Seurat |
4.0.5 |
R |
test.use = t |
Welch’s t-test |
[12] |
- |
- |
- |
test.use = “wilcox” |
Wilcoxon rank-sum test (with tie-correction) |
- |
- |
- |
- |
test.use = “LR” |
Genewise Logistic regression |
- |
- |
- |
- |
test.use = “negbinom” |
Two group Negative Binomial GLM |
- |
- |
- |
- |
test.use = “poisson” |
Two group Poisson GLM |
- |
- |
- |
- |
test.use = “roc” |
ROC assessment of gene expression as classifier |
- |
- |
- |
- |
test.use = “bimod” |
Bimodal likelihood ratio test |
-, [27] |
- |
- |
- |
test.use = “MAST” |
MAST |
-, [19] |
COSG |
0.9.0 |
R |
None |
Cosine score |
[15] |
Scanpy |
1.8.1 |
Python |
test_use = “t-test” rankby_abs = True |
Welch t-test ranking by the absolute value of the score |
[13] |
- |
- |
- |
test_use = “t-test_over_estimvar” rankby_abs = True |
Welch t-test with overestimated variance ranking by the absolute value of the score |
- |
- |
- |
- |
test_use = “t-test” rankby_abs = False |
Welch t-test ranking by the raw score |
- |
- |
- |
- |
test_use = “t-test_over_estimvar” rankby_abs = False |
Welch t-test with overestimated variance ranking by the raw score |
- |
- |
- |
- |
test_use = “wilcoxon” rankby_abs = True tie_correct = True |
Wilcoxon rank-sum test ranking by absolute value of the score with tie-correction |
- |
- |
- |
- |
test_use = “wilcoxon” rankby_abs = False tie_correct = True |
Wilcoxon rank-sum test ranking by the raw score with tie-correction |
- |
- |
- |
- |
test_use = “wilcoxon” rankby_abs = True tie_correct = False |
Wilcoxon rank-sum test ranking by absolute value of the score without tie-correction |
- |
- |
- |
- |
test_use = “wilcoxon” rankby_abs = False tie_correct = False |
Wilcoxon rank-sum test ranking by the raw score without tie-correction |
- |
scran |
1.22.1 |
R |
findMarkers() test.type = “t”, pval.type = “any” |
Pairwise t-test up-ranking genes with “any” small p-values |
[28] |
- |
- |
- |
findMarkers() test.type = “t”, pval.type = “all” |
Pairwise t-test up-ranking genes with “all” small p-values |
- |
- |
- |
- |
findMarkers() test.type = “t”, pval.type = “some” |
Pairwise t-test up-ranking genes with “some” small p-values |
- |
- |
- |
- |
findMarkers() test.type = “wilcox”, pval.type = “any” |
Pairwise Wilcoxon rank-sum test up-ranking genes with “any” small p-values |
- |
- |
- |
- |
findMarkers() test.type = “wilcox”, pval.type = “all” |
Pairwise Wilcoxon rank-sum test up-ranking genes with “all” small p-values |
- |
- |
- |
- |
findMarkers() test.type = “wilcox”, pval.type = “some” |
Pairwise Wilcoxon rank-sum test up-ranking genes with “some” small p-values |
- |
- |
- |
- |
findMarkers() test.type = “binom”, pval.type = “any” |
Pairwise Binomial test up-ranking genes with “any” small p-values |
- |
- |
- |
- |
findMarkers() test.type = “binom”, pval.type = “all” |
Pairwise Binomial test up-ranking genes with “all” small p-values |
- |
- |
- |
- |
findMarkers() test.type = “binom”, pval.type = “some” |
Pairwise Binomial test up-ranking genes with “some” small p-values |
- |
scran |
1.22.1 |
R |
scoreMarkers(), mean.logFC.cohen |
Pairwise Cohen’s d, mean across genes |
NA |
- |
- |
- |
scoreMarkers(), min.logFC.cohen |
Pairwise Cohen’s d, minimum across genes |
- |
- |
- |
- |
scoreMarkers(), median.logFC.cohen |
Pairwise Cohen’s d, median across genes |
- |
- |
- |
- |
scoreMarkers(), max.logFC.cohen |
Pairwise Cohen’s d, maximum across genes |
|
- |
- |
- |
scoreMarkers(), rank.logFC.cohen |
Pairwise Cohen’s d, min rank across genes |
- |
- |
- |
- |
scoreMarkers(), mean.AUC |
Pairwise AUC, mean across genes |
- |
- |
- |
- |
scoreMarkers(), median.AUC |
Pairwise AUC, median across genes |
- |
- |
- |
- |
scoreMarkers(), min.AUC |
Pairwise AUC, minimum across genes |
- |
- |
- |
- |
scoreMarkers(), max.AUC |
Pairwise AUC, maximum across genes |
- |
- |
- |
- |
scoreMarkers(), rank.AUC |
Pairwise AUC, min rank across genes |
- |
- |
- |
- |
scoreMarkers(), mean.logFC.detected |
Pairwise lfc in detection proportion, mean across genes |
- |
- |
- |
- |
scoreMarkers(), min.logFC.detected |
Pairwise lfc in detection proportion, minimum across genes |
- |
- |
- |
- |
scoreMarkers(), median.logFC.detected |
Pairwise lfc in detection proportion, median across genes |
- |
- |
- |
- |
scoreMarkers(), max.logFC.detected |
Pairwise lfc in detection proportion, maximum across genes |
- |
- |
- |
- |
scoreMarkers(), rank.logFC.detected |
Pairwise lfc in detection proportion, min rank across genes |
- |
presto |
1.0.0 |
R |
None |
Optimized Wilcoxon rank-sum test |
NA |
edger |
3.36.0 |
R |
GLM |
Negative Binomial GLM with empirical Bayes (EB) shrinkage |
[29, 30] |
edger |
3.36.0 |
R |
QL |
- With quasi-likelihood fitting |
[29, 30] |
RankCorr |
NA |
Python |
lambda = 2 |
Sparse seperating hyperplane selection |
[26] |
RankCorr |
NA |
Python |
lambda = 5 |
- |
[26] |
RankCorr |
NA |
Python |
lambda = 10 |
- |
[26] |
glmGamPoi |
1.6.0 |
R |
None |
Negative Binomial QL GLM with EB shrinkage |
[31] |
limma |
3.50.0 |
R |
Standard |
Linear model with EB shrinkage |
[32, 33] |
limma |
3.50.0 |
R |
Voom |
- With weighting |
[32, 33] |
limma |
3.50.0 |
R |
Trend |
- |
[32, 33] |
Cepo |
1.0.0 |
R |
None |
Stability statistic |
[34] |
NSForest |
3.0 |
Python |
None |
Random forest classifier |
[14] |
Venice |
0.0.11 |
R |
None |
Classification scoring |
[35] |
SMaSH |
0.1.2 |
Python |
None |
Deep neural net classifier |
[7] |