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Abstract

Physical inactivity, i.e., not reaching the recommended level of physical activity (PA) and 

sedentary behaviors (SB), i.e., sitting time have been associated with increased risk for common 

metabolic diseases. Recent epidemiological data suggest that high volumes of SB are detrimental 

for metabolic health, even in the presence of regular exercise, i.e., moderate/vigorous (MVPA). 

This suggests that the health effects of SB are independent from those of exercise. However, 

experimentally testing this hypothesis is complicated because of the difficulty in disassociating 

SB from PA. Bedrest studies, a traditional space science model, can offer new insights. In 

some bedrest studies, an exercise training protocol has been used to counteract the harmful 

effects of inactivity. While bedrest induces an inactive and sedentary state, exercise with bedrest 

represents a unique model of sedentary yet physically active people. Here, we review bedrest 

studies with and without exercise training. Although exercise training prevents the loss of muscle 

mass and function, even large volumes of exercise are not sufficient to fully counteract the 

negative metabolic adaptations triggered by inactivity. This observation supports the existence 

of independent adverse health effects of SB, but also the potential benefits of non-exercise 

activity, i.e., daily living light-intensity activities (LPA). We gathered available data to examine 

the complex relationships between exercise, non-exercise activity, SB and health outcomes. Given 

the large amount of SB in modern societies, the sole promotion of exercise, i.e., MVPA may be 

insufficient, and promotion of LPA may be a complimentary approach to improve health.
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Although the exact physiological mechanisms remain unclear, sedentariness has been shown to 

negatively affect metabolic health and the main organs involved in its regulation. The 2020 World 

Health Organization (Bull et al., 2020) guidelines on physical activity recommend practicing a 

weekly volume of 150–300 min of moderate intensity or 75–150 min of vigorous intensity or 

an equivalent combination of MVPA to limit the appearance of certain maladaptation. Recently, 

some large-scale studies have revealed the importance of LPA to prevent the effects of sedentary 

lifestyles. Since then, limiting periods of sedentary time have become part of the recommendations 

for the first time, raising the question of how to reduce periods of sedentary living. This review 
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aims to highlight the potential role of LPA in effectively reducing sitting time and preventing 

its associated harmful health effects. Intervention studies specifically targeting LPA and SB, in 

addition to MVPA, are necessary to develop specific recommendations and limit the risk of 

developing metabolic diseases.
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Physical inactivity; moderate to vigorous physical activity; light physical activity; bedrest; 
exercise; non-exercise activity; metabolism

Introduction

Insufficient physical activity (PA) is a public health concern and a major risk factor for 

early mortality and common chronic diseases including obesity, metabolic syndrome, insulin 

resistance, type 2 diabetes (T2D), certain type of cancers, mental health disorders and 

others (Lee et al., 2012). Through research efforts to develop strategies to combat physical 

inactivity, scientists have identified another health risk behavior: sedentary behaviors (SB). 

SB are distinct from physical inactivity. Although physical inactivity is defined as engaging 

in less PA necessary to meet the current guidelines (<150 min/week moderate or <75min/

week vigorous physical activity – MVPA, with energy expenditure above 3.0 metabolic 

equivalent or METs), SB correspond to “any waking behavior characterized by an energy 

expenditure <1.5 METs, while in a sitting or reclining posture” (Tremblay et al., 2017). 

Although the recommendations encourage reducing periods of SB, no specific strategy has 

been proposed to combat the effects of sedentary lifestyles (Bull et al., 2020).

SB are found in every domain of modern daily life: transportation, occupational (e.g., 

desk bound work) and leisure time activities (e.g., video gaming and internet). Adults in 

Westernized societies spend between 7.7 and 9.7 h/d sitting, which corresponds up to 60% 

of adult wake time (Ekelund et al., 2019). Several epidemiological studies have reported 

associations between sedentary time and health outcomes including early mortality, risk 

of T2D, metabolic syndrome and cardiovascular disease (Dunstan et al., 2012). These 

associations were observed in both sexes, all ages, ethnicities and independent of adiposity. 

They were also found in individuals who reach the recommended levels of MVPA, which 

suggests that SB is a stand-alone factor in the relationship between PA and health. In 

other words, spending too much time sitting may have different health effects than not 

exercising enough. While a plethora of epidemiological data is published, experimental 

evidence supporting the adverse health effects of SB independent of time spent physically 

active is lacking. This is mainly due to challenges in isolating the effects of SB from those of 

PA.

The bedrest model can provide unique insights on the independent health effects of 

SB. Bedrest studies have traditionally been used by the International Space Agencies to 

understand the physiological effects of microgravity. During these studies, physically active 

healthy participants free from any predisposition for chronic diseases stay in bed 24h/7d. 

They are both physically inactive and highly sedentary (figure 1). In some bedrest studies, 

the efficacy of exercise training protocols to protect the body against the harmful effects of 
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microgravity have also been tested. Participants in these studies perform exercise training 

(figure 1) while in bedrest. Participants in these studies are both sedentary and physically 

active, and represent an extreme but unique model of “sedentary exercisers”. Another 

distinctive characteristic of these bedrest exercisers is that they have very low levels of 

non-exercise activities of daily living, which correspond to light-intensity physical activities 

(LPA) with an energy expenditure between 1.6 and 2.9 METs (e.g. walking, taking the stairs, 

standing, etc.) (figure 1).

The objective of this review is to present experimental evidence from bedrest studies with 

or without concomitant exercise training to provide new information on the metabolic health 

effects of SB independent from those of MVPA/exercise. To better understand the complex 

relationship between SB, LPA, MVPA and metabolic health outcomes, we will also review 

briefly the health benefits of LPA.

The physiology of physical inactivity: insights from strict bedrest 

investigations

To understand the respective effects of SB and PA, it is important to first briefly summarize 

the physiological effects of combined sedentariness and physical inactivity induced by 

strict bedrest (figure 2). Bedrest induces hypokinesia (loss of body movements) and 

hypodynamia (loss of strength and power), which leads to modifications in all physiological 

systems (Bergouignan et al., 2011). Among other changes, bedrest reduces muscle function 

and mass as demonstrated by muscle atrophy and a shift from slow oxidative to fast 

glycolytic muscle fibers (Trappe et al., 2007a; Salanova et al., 2008; Trappe et al., 
2008), reduced mitochondrial volume and oxidative capacity (Kenny et al., 2017), and an 

impaired expression of genes involved in mitochondrial function (Alibegovic et al., 2010b). 

Bedrest also rapidly decreases insulin sensitivity in muscle (Alibegovic et al., 2009) in 

association with lower content and activity of key proteins involved in glucose transport, 

phosphorylation and storage (Biensø et al., 2012). This results in hyperinsulinemia to 

maintain normal glucose disposal. This development of glucose intolerance seems to be 

preceded by a metabolically inflexible state, i.e. an inability of the body to adjust substrate 

use to changes in substrate availability (Rudwill et al., 2018). Gene expression and activity 

of enzymes coupled with oxidative metabolism are decreased (Bergouignan et al., 2009; 

Alibegovic et al., 2010b; Fernandez-Gonzalo et al., 2020) in association with a reduction in 

lipid oxidation in favor of carbohydrate oxidation (Bergouignan et al., 2006; Bergouignan 

et al., 2009). These changes are particularly relevant following meal ingestion since they 

lead to decreased clearance of dietary lipids, which contributes to hyperlipidemia. Despite 

reduced adipose tissue lipolysis (Alibegovic et al., 2009; Alibegovic et al., 2010a), excess of 

plasma lipids enhances fat accumulation in the visceral adipose depot (Belavý et al., 2014) 

and ectopic fat storage in muscle, liver and bone (Bergouignan et al., 2009; Trudel et al., 
2009; Trudel et al., 2012; Rudwill et al., 2015). This in turn exacerbates the development 

of insulin resistance. Fat accumulation in liver likely stimulates de novo lipogenesis and an 

increased synthesis of atherogenic lipid particles (VLDL), as suggested by a recent study 

in free-living individuals who reduced their PA levels (Damiot et al., 2019). This increased 

secretion of VLDL further facilitates hyperlipidemia and ectopic fat storage. A decrease 
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in high-density lipoprotein (HDL) cholesterol, known to be associated with a reduction 

in cardiometabolic risk, has also been observed (Alibegovic et al., 2009). Concomitantly, 

the liver is less able to suppress hepatic glucose production, which results in increased 

gluconeogenesis, thus worsening hyperinsulinemia. These changes are finally associated 

with the development of low-grade inflammation as indicated by an increase in plasma 

pro-inflammatory markers (Rudwill et al., 2013; Mutin-Carnino et al., 2014).

All these metabolic features are commonly observed in individuals with obesity, T2D or 

metabolic syndrome. These observations therefore support a key role of physical inactivity 

in the onset and progression of metabolic diseases. Although the health enhancing effects of 

exercise (or MVPA) on these metabolic outcomes are well established, it is unclear whether 

they are sufficient to reverse the adverse health effects of sedentariness.

Can MVPA reverse the adverse health effects of physical inactivity and 

SB?: Insights from bedrest studies with concomitant exercise training

To the best of our knowledge, 10 bedrest studies have tested the protective effects of an 

exercise training program against the metabolic alterations induced by bedrest. These studies 

span from 20 to 90 days and the exercise prescriptions varied in the type (resistance or 

aerobic exercise), duration, frequency and intensity (Table 1). Some training protocols were 

below the current recommendations for PA while others were above. Results have been 

reported in 26 published articles and are summarized in figure 2.

Effect of resistance exercise alone:

Resistance exercise has been shown to mitigate the decrease in cardiorespiratory fitness 

(Guinet et al., 2020; Kenny et al., 2020) and prevent the loss of muscle function and mass 

including the reduction in fiber diameter during bedrest (Trappe et al., 2004; Moriggi et 

al., 2010). However, the mechanisms underlying the protective effects of resistance exercise 

against unloading-muscle atrophy are not fully clear. Resistance exercise was shown to 

prevent the bedrest-induced decrease in muscle protein synthesis (Ferrando et al., 1997) and 

downregulate the gene expression of myostatin (Irimia et al., 2017), a myokine known to 

contribute to muscle wasting. The effect of resistance exercise on muscle protein balance, 

i.e. muscle protein synthesis and breakdown, during bedrest is however still unknown. 

Despite these positive effects on skeletal muscle, resistance exercise only partially prevents 

the whole-body metabolic alterations induced by bedrest. It protects against the rise in 

visfatin (Rudwill et al., 2013), an adipocytokine that mimics the effects of insulin, but does 

not prevent the increase in IL-6 and C-reactive protein, two pro-inflammatory markers, or 

the decrease in adiponectin (Brooks et al., 2014), a change associated with inflammation, 

lipid abnormalities, and insulin resistance. Even when performed at high intensity, resistance 

exercise does not mitigate the decrease in HDL (Brooks et al., 2014; Guinet et al., 

2020), the development of insulin resistance, hyperlipidemia, or the shift towards the use 

of carbohydrate as fuel (Bergouignan et al., 2006). This later observation is surprising 

knowing that resistance exercise prevents against the shift of muscle fibers from oxidative 

to glycolytic types (Trappe et al., 2004), offsets the transcriptomic alterations in muscle 

related to aerobic energy metabolism (e.g. electron transport chain, fatty acid beta-oxidation 
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and tricarboxylic cycle pathways) (Fernandez-Gonzalo et al., 2020), and partially maintains 

the activity and gene expression of enzymes controlling oxidative metabolism (e.g. citrate 

synthase, succinate dehydrogenase) at the mitochondrial level (Irimia et al., 2017). Although 

resistance exercise alone does not restore the levels of fatty acid oxidation to baseline values 

(Bergouignan et al., 2006), no accumulation of fat in bone (Trudel et al., 2012) or visceral 

depots (Belavý et al., 2014) was reported. Furthermore, no data exists on the effects of 

resistance exercise on ectopic fat storage in liver or muscle during bedrest. In all these 

studies, the resistance exercise session was performed as a single continuous bout; however 

novel data suggest that spreading activity throughout the day as multiple short active bouts 

may have more potent health-enhancing effects (Loh et al., 2019). Nevertheless, when 

exercise was performed as intermittent, frequent jumping squats spread throughout the day 

muscle mass loss was prevented, but not the reduction in whole-body and peripheral insulin 

sensitivity (Ward et al., 2020). Taken together, the low energy expenditure associated with 

resistance exercise (Table 1) may be responsible for partial or limited protective effects on 

metabolic health.

Effect of combined resistance and aerobic exercise:

The majority of bedrest studies has combined aerobic exercise with resistance exercise, 

which likely induced a greater energy expenditure compared to resistance exercise alone. 

This training approach preserves or at least attenuates cardiorespiratory fitness, muscle 

structure and function, leg muscle size and power, muscle strength and endurance, muscle 

fiber composition and diameter and mitochondrial content and oxidative capacity (Trappe 

et al., 2007a; Trappe et al., 2007b; Salanova et al., 2008; Trappe et al., 2008; Bergouignan 

et al., 2009; Krainski et al., 2014; Lee et al., 2014; Ploutz-Snyder et al., 2018). Although 

muscle alterations were prevented by all the tested resistance and aerobic exercise protocols 

regardless of the type, duration, intensity and frequency of the training, the protective 

effects on metabolic outcomes were variable. Combined resistance and aerobic exercise 

training prevents the development of a pro-inflammatory state (Mutin-Carnino et al., 2014), 

insulin resistance and the shift in substrate use from total fat oxidation to carbohydrate 

oxidation (Bergouignan et al., 2009). However, it does not counteract the increase in 

fasting triglycerides, the reduced oxidative rate of dietary fatty acids likely due to an 

impaired transport of fatty acids into the myocyte, and fat accumulation in skeletal muscle 

(Bergouignan et al., 2009) and bone (Trudel et al., 2009). Hepatic fat accumulation is 

however likely offset (Rudwill et al., 2015). Surprisingly, these alterations were observed 

despite levels of MVPA mostly above recommended levels (Table 1), and total daily energy 

expenditure maintained to pre-bedrest levels in the exercising participants (Bergouignan et 
al., 2010).

Taken together these studies show that exercise (or MVPA) protects skeletal muscle mass 

and function, and cardiorespiratory function against large volumes of SB induced by bedrest. 

However, even if a dose-response relationship exists (Figure 2 and Table 1), very high 

levels of exercise do not fully prevent the manifestation of metabolic dysfunction, i.e. 

whole-body insulin resistance, glucose intolerance, alterations of lipid metabolism, and 

systemic inflammation. These observations support the role of organs other than muscle in 

the health-enhancing effects of physical activity (Thyfault & Bergouignan, 2020), and the 
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existence of health effects of SB independent of those from MVPA. It further highlights 

the importance of non-exercise activity (i.e. LPA), which mainly corresponds to daily living 

activities performed throughout the day.

Health benefits of daily living activities

Evidence from epidemiological studies indicate that LPA has a potential role in reducing 

the risk of early mortality. In cross-sectional studies, LPA is favorably associated with 

waist circumference, body mass index (BMI), plasma triglyceride, insulin, HDL-cholesterol 

concentrations (Amagasa et al., 2018) and 2h plasma glucose (Healy et al., 2007), 

independent of MVPA. Iso-temporal substitution modelling suggests that replacing 30 

min of SB per day with 30 min of LPA (and not MVPA) is associated with lower waist 

circumference and BMI (Healy et al., 2015). A growing number of experimental studies 

have also examined the effects of LPA prescribed as short bouts spread throughout the 

day on metabolic health (table 2). As previously reviewed (Dempsey et al., 2016a), LPA 

bouts (15–40 min) acutely decrease postprandial glycemia and insulinemia. Even brief 

intermittent bouts (≤5 min) of walking spread throughout the day reduce glucose and insulin 

concentrations following meal ingestion, with more potent effects observed in adults with 

overweight to obesity and T2D (Chastin et al., 2019), and those with lower cardiorespiratory 

fitness compared to healthy lean individuals (McCarthy et al., 2017). Importantly, acute 

exposure to bouts of LPA elicits similar responses to those observed with short, frequent 

bouts of MVPA. With regards to standing, although some studies did not show a reduction 

in postprandial glycemic response (Bailey & Locke, 2015; Pulsford et al., 2017), others 

did (Benatti et al., 2017). Benatti and colleagues even reported that intermittent standing, 

but not a single continuous bout of MVPA, lowers postprandial glycemia in healthy 

adults. The difference in the observed effects may be explained by the duration of the 

standing bouts (2 min vs 15 min) and the total active duration (30 min MVPA vs 15 

min standing every 30 min for 8.5 hours). Although these acute studies suggest that LPA 

of higher energy expenditures or longer duration decrease glycemia and insulinemia in 

a dose-dependent manner, none of these studies controlled for energy expenditure across 

the interventions. In an elegant series of studies, Duvivier and colleagues compared the 

metabolic effects of replacing SB with LPA walking and standing to those of 1h/d of MVPA. 

Both interventions lasted four days and were matched for energy expenditure. Replacing SB 

with high volumes of LPA without any increase in MVPA, decreased postprandial insulin, 

fasting triglycerides and non-HDL cholesterol in healthy adults (Duvivier et al., 2013). In 

adults with T2D, increasing time spent standing and walking improved glucose control 

and insulin sensitivity. It further reduced diastolic blood pressure, blood triglycerides and 

non-HDL cholesterol while increasing HDL cholesterol (Duvivier et al., 2017a; Duvivier 

et al., 2017b). The MVPA intervention tended to improve these metabolic parameters, 

but the effects were less pronounced. These studies show that when energy expenditure 

is matched, replacing SB with high volumes of LPA (i.e. non-exercise activity) is more 

beneficial than performing MVPA as a single continuous bout (i.e. structured exercise), 

at least for glucose control, insulin sensitivity and circulating lipids. On the contrary, if 

frequent LPA bouts (>2 min) improves endothelial function (Thosar et al., 2015; Dempsey 

et al., 2016b), a single bout of MVPA may be more beneficial for microvascular function 
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than increasing LPA throughout the day (Duvivier et al., 2018). These findings suggest 

that MVPA (i.e., exercise) and LPA (i.e., non-exercise activity) might elicit differential 

cardiometabolic effects. Future studies will need to further compare the effects of LPA 

versus MVPA on cardiometabolic health outcomes, including maximal aerobic capacity, 

muscle strength, substrate metabolism, glucose control, and insulin sensitivity in different 

populations and investigate the mechanistic underpinnings.

Where do we go from here?

Although MVPA produces a myriad of health benefits, it does not reduce time spent 

sedentary. Indeed, physically active people, even those who exceed the current guidelines, 

can be as sedentary as their inactive counterparts (Rantalainen et al., 2018). Increasing 

MVPA can even trigger spontaneous behavioral compensations in sedentary adults leading 

to a decrease in non-exercise activities (i.e. LPA) in favor of sedentary time (Lefai et al., 
2017). Furthermore, MVPA does not fully offset the adverse health effects of large volumes 

of SB, as shown by the bedrest studies with concomitant exercise training. The remaining 

question is how much MVPA is needed to offset the effects of a certain amount of SB. It 

was shown that independent of physical activity, every hour spent sitting increases the risk 

of mortality by 5.9%, of T2D by 22% and of obesity by 23% (Hu et al., 2003; Wilmot 

et al., 2012; Chau et al., 2013). A meta-analysis including more than 1 million individuals 

further showed that 60–75 min/d of MVPA are needed to prevent the risk of premature death 

associated with 9h/d or more of sitting time (Ekelund et al., 2016); 9h/d being close to the 

average sitting time observed in modern societies. When most of the population does not 

reach the recommended guidelines (i.e. 30 min/d of MVPA, 5d/wk.), adding 30–45 more 

minutes per day of MVPA is unrealistic. Therefore, other pragmatic and efficient strategies 

are needed.

Activities of daily living (i.e. LPA) are inversely associated with SB; increases in LPA are 

associated with reductions in sedentary time (Pate et al., 2008). In addition, large volumes of 

LPA, here considered as any body movements associated with activities of daily living, have 

been shown to confer health benefits. Knowing that lack of time is a major barrier to the 

practice of exercise/MVPA, reintroducing LPA into daily life could be an effective strategy 

to reduce sedentary time and prevent its effects on metabolic health. In this line, the latest 

guidelines from the World Health Organization (Bull et al., 2020) promote the practice of 

physical activity of any intensity to reduce sedentary activities. In other words, moving is 

better than sitting. Future mechanistic studies will need to establish the physiology of SB 

and LPA to better understand the respective negative and positive health effects, and thus 

better define the dose-response relationship between the components of PA behavior and 

key health outcomes. Experimental research examining these relationships will foster the 

development of more specific and pragmatic public health guidelines.
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Figure 1: Schematic representation of the components of total energy expenditure during 
bedrest, conducted with or without exercise training.
Based on total energy expenditure, participants enrolled in bedrest protocols can be 

compared to the general population. Strict bedrest suppresses both components of physical 

activity energy expenditure: exercise activity energy expenditure and non-exercise activity 

energy expenditure. Exercise activity energy expenditure refers to the energy spent in 

MVPA and/or structured exercise. Non-exercise activity energy expenditure corresponds 

to any activity of daily life, which are essentially LPA. Participants who are subjected to 

moderate to vigorous exercise training along with bedrest maintain high exercise activity 

energy expenditure mainly due to MVPA. However, they are sedentary with very low 

levels of non-exercise activity energy expenditure and are lacking LPA. These individuals 

represent an extreme but unique model of “sedentary exercisers”, i.e. physically active 

yet sedentary people. Strict bedrest leads to a decrease of both MVPA and LPA while 

increasing SB. These bedrest individuals represent a model of the modern physically 

inactive sedentary individuals. SED: sedentary activities; LPA: light-intensity physical 

activity; MVPA: moderate-to-vigorous physical activity. Adapted from Bergouignan et al 

2010.
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Figure 2: Preventive effect of exercise (resistance exercise or resistance plus aerobic exercise) 
against the bedrest-induced physiological and metabolic alterations.
− : no effect; + : partially protected; ++ : fully protected; ?: no data available; ± : no 

consensus.
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Table 1:

Summary of the exercise training protocols tested during bedrest studies

Publication Study name 
Duration of 
BR Sample 
size

Exercise modalities Estimated 
duration of 
MVPA

Estimated 
energy cost

Resistance exercise

Bergouignan A. et 
al. 2006
Fernandez-Gonzalo 
R. et al. 2020
Irimia J. et al. 2017
Rudwill F. et al. 
2013
Trappe S. et al. 2004

LTBR 2001–
2002
90 d HDT-BR
n=18 ♂

35 min every 3 d during BR on flywheel ergometer. 
Progressive warm-up + 4×7 max concentric/eccentric squat + 
4×14 in calf press. 2 min rest between sets and 5 min between 
EX.

82 min 
MVPA/wk
12 min 
MVPA/d

8 MET.h/wk
1.2 MET.h/d

Brooks N. et al. 
2014

28 d HDT-BR
n=31 ♂

1 h/d, 6 d/wk.
Target intensity: 70–80% of 1RM as estimated by the OMNI 
rating of perceived EX 10 category scale.
7 to 8 REX targeting major muscle groups during each 
session. Lower body (squats, single leg squats, diagonal jump, 
calf raise, single-leg hip extension, leg curl, single-leg hip 
abduction) and upper body (pull-ups, pull-over, triceps press, 
chest fly, shoulder press, biceps curl, upright row, lateral arm 
raise) EX were performed on alternating days.

360 min 
MVPA/wk
51 min 
MVPA/d

36 MET.h/wk
5.2 MET.h/d

Ferrando A. et al. 
1997

14 d HDT-BR
n=6 ♂

Squat on horizontal leg-training device every 2 d. 3×12 squats, 
training volume progressively increased to reach 5×8 squat at 
session 3 till the end of BR.

? ?

Guinet P. et al. 2020
Kenny H. et al. 2017
Kenny H. et al. 2020

MNX
21 d HDT-BR
n=12 ♂

5 sessions of EX, on leg press machine with a vibration 
platform (8 mm peak-to-peak, 25 Hz): bilateral squats (10 rep, 
75% 1-RM, 8 s/rep), single heel raises (×1.3 body weight, 
contractions performed as fast as possible until fatigue) and 
bilateral heel raises (×1.8 body weight, contractions performed 
as fast as possible until fatigue). A 5% load adjustment was 
made based on the ability of volunteers to complete the set of 
EX.

5–15 min 
MVPA/wk
0.7–2.1 min 
MVPA/d

0.5–1.5 
MET.h/wk
0.01–0.2 
MET.h/d

Moriggi M. et al. 
2010

BBR1
55 d HDT-BR
n=12 ♂

2 bouts/d of EX (6min each) of RVE at preset frequencies 
ranging from 19 at the beginning to 25Hz. Total of 89 sessions.
1. Squatting EX: Knees were extended from 90° to almost full 
extension in cycles of 6s for each squat (knee extensors).
2. Heel raises: With knees almost extended, heels were raised 
to fatigue. Only then, brief rests (< 5s) were allowed with the 
entire foot on the vibration platform in order to recover, and 
subjects started to raise their heels again (foot plantar flexors).
3. Toe raises: Similar to 2, but toes were raised instead of heels 
(foot dorsi-flexors).
4. “Kicks”: With the same loading as in 1–3, knees were 
extended as quickly and forcefully as possible. The platform 
was struck with the balls of the feet, and legs rested on the 
Galileo Space framework in between the kicks. This was done 
10 times with 10s of rest inserted.

36 min 
MVPA/wk
5.1 min 
MVPA/d

3.6 MET.h/wk
0.5 MET.h/d

Belavy D. et al 2014
Trudel G. et al. 2012

BBR2–2
60 d HDT-BR
n=24 ♂

3 d/wk:
1. Bilateral leg press (~75–80% of pre-bed-rest max voluntary 
contraction);
2. Dingle-leg heel raises (~1.3 times body weight);
3. Double leg heel raises (~1.8 times body weight);
4. back and forefoot raise (performing hip and lumbar spine 
extension against gravity with ankle dorsiflexion, but with ~1.5 
times body weight applied at the shoulders).
The RVE group performed the same exercises as the REX 
group, except that whole body vibration was applied. The 
corresponding vibration parameters were as follows:
1. frequency 24 Hz, amplitude 3.5–4 mm, and peak 
acceleration ~8.7 g, where g ~ 9.81 ms−2;
2. frequency 26 Hz, amplitude 3.5–4 mm, and peak 
acceleration ~10.2 g;
3. frequency 26 Hz, amplitude 3.5–4 mm, and peak 

15.8 min 
MVPA/wk
2.3 min 
MVPA/d

1.6 MET.h/wk
0.2 MET.h/d
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Publication Study name 
Duration of 
BR Sample 
size

Exercise modalities Estimated 
duration of 
MVPA

Estimated 
energy cost

acceleration ~10.2 g;
4. frequency 16 Hz, amplitude 3.5–4 mm, and acceleration 
~3.9 g

Combined resistance and aerobic exercise

Bergouignan A. et 
al., 2009
Bergouignan A. et 
al., 2010
Lee SM. et al., 2014
Mutin-Carnino M. et 
al., 2013
Rudwill F. et al., 
2015
Salanova M. et al., 
2008
Trappe T.A. et al., 
2007
Trappe S. et al., 
2007
Trappe S. et al., 
2008
Trudel G. et al., 
2009

WISE
60 d HDT-BR
n=16 ♀

REX: 35min every 3 d, 4×7 max concentric/eccentric squat + 
4×14 in calf press. 
AEX: 50min every 2 d, 50min in lower body negative pressure 
vertical treadmill at 40–80% pre-bedrest VO2max

247 min 
MVPA/wk
35.3 min 
MVPA/d

33.1 
MET.h/wk
4.7 MET.h/d

Krainski F. et al., 
2014

35 d HDT-BR
n=27 ♂/♀

REX: 25–30min 2 d/wk. 2×8–12 of lower body exercises 
(leg press, plantar flexion, knee flexion, hip flexion, and 
hip abduction) and 1×8–12 of upper body EX (shoulder 
press, elbow flexion and extension, chest press, pullovers, and 
abdominal crunches) were performed in the supine position, 
loads were adjusted weekly to reach muscle fatigue during 
each set of EX. After 5 wk of BR, 2×20 plantar flexion 
exercises on each leg 2/d (6–8min) against an elastic band were 
added for all remaining subjects in EX group.
AEX: 6 d/wk. During each week of BR, subjects completed 
1 recovery (low intensity, typically <70% max HR), 2 base 
(moderate intensity, between 70–80% max HR), 1 MSS 
(vigorous intensity, 80–90% maximal HR), and 2 interval 
sessions (high intensity, 90–95% max HR or above), each 
lasting a total of 30 – 46 min and separate warm-up/cool-down 
phases lasting 5 min each. Intervals consisted of 6 cycles of 
3 min at 90–95% of max HR, followed by 3 min at recovery 
pace.

381 min 
MVPA/wk
54.4 min 
MVPA/d

49.5 
MET.h/wk
7.1 MET.h/d

Ploutz-Snyder L. et 
al. 2018

70 d HDT-BR
n=26 ♂

REX: 3 d/wk. 3×4 supine lifts (squat, leg press, unilateral leg 
curl, and heel raise); squats and leg press were each performed 
using a standard shoulder-width stance, single-leg stance, 
or wide-leg stance on a rotating basis. Training followed a 
nonlinear periodized model in which load and repetitions were 
varied on a daily basis to optimize adaptations.
AEX: 6 d/wk. Alternating days of continuous cycle EX for 
30 min at 75% of VO2peak (3 d/w) with interval treadmill 
sessions of 30s, 2min, or 4min intervals (3 d/wk) at nearly max 
intensity.

314.5 min 
MVPA/wk
45 min 
MVPA/d

40 MET.h/wk
5.7 MET.h/d

Ward K. et al. 2020 
(In press)

RSL
60 d HDT-BR
n=23 ♂

48 sessions including 4 types of training sessions based on 
varying CMJ and repetitive hops between 80–90% of BW 
during 1.5–3min preceded by a warm-up and 3 max CMJ at 
80% of BW.

17.5 min 
MVPA/wk
2.5 min 
MVPA/d

2.6 MET.h/wk
0.4 MET.h/d

HDT-BR: 6° head-down tilt bedrest; d: days; wk: week; max: maximal; BW: body weight; CMJ: countermovement jump; EX: exercise; REX: 
resistive exercise; AEX: aerobic exercise
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Table 2:

Summary of the acute metabolic health effects of light-intensity physical activity from experimental 

laboratory-controlled studies

Publication Sample size and 
characteristics

Study design Study conditions Primary results

Studies investigating light-physical activity compared to sitting

Bailey et al. 2015 N=10 (3♀/7♂)
BMI: 26.5 ± 4.3 kg/m2

Non-insulin resistant

Cross-over (5h/condition)
1) Uninterrupted Sitting
2) Sit + 2min stand every 20min
3) Sit + 2min LIW every 20min

Plasma glucose AUC: LIW < sitting 
and standing; standing vs. sitting: NS
Blood pressure: No between-
conditions difference
Plasma lipids: No between-
conditions difference

Benatti et al. 2017 N=14 ♂
BMI kg/m2: 24.9 ± 4.3 kg/m2

Non-insulin resistant

Cross-over (27h/condition)
1) Uninterrupted Sitting
2) Sit + 15min stand every 30min
3) Sit + 30min MIW
4) Sit + 30min MIW and 15min stand 
every 30-min

Postprandial plasma glucose iAUC: 
standing < sitting; MIW vs sitting: 
NS

Dempsey et al. 
2016b

N=24 (10♀/14♂)
BMI: 33.0 ± 3.4 kg/m2

Type 2 diabetes

Cross-over (8h/condition)
1) Uninterrupted sitting
2) Sitting + 3min LIW every 30min
3) Sitting + 3min resistance activities every 
30min

Blood pressure: LIW < sitting
Noradrenaline concentration: LIW < 
sitting

Duvivier et al. 
2017a

N=24 (11♀/13♂)
BMI: 29.0 ± 2.0 kg/m2

Non-insulin resistant

Cross-over (4 days/condition)
1) Sit 13.5h/d, stand 1.4h/d, LIW 0.7 h/d
2) Sit 7.6h/d, stand 4.0h/d, LIW 4.3h/d

OGTT insulin AUC: LIW < sitting
Insulin sensitivity (Matsuda index): 
LIW < sitting
Fasted lipids: LIW < sitting
Fasted lipoproteins: LIW < sitting
Diastolic blood pressure: LIW < 
sitting

McCarthy et al. 
2017

N=34 (18♀/16♂)
BMI: 23.8 ± 6.1 kg/m2

Non-insulin resistant

Cross-over (7.5h/condition)
1) Uninterrupted Sitting
2) Sit + 5min LIW every 30min

Plasma glucose iAUC: LIW < sitting
Plasma insulin iAUC: LIW < sitting

Pulsford et al. 
2017

N=25 ♂
BMI: 24.9 ± 4.3 kg/m2

Non-insulin resistant

Cross-over (7h/condition)
1) Uninterrupted sitting
2) Sit + 2min stand every 20min
3) Sit + 2min LIW every 20min

Postprandial plasma glucose AUC: 
LIW < sitting
Postprandial plasma insulin AUC: 
LIW < sitting
Insulin sensitivity (Matsuda index): 
LIW < standing and sitting

Thosar et al. 2015 N=12 ♂
BMI: 23.7 ± 3.4 kg/m2

Non-insulin resistant

Cross-over (3h/condition)
1) Uninterrupted sitting
2) Sit + 5min LIW every hour

Flow-mediated dilation: LIW > 
sitting
Shear rate: LIW > sitting

Studies comparing the health effects of light-intensity and moderate-vigorous physical activity to sitting

Duvivier et al. 
2013

N=18 (16♀/2♂)
BMI: 22.6 ± 2.6 kg/m2

Non-insulin resistant

Cross-over (4d/condition)
1) Sit 14h/d
2) Sit 13h/d and 1h EX
3) Sit 8h/d, 4h LPA, 2h stand

OGTT plasma insulin AUC: LPA < 
sitting and exercise
Fasting lipids: LPA < sitting; LPA vs 
exercise: NS
Fasting lipoproteins: LPA < sitting; 
LPA vs exercise: NS

Duvivier et al. 
2017b

N=19 (6♀/13♂)
BMI: 30 ± 2.0 kg/m2

Type 2 diabetes

Cross-over (4d/condition)
1) Sit 14h/d with 4415 steps/d
2) Sit + 1.1h/d EX with 4823 steps/d
3) Sit + stand 2.5h/d and LIW 2.2h/d with 
17,502 steps/d

Glycemia (CGMs): LIW < exercise
Insulin sensitivity index (HOMA2-
IR): LIW < exercise

Duvivier et al. 
2018

N= 61 (33♀/28♂)
BMI: 27.8 ± 4.3 kg/m2

Non-insulin resistant and type 2 
diabetics

Pooled analysis
Cross-over (4d/condition)
(1) Sit 14h/d
(2) Sit + 1h/d MIW
(3) Sit + 5–6h/d LIW and standing

Endothelial function: LIW < MIW
Insulin sensitivity index (HOMA2-
IR): LIW < MIW
Plasma lipids: LIW < MIW
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BMI: body mass index (kg/m2); h: hours; d: day; EX: exercise; body mass index; AUC: area under the curve; iAUC: incremental area under the 
curve; LIW: light-intensity walking; MIW: moderate-intensity walking; OGTT: oral glucose tolerance test; LPA: light-intensity physical activity; 
CGMs: continuous glucose monitoring system.
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