, the SMaSH method performed much worse when the cluster size was less than 100. 
As the number of clusters in the datasets increase methods generally performed worse, 
though the effect was small. This trend suggests that methods perform worse when data-
sets are more diverse. However, when methods were run on simulated datasets with 
different numbers of clusters, no effect of cluster size was observed (Additional file 1: 
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Fig. S25). Taken together, these results suggest that diversity, at least as measured by the 
number of clusters, does not have a large impact on method performance. No methods 
displayed particularly strong performance in the high resolution scenarios where there 
are many clusters.

Next, to assess the effect of dataset characteristics on method stability we performed 
simulations where the number of clusters and cells were reduced by down-sampling the 
pbmc3k dataset (Additional file 1: S26). Method stability is assessed (see the “Methods” 
section for details) by calculating the proportion of at most top 10 genes selected that 
are the same as the genes selected when the methods are run on the full dataset. These 
simulations demonstrate that as both the numbers of cells and clusters were reduced 
method performance decreased compared to performance on the full dataset. These 
perturbations show that as both the number of cells and clusters decrease method per-
formance decreases, but the decrease is larger when the number of clusters decreases, 
highlighting methods’ sensitivity to the cluster structure. Methods that had generally 
better performance in the benchmarking were more stable when the number of cells was 
reduced, but scran’s scoreMarkers() methods showed good stability when the num-
ber of clusters was reduced, likely due to its use of a pairwise comparison approach.

Finally, we assessed the concordance of methods when run on the same cell type in 
multiple datasets. To perform this analysis we used four Human Cell Atlas blood data-
sets harmonized using recent automatic methods [43]. Methods were run, returning 
the (at most) top 10 genes, on all clusters that appeared in all 4 datasets. To summa-
rize concordance, we calculated the proportion of all selected genes that were selected 
in all 4 datasets (Additional file  1: Fig. S27). Overall, methods were moderately con-
cordant across datasets, with substantial variability between methods and clusters. The 
most concordant methods were the Student’s t-test method and the scoreMarkers() 
methods that used Cohen’s d. The three T cell subtypes showed substantially less con-
cordance across methods. As methods for harmonization of cell types are still emerging, 
these results may be sensitive to the details of the harmonization strategy used.

Case studies

During the overall benchmarking we noticed several undocumented features of the 
methods implemented in Scanpy and Seurat, which can lead both to inconsistencies 
between Scanpy and Seurat and substantive issues with their methods’ output.

The major differences between Seurat and Scanpy’s methods are the strategies they 
use to rank genes after differential expression testing has been performed. Seurat ranks 
genes based first on their corresponding p-value (smallest first) and secondly (i.e., to 
break ties in the p-values) by the raw value of the log fold-change calculated for each 
gene (largest first). On the other hand, Scanpy ranks genes based on a test statistic or 
“score” used in the calculation of the differential expression for each gene. By default, 
genes are ranked by the raw value of the statistic, such as a z-score, but they can be 
optionally ranked by the absolute value of the statistic. For the statistics implemented 
in Scanpy, the sign of the statistic is the same as the log fold-change calculated for each 
gene.

These differences cause several issues. First, it creates a situation whereby the two 
methods select qualitatively different sets of marker genes: as noted above Scanpy by 
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default only selects marker genes that are up-regulated, while Seurat by default can 
select both up- and down- regulated marker genes (Fig.  2b). While both options are 
sensible, it is unlikely that many analysts recognize this difference or check that default 
method behavior matches their expectations for marker gene selection.

Next, returning many p-values exactly equal to zero, as observed to occur for large 
datasets (Fig.  2c), leads to an unexpected and undocumented change in the output of 
Seurat’s methods. The ranking of genes with zero p-values, of which there can often be 
more than the number of marker genes selected, is completely determined by the gene’s 
log fold-change value. (Fig. 7a). Therefore, for large datasets, the output from Seurat’s 
methods will be the same as ranking by the (raw) log-fold change, while Scanpy’s meth-
ods are different (Fig. 7b).

Fig. 7  Case studies scrutinizing Scanpy and Seurat. a Gene rank vs log fold-change values for the Scanpy 
Wilcoxon (with tie correction, ranking by the absolute value of the score) and Seurat Wilcoxon methods for 
the Oligodendrocyte cell type cluster in the Zeisel dataset. The color of the point indicates whether or not the 
gene has an exactly zero p-value. b The proportion of top 20 genes shared between methods implemented 
in Scanpy and Seurat and the method of ranking genes by the raw log fold-change calculation on simulated 
datasets with increasing number of total cells. These simulations have parameters estimated from the 
pbmc3k dataset and a location parameter for the DE factor of 3. c Visualization of difference in rankings 
between the Scanpy t method (ranking by the absolute value of the score) and Seurat’s t-test method on the 
B cell cluster in the pbmc3k dataset. d Scatter plot between the log fold-change values calculated by Seurat 
and Scanpy on the B cell cluster in the pbmc3k dataset
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Finally, Scanpy’s ranking by score means that its default methods output a mathemati-
cally incorrect ranking of genes. Scanpy uses both a z-score (Wilcoxon rank-sum test) 
and a t-value (Welch’s t-test) to rank genes. Due to the monotonicity of the cumulative 
density function, ranking by the absolute value of the z-score is equivalent to ranking 
by the p-value (see the “Methods” section). However, this equivalence does not hold for 
the t-value calculated from Welch’s t-test (Methods). This difference can be seen when 
comparing the output between Seurat and Scanpy Welch t-test methods: some genes, 
including those in the top 5, change their rankings substantially (Fig. 7c).

In addition, there are other differences between Scanpy and Seurat, beyond their rank-
ing strategies. First, by default they use different versions of the Wilcoxon rank-sum test. 
By default, Scanpy does not implement the conventional correction for ties (although it 
will with certain options set), while Seurat does. Second, a more serious difference is that 
the methods calculate different values for the same gene’s log fold-change in the same 
dataset (Fig. 7d). This discrepancy is caused by the methods using different formulas to 
calculate the log-fold change values (see the “Methods” section for details). Extreme care 
should be taken when comparing the log fold-changes returned by Seurat and Scanpy.

Finally, both methods produce spurious results when a gene has exactly zero expres-
sion (i.e., zero counts in all cells) in a cluster. When a gene has zero expression, Scanpy’s 
calculated log-fold change values become spuriously large (Additional file 1: Fig. S28a), 
while Seurat’s t-test method will preferentially up-rank genes that have zero expression 
even if better candidate marker genes are available (Additional file 1: Fig. S28b).

Discussion
Marker gene selection is a ubiquitous component of the analysis of scRNA-seq data. 
However, despite its importance and the large number of methods available, to date 
there has been no impartial and systematic comparison of competing methods. In this 
paper, we provided the first comprehensive benchmarking of the available methods. We 
compared the methods’ performance on a range of metrics and scrutinized the most 
commonly used methods implemented in the Scanpy and Seurat analysis frameworks. 
While related to previous work comparing methods for selecting between-cluster DE 
genes [17], our work focused explicitly on the challenges of finding marker genes and 
used both a different simulation setting and other different metrics to compare methods.

Overall, across comparisons the best performing methods were those based on the 
Wilcoxon rank-sum test, Student’s t-test or logistic regression. Our results also high-
lighted that several methods showed systematically worse performance: scran’s find-
Markers() and scoreMarkers() methods (especially using the default p-value 
any method), Cepo, and Welch t-test based methods when both up- and down- regu-
lated genes are selected. In addition, while methods that only selected a subset of genes 
(RankCorr and NSForest) had excellent specificity they did not show strong predic-
tive performance. Our results also highlighted large differences between the speed and 
memory consumption of different methods: SMaSH and methods designed for bulk 
RNA-seq data were particularly memory intensive, while Seurat’s methods were unex-
pectedly slow. Taken together, these results highlight that more complex methods are 
not required to select marker genes in scRNA-seq data.
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Furthermore, our scrutinisation of Scanpy and Seurat highlighted issues and incon-
sistencies with their implemented methods. Most significantly, we found that due to 
an interaction between the surprising existence of zero p-values and Seurat’s ranking 
strategy most of Seurat’s methods will give identical results to ranking by the raw log 
fold-change values when the number of cells is large. In addition, we identified inconsist-
encies between how Seurat and Scanpy calculate the log fold-change values that make 
comparing their output fraught. The existence of these issues highlights the challenges of 
implementing large analysis frameworks which implement many methodological details. 
While such frameworks are extremely useful for analysts and contribute greatly to the 
field, the size of their impact magnifies the downstream effects of any issues in their 
implementations.

The analysis in this paper suggests a number of directions for further research into 
improving methodology for selecting marker genes. First, it suggests that attention 
should be refocused on improving the performance of simple Wilcoxon rank-sum and 
Student’s t tests, which show strong performance even without substantial adaptation 
to the problem of marker gene selection. Second, our analysis of the DE-based methods’ 
p-values highlights the need for more extensive work on correcting p-values for double-
dipping. Such work would enable marker genes to be selected based on well-calibrated 
p-value thresholds rather than an ad hoc cutoff to select a given number of genes. Recent 
work on post-selection inference after clustering represents a promising direction for 
addressing this issue [53]. Third, specific examples in our analysis highlight that no 
methods can select marker genes at multiple levels of resolution, for example finding 
marker genes both for all T cells and specific T cell subsets. Selecting multi-resolution 
marker genes, likely in tandem with advances in multi-resolution clustering, would allow 
more precise characterization of cell types in scRNA-seq data.

Conclusions
We present a systematic and comprehensive comparison of methods for selecting 
marker genes in scRNA-seq data. Our results highlight a lack of high concordance 
between methods, large differences in computational demands and large differences in 
performance, which occur across simulation, expert-annotated gene and prediction-
based analyses. Overall, our results suggest that methods based on logistic regression, 
Student’s t-test and the Wilcoxon rank-sum test all have strong performance. On the 
other hand, scran’s findMarkers(), scoreMarkers(), Cepo and NSForest methods 
showed generally poor performance across comparisons. Our discovery of unexpected 
and undocumented behavior in several cases highlights the importance of continued 
scrutinisation of widely-used methods for scRNA-seq data analysis.

Methods
Marker gene selection methods

In this section, we provide more details about the marker gene selection methods com-
pared in this paper.

Method parameters

Seurat
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We change the test.use parameter that controls which two sample statistical test 
is performed between the cluster of interest and all other clusters. The parameters cur-
rently can take the following values:

•	 wilcox: A Wilcoxon rank-sum test (Default);
•	 t: Welch’s t-test ;
•	 bimod: Likelihood ratio test for single-cell gene expression [27];
•	 DESeq2: The R package DESeq2 (excluded from comparisons, see below);
•	 LR: A logistic regression is fit for each gene with a binary cluster of interest indicator 

as the response;
•	 MAST: The R package MAST package [19];
•	 negbinom: A two-group negative binomial GLM;
•	 poisson: A two-group Poisson GLM;
•	 roc: For each gene a classifier is built based on that gene’s ability to discriminate 

between clusters and evaluated using the AUC. The method ranks genes by predic-
tive power 2|AUC− 0.5|.

Seurat corrects the p-values returned by its methods for multiple testing using Bonfer-
roni’s correction.

Scanpy
We change: the test.use parameter, which controls which test is performed, 

rankby_abs which controls whether genes are ranked by the absolute value of, or the 
raw score, and tie_correct which controls whether tie correction is performed in 
the Wilcoxon rank-sum test.

•	 t-test: Welch’s two-sample t-test (Default);
•	 t-test_over_estimvar: Welch’s two sample t-test where the size of the rest 

group is set to the size of the cluster of interest;
•	 wilcoxon: A Wilcoxon rank-sum test;
•	 logreg: Gene-wise logistic regression (excluded from comparisons, see below).

The rankby_abs and tie_correct parameters both take True/False values.
Scanpy corrects the p-values returned by its methods for multiple testing using the 

Benjamani-Hochberg method [54]
scran
The scran package has two functions for selecting marker genes. We benchamrk both 

in this manuscript.
findMarkers()

The findMarkers() function uses a pairwise DE approach to select marker genes.
In the function we alter: the test.type parameter, which controls which two-sam-

ple statistical test is performed and pval.type which controls how scran aggregates 
p-values. The test.type parameters take the following values:

•	 t: Welch’s two-sample t-test (Default);
•	 wilcox: Wilcoxon rank-sum test;
•	 binom: The counts are binarised and an exact binomial test is performed.
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The pval.type parameter takes values:

•	 any: Allows selection of different sized unions of p-values between the individual 
tests;

•	 all: Combines the p-values using an intersection union test [55]; practically the 
largest of the p-values is taken as the overall p-value;

•	 some: A Holm-Bonferroni correction is applied to the p-values is applied and then 
the middle-most p-value is taken as the overall p-value.

scoreMarkers()

The scoreMarkers() function uses pairwise DE statistic calculation to select 
marker genes the following statistics are calculated in a pairwise fashion:

•	 Cohen’s d statistic on log fold-change
•	 AUC​
•	 Log fold-change in detection proportion (the proption of genes that have non-zero 

expression)

These statistics are summarized across the pairwise comparisons in five ways:

•	 Mean
•	 Median
•	 Maximum
•	 Minimum
•	 Minimum rank

Giving 15 different metrics by which to rank genes for marker gene status and ulti-
mately select marker genes.

Excluded methods

We exclude the following methods from our benchmarking.
Scanpy’s Logistic regression method
The implementation was found to not return what is documented, and it is not tested. 

Seurat’s logistic regression implementation is also included in the benchmarking.
Seurat’s DESeq2 method
Seurat’s DESeq2 method was excluded was the comparison after persistent errors get-

ting it to run on the PBMC datasets, apparently due to a low number of counts.
COMET
COMET [56] is a marker gene selection method particularly designed to create pan-

els of markers for functional follow-up. COMET uses the XL-minimal Hyper-Geometric 
test to rank genes [57]. However, COMET’s implementation has problems which make 
it difficult to benchmark. First, previous (non-neutral) benchmarking has shown that 
COMET is extremely computationally intensive [26]. (Vargo and Gilbert [26] exclude 
COMET from their comparisons.) Second, COMET’s Python implementation does not 
allow the processing of datasets “in memory,” instead requiring multiple text files as 
input. This requirement means using COMET is challenging, particularly due to highly 
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parallelised nature of our benchmarking workflow. For these reasons we COMET is not 
included in this manuscript.

Self‑implemented methods

In addition to the existing methods we implemented several methods:

•	 Random: A random sample of genes are selected as marker genes. This method pro-
vides a “negative control”; it illustrates the worst possible performance in a given sce-
nario.

•	 Log fold-change sorted by absolute value. First, for each cluster a one-vs-rest log 
fold-change value is calculated (using Seurat’s formula) for each gene. Second, genes 
are ranked by the absolute value of the log fold-change. Finally, the top n (i.e., with 
n = 20 ) genes in the ranking are then selected as the marker genes for that clus-
ter. This method is implemented to assess whether ranking by effect size (log fold-
change) rather than p-value, as for all DE methods, is sufficient to detect marker 
genes. Ranking by absolute values ensures that both up- and down-regulated genes 
can be selected as marker genes.

•	 Log fold-change sorted by absolute value. As above, expect that the genes are ranked 
by the absolute values of the log-fold change. Ranking by the absolute values means 
that both up-regulated and down-regulated genes can be selected as marker genes.

•	 Student’s t-test: A one-vs-rest two sample Student’s t-test is performed between the 
cluster of interest and all other clusters for each gene. The top n marker genes ranked 
by the test’s p-value are selected as marker genes. This method is implemented to 
assess whether Student’s t-test may be more suitable for selecting marker genes com-
pared to Welch’s t-test. The t-tests implemented in scran, Scanpy, and Seurat are 
Welch’s t-test. Briefly, Student’s t-test assumes that the two samples have the same 
variance, while Welch’s t-test allows the variances to be unequal.

For the log fold-change methods, we implement Seurat’s formula for the log fold-
change using the log-normalized counts as input.

Other method implementation details

DE methods
The edgeR, limma and glmGamPoi methods are all generic methods for DE testing, 

as such they need additional code to be used to select marker genes. In this paper, all 
these methods are implemented in a one-vs-rest manner for marker genes. This decision 
was made based on the poor performance of scran’s methods which implement pairwise 
testing in early versions of the benchmarking.

SMaSH
The implementation of SMaSH uses TensorFlow to train the deep learning models it 

uses. During training, the weights of the model are written to disk in a file with a fixed 
name. When the method is run in parallel using Snakemake, multiple instances try to 
write and read from the same file. To circumvent this issues we forked SMaSH to use 
a random name for the weights files (https://​github.​com/​jeffr​eypul​lin/​smash-​fork). No 
other method or implementation details were changed.

https://github.com/jeffreypullin/smash-fork
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Out of scope methods

A small number of methods perform analysis tasks similar to, but not the same as, the 
task of selecting cell-type specific marker genes. These methods are therefore out of 
scope for the benchmarking performed in this paper.

First, AUCELL [58] analyses geneset activity, not cell-type specific marker genes, in 
scRNA-seq data. Second, a number of methods, including genesorter [59], scGeneFit 
[25], SCMarker [60], and scTIM [24], aim to select a single subset of so-called marker 
genes that best preserve information about the overall cluster structure of the data-
set. This aim is generally motivated by the need to reduce the dimensionality of the 
dataset or to create gene panels for spatial transcriptomics experiments where only 
a limited number of genes can be assayed. These sets of genes are not cluster-specific 
and do not distinguish particular cell types, so these methods are out of scope for the 
benchmarking of cell-type specific marker gene selection methods presented in this 
paper.

Computational experiment details

The workflow management tool Snakemake v6.6.1 [61] was used to orchestrate all 
computational experiments described in the paper. All comparisons were run on 
the University of Melbourne “Spartan” High Performance Computing cluster which 
uses the Slurm job scheduler. Analyses were performed in R v4.1.0 [62]. To run meth-
ods implemented in Python via R, the reticulate R package [63] and Python v3.8.6 
[64] were used. To wrangle data, we used the dplyr [65], tidyr [66] and purrr [67] 
packages. General purpose visualizations were created using the R package ggplot2 
[68] and then assembled into figures using the R package patchwork [69]. The plots 
that show a comparison of the rankings of multiple methods were created using the 
rank_rank_plot() function in the topconfects R package [70]. Plots that show 
the expression of a gene in different clusters were created using the plotExpres-
sion() function from the scater R package [71].

Data processing

All the single-cell datasets were processed in a uniform manner prior to analysis, to 
remove effects of different preprocessing approaches. All datasets were log-normal-
ized and then subset to the top 2000 highly variable genes (HVGs) using best prac-
tices approaches in the Bioconductor ecosystem [28]. For computational reasons, the 
Ren and Stephenson datasets were down-sampled to 25,000 cells. For all datasets with 
expert-annotated marker genes, expert-annotated genes that were not selected in the 
top 2000 HVGs were manually added to the selected genes.

Concordance measurement and selected marker gene characteristics details

To assess the concordance of the methods for each cluster and dataset we selected the 
(at most) top 10 selected marker genes for each method. For each cluster and dataset 
the proportion of genes shared between the result of each method and all other meth-
ods was calculated. This proportion was then averaged over cluster and dataset to 
produce a matrix encoding the average proportion of shared genes between methods. 
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This matrix was converted a distance matrix using dist() function and a hierarchi-
cal clustering was calculated with hclust().

To assess the methods generally we calculated the following metrics:

•	 Cluster mean: the mean of log-normalized expression values in the cluster of interest
•	 Cluster variance: the variance of log-normalized expression values in the cluster of 

interest
•	 Gene mean: the mean of all log-normalized expression values
•	 Gene variance: the variance of all log-normalized expression values
•	 Proportion up-regulated the proportion of selected genes that were up-regulated 

(i.e., had a log fold-change greater than 0)

These metrics were calculated for the at most top 5 genes selected by each method 
in the all real datasets. To visualize the results the median over clusters and datasets 
was taken.

To assess the effect size of the selected genes we used the following metrics:

•	 AUC (i.e., area under the receiver operator characteristic curve using the expres-
sion data as a classifier for binary cluster status)

•	 The absolute value of Cohen’s d statistic
•	 The absolute value of log fold-change

All statistics were calculated in a one-vs-rest manner for the at most top 5 genes 
selected by each method in the all real datasets. To visualize the results, the median 
over clusters and datasets was taken and quantile normalization was performed to 
make the distributions of the three metrics comparable. In the figure, methods were 
ranked by the median of the quantile normalized values of the three metrics.

To assess the direction of regulation of the method, we selected the (at most) top 20 
genes from each method and computed the proportion of these genes that were up-
regulated. We defined a gene to be up-regulated if it had a log fold-change, or statistic 
proportional to the log fold-change, greater than 0. Note that the RankCorr, NSFor-
est, and Cepo methods do not output either a log fold-change or statistic propor-
tional to the log fold-change. For these methods, we calculate a log fold-change (using 
Seurat’s formula) and add this to output of the method.

To assess the magnitude of the p-values produced by the methods, we select the 
top 40 genes of each method for every cluster in a given dataset and extract the asso-
ciated multiple testing corrected p-value output by the methods. (Note that differ-
ent methods do use different multiple testing correction methods.) Those p-values 
which took values of exactly 0 were excluded. Seurat’s ROC method, NSForest, Cepo, 
COSG, RankCorr, and (self-implemented) log fold-change and random methods were 
all excluded from this analysis as they do not produce p-values. In the Zhao dataset, 
all top 40 genes for the Seurat (Poisson GLM) method have exactly-zero p-values so 
the method was excluded from plotting.

To assess the exactly-zero p-values produced by the methods we calculated the 
number of exactly-zero p-values produced by each method in every cluster in all 
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datasets. To plot the data, the we took the median over clusters for each method and 
dataset. No limit was set on the number of top marker genes taken as it was observed 
that in some datasets methods could produce hundreds of exactly-zero p-values. 
Again, methods that do not produce p-values (see above) were excluded from the 
analysis.

Simulated performance assessment

Datasets were simulated using the splatter model implemented in the Splatter package 
[48]. The splat model is designed to be a general purpose simulator of scRNA-seq data. 
In this paper, we adapt it to simulate marker genes by designing and implementing a 
gene-wise marker gene selection and ranking strategy based on the simulation param-
eters of the model. This method is designed to select and up-rank genes which visually 
appear to be marker genes and match our holistic view of the characteristics of good 
marker genes.

Simulated marker genes selection strategy

A key component of the splatter model is the set of DE factors for each group and each 
gene. Let g ∈ {1, . . . ,G} index genes and k ∈ {1, . . .K } index groups. Then βgk is the DE 
indicator for the kth group and gth gene. In the splat model βgk encodes the amount of 
DE the gth gene shows in the kth group relative to a background level of expression. In 
this context βg ′k ′ = 1 would indicate background expression for gene g ′ in group k ′.To 
assess whether each gene is a marker gene for a particular cluster we use the following 
original score, mg . Let k ′ be the index of the particular cluster of interest, then:

This score is the mean of the log-ratio of the DE factor in the cluster of interest versus 
all other clusters. In practice, the score can consistently up-rank genes that have large 
log fold-changes. However, if the overall mean of the gene is small the genes do not visu-
ally appear to be marker genes. We therefore filter to only genes which show sufficient 
mean expression: in practice we have found that only keeping genes with gene mean 
> 0.1 works well.

Our overall strategy for selecting simulated marker genes for a specific cluster from 
the simulated data consists of: 

1.	 Filter out genes which have simulated mean expression < 0.1;
2.	 Calculate the marker gene score mg for each gene;
3.	 Rank genes by mg;
4.	 Select the top n genes as marker genes;

for some suitable small n. Compared to other methods for selecting marker genes 
such as the strategy used in the original Splatter paper this score is less restrictive, 
better accommodating cases where multiple DE factors are not 1 but the gene is still 
a strong marker gene. The strategy described above can, in theory, be used to select 
both and up- and down-regulated marker genes. In this paper, however, we only use 

(1)mg =
1

K − 1
i=1,i �=k ′

log
βgk ′

βgi
.
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it to select up-regulated marker genes. While we have many examples of true up-
regulated marker genes (all of the expert-annotated maker genes used in this paper 
are up-regulated) it is not clear what the ideal expression profile of a down-regulated 
marker gene is. Indeed, when we used the above strategy to select down-regulated 
marker genes we found that their expression patterns did not visually appear to be 
marker genes.

Simulation parameters

To perform simulations all estimable parameters were estimated from all datasets. To 
account for the fact that the splat model’s parameter estimation does not account for 
clustering in the data we filtered each dataset to only one cluster and then performed 
the parameter estimation on those cells. The cluster used for each dataset is recorded 
in Table S8 in Additional file 1. Clusters were mainly chosen based on size, with larger 
clusters preferred, and to avoid representing an ‘unusual’ cell type. For the three PBMC 
datasets a B cell cluster was chosen for consistency. Splatter cannot, however, estimate 
parameters that control the amount of DE between clusters from data. There are two 
such parameters: the location and scale parameters for the DE factor. In the experiments 
presented in the main paper we take these parameters to be 3 and 0.2, respectively. 
These values were chosen as they produced marker genes with similar expression pro-
files to those observed in real datasets (Additional file 1: Fig. S9). Additional simulations 
suggest that the results of method comparison are similar for different values of the loca-
tion parameter (Additional file 1: Fig. S11). Note that in all of these analyses we fix the 
value of the scale parameter; this is because the parameter controls the variance of the 
(lognormal) distribution and so has less impact on the amount of DE. The dropout and 
outlier gene probabilities in the splat model were both set to zero. Each simulated data-
set was replicated 3 times using a different seed for randomization. 

Simulation performance measurement

To measure the performance of the methods we used the following strategy for 
each cluster in each (replicated) simulated dataset. We selected the (at most) top 20 
selected marker genes for each method and the top 20 simulated marker genes. A 
gene was a true positive if it occurs in both lists, a false positive if it occurs in the list 
of selected genes but not in the list of simulated genes, a false negative if it does not 
occur in the selected list of genes but does appear in the simulated list, and a true 
negative if occurs in neither of the lists. Using these definitions we calculate the num-
ber of true positives (TP), false positives (FP), and false negatives (FN) and calculate:

Note that with these definitions the number of simulated genes = TP + FP and the 
number of selected genes = TP+ FN . To summarize the performance of methods for 
each simulation scenario (i.e., each dataset), we calculated the median recall, preci-
sion and F1 score across clusters and simulation replicates.

Recall =
TP

TP+ FP
, Precision =

TP

TP+ FN
, F1 score = 2 ·

Recall · Precision

Recall+ Precision



Page 30 of 37Pullin and McCarthy ﻿Genome Biology           (2024) 25:56 

Stability simulations

To assess the stability of methods we performed simulations by down-sampling either 
the number of clusters or the number of cells in the exemplar pbmc3k dataset. Cells 
were down-sampled by randomly removing 25%, 50%, and 75% of all cells. Clusters 
were removed one-by-one until only two clusters remained. The ordering of clus-
ters for removal was: Naive CD4 T, CD14+ Mono, Memory CD4 T, Platelet, CD8 T, 
FCGR3A+ Mono, NK, DC, B. All methods were run and the at most top 10 marker 
genes were retained. Method stability was assessed by calculating the proportion of 
genes that were the same as in the full pbmc3k dataset, taking the median over the 
clusters.

Expert‑annotated marker gene details

To assess the ability of the methods to recover expert-annotated marker genes we use 
the following approach. First, we identified sets of expert-annotated marker genes for 
the Zeisel, Lawlor, pbmc3k, Smart-seq3, Ren, Stephenson, Yoshida, and Dominguez 
datasets:

•	 pbmc3k: The expert-annotated marker genes were taken from the “Seurat - Guided 
Clustering Tutorial” (Additional file 1: Table S3);

•	 Lawlor: The expert-annotated marker genes were taken from the paper describing 
the dataset (see the fifth paragraph) [38]. In the paper, these genes were used to 
annotate the defined clustering (Additional file 1: Table S4);

•	 Zeisel: The expert-annotated marker genes were taken from the paper describing 
the dataset (see the fourth paragraph). We exclude the “None/Other” from expert-
annotated marker gene analyses as it does not have marker genes in the original 
paper [72]. (Additional file 1: Table S5);

•	 Smart-seq3: The expert-annotated marker genes were taken from the paper 
describing the dataset [42]. Specifically, these genes were taken from Extended 
Data Fig. 10. Note that not all the marker genes identified in this figure are used. 
Marker genes for clusters which easily mapped to cluster present in the final ver-
sion of the clustering were preferred (Additional file 1: Table S6)

•	 Harmonized blood datasets (Ren, Stephenson, Yoshida and Dominguez Conde 
datasets): The expert marker genes for these datasets were taken from Version 2 
of the CellTypist immune cell atlas [43, 47] which was created by the same group 
that performed the harmonization. Note that each dataset contains a different set 
of cell types, but with substantial overlap (Additional file 1: Table S7)

Then, to measure the performance of the methods, we select marker genes for all 
clusters in all dataset with expert-annotated marker genes (the number of top genes 
used was chosen based on the number of expert-annotated marker genes). For each 
cluster in each dataset the recall of the method was calculated (see above for more 
information about how this was defined and calculated).
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Predictive performance measurement

To assess the predictive performance of the methods, we used the following strategy. 
For each real dataset we selected the (at most) top 5 marker genes for every cluster, 
and combined them to give an overall set of genes for each dataset. Three classifiers 
were applied:

•	 A KNN classifier, with k = 3,
•	 An SVM classifier, with liner kernel, and,
•	 A ‘maximum sum’ classifier, described below.

Specifically, we used the knn function from the FNN R package [73] to implement 
the KNN classifier and the function svm from the e1071 [74] package to implement 
the SVM. The maximum sum classifier was implemented from scratch. For this clas-
sifier, the expression values of the marker genes for each cluster were centered and 
scaled and then summed across genes. This process results in a vector of summed 
expression values across clusters for each cell. The cell is then classified as the cluster 
with the largest summed expression value.

To assess the performance of the classifier 5-fold cross-validation was used. Each 
dataset (for each method) was divided into 5 approximately equal groups (i.e., approx-
imately 20% of the total cells) using a sample stratified by cluster. The stratified sample 
was used to prevent folds having no examples of rare cell types. The model was then 
fit 5 times with each of the groups being used as the test set while the other groups 
were pooled to give the training set. As the maximum summed expression classifier 
had no tunable parameters it was just assessed on the test sets. Method performance 
was summarized using the F1 score of the resulting classifier. See above for the math-
ematical definition of the F1 score. To further summarize the results the median F1 
score of the method, dataset pair across clusters was calculated.

Speed and memory measurement

To measure method speed, we used the R system.time() function, extracting the 
elapsed time. To measure the memory usage, we used the benchmark functionality 
from Snakemake, which uses the ps command to measure the memory of the sub-
mitted jobs. Specifically, we report max_vss as the memory. Note that for methods 
implemented in Python both the time and memory measurements take into account 
the overhead of converting between R and Python using the reticulate package. The 
memory measurement also includes various data and output wrangling tasks needed 
to run specific methods.

Implementation assessment

To compare the quality of the methods’ implementations we assessed implementa-
tion as Good, Adequate, or Poor based on five criteria: accessibility (how easy is the 
software to access, i.e., where is it hosted?), installation (how easy is the software to 
install?), documentation (what is the quality of documentation?), ease of use (how is 
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easy is the software to use for selecting marker genes?) and interpretability of output 
(how easy is the output to interpret and use?). For further details of how each criteria 
was rated as Good Adequate or Poor see the Supplementary Methods.

Log fold‑change calculation methods

Let Yig be the log-normalized expression value for cell i and gene g, G1 and G2 be the indi-
ces of the cells in the cluster of interest and all other clusters respectively, and n1 and n2 
give the number of cells in the two groups. Then, for a given cluster of interest, Scanpy 
and Seurat calculate the log-fold change for gene g as:

Seurat

 

Note that’s Seurat’s Poisson and Negative Binomial GLM methods calculate the log 
fold-change based on the raw count, that is the above formula applies with Yig being the 
observed count for cell i in gene g.

Scanpy

 

where ǫ = 10−9 . Scanpy’s documentation notes that the log-fold change values are 
“an approximation calculated from mean-log values” This refers to how the inversion 
of the log(x + 1) transformation of the log-normalized counts by exp(x)− 1 is done on 
the mean of the log-transformed counts, not the log transformed counts themselves. In 
Scanpy’s implementation the means of the log transformed data are precalculated, so 
this approximation is probably designed to exploit this feature.

Relationship between score‑based and p‑value‑based ranking

This equivalence follows from the property that cumulative distribution functions are 
monotonically increasing. For a two-tailed test of the null hypothesis H0 : µ = 0 which 
produces a z-score, z, the p-value, p, is calculated as

where �(·) is the CDF of the standard normal distribution. If there are two scores, z1 and 
z2 say, with |z1| < |z2| , then from the fact that �(·) is monotonically increasing it can be 
derived that:
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where the first inequality follows from the increasing monotonic property of the CDF. 
This argument shows that ranking by the absolute value of the z-score (in decreasing 
order) will be the same as ranking by the p-values (in increasing order) for tests that 
return a z-score.

This equivalence does not hold, however, for the Welch’s t-test (which is the default 
statistical test used by Scanpy). In Welch’s t-test, the degrees of freedom ( ν ) of the t-dis-
tribution that the t-value is compared is dependent on the variance of the data. Different 
genes will therefore have different ν values so each p-value is calculated from a different 
instance of the t-distribution and the mathematical argument presented for ranking by 
z-score does not hold.

Differential expression testing strategy

Different methods based on DE testing use different strategies to perform the testing. 
When DE testing is used to identify marker genes we need to assess which genes are 
different in the cluster of interest (i.e., the cluster we wish to select marker genes for) 
relative to the other clusters present in the data. The one-vs-rest and pairwise testing 
strategies are different approaches for quantifying this difference.

one-vs-rest
In the one-vs-rest approach, the cells in all other clusters and pooled and a statistical 

test is performed between the cluster of interest and the pooled ‘rest’ cluster for each 
gene. This method is implemented by Scanpy and Seurat and we the approach we use 
this approach to implement edgeR, limma and glmGamPoi for marker gene selection in 
this paper.

pairwise
In the pairwise approach, a statistical test is performed between the cluster of interest 

and each other cluster for each gene. This gives K − 1 p-values (or statistics) for each 
gene, cluster of interest combination, where K is the number of clusters in the dataset. 
To get an overall measure of significance for each gene the p-values (or statistics) need to 
be combined in some way. This method is implemented in scran. The scran findMark-
ers() function performs pairwise DE testing, while the scoreMarkers() function 
calculates a statistic measuring DE in pairwise fashion. The rationale for this more com-
plex DE approach is that the multiple p-values provide more information and that it is 
hypothetically less affected by the relative sizes of different clusters [75].
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