Skip to main content
. 2024 Feb 26;25:56. doi: 10.1186/s13059-024-03183-0

Table 1.

Marker gene selection methods benchmarked in this paper

Package Version Language Parameters Description Citation
Seurat 4.0.5 R test.use = t Welch’s t-test [12]
- - - test.use = “wilcox” Wilcoxon rank-sum test (with tie-correction) -
- - - test.use = “LR” Genewise Logistic regression -
- - - test.use = “negbinom” Two group Negative Binomial GLM -
- - - test.use = “poisson” Two group Poisson GLM -
- - - test.use = “roc” ROC assessment of gene expression as classifier -
- - - test.use = “bimod” Bimodal likelihood ratio test -, [27]
- - - test.use = “MAST” MAST -, [19]
COSG 0.9.0 R None Cosine score [15]
Scanpy 1.8.1 Python test_use = “t-test” rankby_abs = True Welch t-test ranking by the absolute value of the score [13]
- - - test_use = “t-test_over_estimvar” rankby_abs = True Welch t-test with overestimated variance ranking by the absolute value of the score -
- - - test_use = “t-test” rankby_abs = False Welch t-test ranking by the raw score -
- - - test_use = “t-test_over_estimvar” rankby_abs = False Welch t-test with overestimated variance ranking by the raw score -
- - - test_use = “wilcoxon” rankby_abs = True tie_correct = True Wilcoxon rank-sum test ranking by absolute value of the score with tie-correction -
- - - test_use = “wilcoxon” rankby_abs = False tie_correct = True Wilcoxon rank-sum test ranking by the raw score with tie-correction -
- - - test_use = “wilcoxon” rankby_abs = True tie_correct = False Wilcoxon rank-sum test ranking by absolute value of the score without tie-correction -
- - - test_use = “wilcoxon” rankby_abs = False tie_correct = False Wilcoxon rank-sum test ranking by the raw score without tie-correction -
scran 1.22.1 R findMarkers() test.type = “t”, pval.type = “any” Pairwise t-test up-ranking genes with “any” small p-values [28]
- - - findMarkers() test.type = “t”, pval.type = “all” Pairwise t-test up-ranking genes with “all” small p-values -
- - - findMarkers() test.type = “t”, pval.type = “some” Pairwise t-test up-ranking genes with “some” small p-values -
- - - findMarkers() test.type = “wilcox”, pval.type = “any” Pairwise Wilcoxon rank-sum test up-ranking genes with “any” small p-values -
- - - findMarkers() test.type = “wilcox”, pval.type = “all” Pairwise Wilcoxon rank-sum test up-ranking genes with “all” small p-values -
- - - findMarkers() test.type = “wilcox”, pval.type = “some” Pairwise Wilcoxon rank-sum test up-ranking genes with “some” small p-values -
- - - findMarkers() test.type = “binom”, pval.type = “any” Pairwise Binomial test up-ranking genes with “any” small p-values -
- - - findMarkers() test.type = “binom”, pval.type = “all” Pairwise Binomial test up-ranking genes with “all” small p-values -
- - - findMarkers() test.type = “binom”, pval.type = “some” Pairwise Binomial test up-ranking genes with “some” small p-values -
scran 1.22.1 R scoreMarkers(), mean.logFC.cohen Pairwise Cohen’s d, mean across genes NA
- - - scoreMarkers(), min.logFC.cohen Pairwise Cohen’s d, minimum across genes -
- - - scoreMarkers(), median.logFC.cohen Pairwise Cohen’s d, median across genes -
- - - scoreMarkers(), max.logFC.cohen Pairwise Cohen’s d, maximum across genes
- - - scoreMarkers(), rank.logFC.cohen Pairwise Cohen’s d, min rank across genes -
- - - scoreMarkers(), mean.AUC Pairwise AUC, mean across genes -
- - - scoreMarkers(), median.AUC Pairwise AUC, median across genes -
- - - scoreMarkers(), min.AUC Pairwise AUC, minimum across genes -
- - - scoreMarkers(), max.AUC Pairwise AUC, maximum across genes -
- - - scoreMarkers(), rank.AUC Pairwise AUC, min rank across genes -
- - - scoreMarkers(), mean.logFC.detected Pairwise lfc in detection proportion, mean across genes -
- - - scoreMarkers(), min.logFC.detected Pairwise lfc in detection proportion, minimum across genes -
- - - scoreMarkers(), median.logFC.detected Pairwise lfc in detection proportion, median across genes -
- - - scoreMarkers(), max.logFC.detected Pairwise lfc in detection proportion, maximum across genes -
- - - scoreMarkers(), rank.logFC.detected Pairwise lfc in detection proportion, min rank across genes -
presto 1.0.0 R None Optimized Wilcoxon rank-sum test NA
edger 3.36.0 R GLM Negative Binomial GLM with empirical Bayes (EB) shrinkage [29, 30]
edger 3.36.0 R QL - With quasi-likelihood fitting [29, 30]
RankCorr NA Python lambda = 2 Sparse seperating hyperplane selection [26]
RankCorr NA Python lambda = 5 - [26]
RankCorr NA Python lambda = 10 - [26]
glmGamPoi 1.6.0 R None Negative Binomial QL GLM with EB shrinkage [31]
limma 3.50.0 R Standard Linear model with EB shrinkage [32, 33]
limma 3.50.0 R Voom - With weighting [32, 33]
limma 3.50.0 R Trend - [32, 33]
Cepo 1.0.0 R None Stability statistic [34]
NSForest 3.0 Python None Random forest classifier [14]
Venice 0.0.11 R None Classification scoring [35]
SMaSH 0.1.2 Python None Deep neural net classifier [7]