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ABSTRACT
We propose two model selection criteria relying on the bootstrap
approach, denoted by QAICb1 and QAICb2, in the framework of
linear mixed models. Similar to the justification of Akaike Informa-
tion Criterion (AIC), the proposed QAICb1 and QAICb2 are proved as
asymptotically unbiased estimators of the Kullback–Leibler discrep-
ancy between a candidatemodel and the truemodel. However, they
are defined on the quasi-likelihood function instead of the likelihood
and are proven to be asymptotically equivalent. The proposed selec-
tion criteria are constructed by the quasi-likelihood of a candidate
model and a bias estimation term in which the bootstrap method is
adopted to improve the estimation for the bias caused by using the
candidate model to estimate the true model. The simulations across
a variety of mixed model settings are conducted to demonstrate
that the proposed selection criteria outperform some other existing
model selection criteria in selecting the truemodel. Generalized esti-
mating equations (GEE) are utilized to calculate QAICb1 and QAICb2
in the simulations. The effectiveness of the proposed selection crite-
ria is also demonstrated in an application of Parkinson’s Progression
Markers Initiative (PPMI) data.
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1. Introduction

During the process of model selection, model selection criteria play a vital role to choose
the most appropriate model. A well-known model selection criterion is AIC [1], which
assesses a model through two aspects, the goodness of fit and simplicity. Originated from
the information theory, AIC utilizes the likelihood function of a candidate model to evalu-
ate how well the model fits the data set and a bias correction to measure the complexity of
a model. Due to its simple form of the bias correction term, AIC tends to choose more
complex or overfitted models rather than simpler ones, especially in the small sample
scenario [9,19]. More importantly, the distribution assumption of the data is not always
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satisfied and the computation cost of likelihood functions significantly increases when it
comes to the mixed model for highly correlated data.

The quasi-likelihood function [20] shares similar properties of the traditional likelihood
function but can be well-defined as long as the mean and variance of the distribution for
the data set are specified. The lack of distribution assumptions makes the quasi-likelihood
more applicable to various models, including linear and generalized linear mixed models.
Furthermore, with the introduction of an over-dispersion parameter, the quasi-likelihood
function is capable of reducing the influence brought by overdispersion. When the quasi-
likelihood function is applied to correlated data, themethod ofGEE [13] is commonly used
to estimate model parameters.

To improve the quality of model selection, resampling approaches can be incorporated,
of which the most influential technique is the bootstrap [5–7] method. A typical bootstrap
approach takes three forms: parametric, semiparametric and nonparametric bootstrap.
The nonparametric bootstrap is the most widely used because it is free from the paramet-
ric distribution of the data by using the bootstrap distribution [7]. AIC could be improved
by absorbing the bootstrap approach, as shown in Cavanaugh and Shumway [4]. Ishig-
uro andMorita [10] proposedWIC through bootstrap followed by a successful application
to a practical problem. Ishiguro et al. [11] proposed the extended information criterion
(EIC) to extend the usage of AIC by estimating the bias correction term based on the
bootstrap resample. When it comes to the mixed model with dependent data, Shang and
Cavanaugh [19] brought out two bootstrap-based selection criteria, AICb1 and AICb2,
which are efficient especially in small sample scenarios. Unfortunately, these bootstrap uti-
lizations rely on the likelihood function of a data set which furthermore depends on the
distribution assumption.

To extend the justification of AIC, QIC(R) [16] was proposed as a model selection crite-
rion by mimicking the construction of AIC and modifying the Kullback–Leibler (K-L)
discrepancy [12] using the quasi-likelihood function and estimators from GEE. How-
ever, the performance of QIC(R) is not consistent. In the context of linear mixed models,
when the correlation within groups becomes large, QIC(R) is less likely to select the most
appropriate model.

Motivated to overcome the above disadvantages in selecting overfitted models, in dis-
tribution assumptions, and in consistency of selection criteria for mixed model selection,
we propose two model selection criteria, denoted by QAICb1 and QAICb2, based on the
quasi-likelihood function and bootstrap method for correlated data in linear mixed mod-
els, as an extension and modification of QIC(R) in Pan [16] and of AICb1 and AICb2 in
Shang andCavanaugh [19].We apply theGEE estimator alongwith the bootstrap approach
to compute the quasi-likelihood of the data and to estimate the bias term.

In Section 2, we present the linear mixed models and the quasi-likelihood function.
In Section 3, we propose the bootstrap-adjusted quasi-likelihood-based model selection
criteria, denoted by QAICb1 and QAICb2. They are proved to be asymptotically unbi-
ased estimators of the K-L discrepancy between a candidate and the true model in the
Supplemental Appendix. In Section 4, the simulations in various settings are conducted to
illustrate the selection performance of QAICb1 andQAICb2 for linearmixedmodels using
both nonparametric and semi-parametric bootstrap methods, along with the comparison
with other two existing criteria. An application of the proposed selection criteria in the
PPMI data is presented in Section 5. Section 6 concludes and discusses.
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2. Linear mixedmodels and quasi-likelihood

Let N be the number of total observations with N = ∑n
i=1 ni, the linear mixed model for

n clusters takes the form of

yi = Xiβ + Zibi + εi, i = 1, . . . , n, (1)

where yi is the response vector, Xi and Zi are the design matrices for the fixed and random
effects, respectively, with i as the index for the clusters, β is a (p + 1) × 1 vector of fixed
coefficients, bi is a q × 1 vector of random effects with E(bi) = 0 and Var(bi) = �, εi is an
ni × 1 vector of error terms with E(εi) = 0 and Var(εi) = σ 2Ini . The matrix � is positive
definite, and Ini is an ni × ni identity matrix. Combining all the responses in one vector,
Equation (1) can be expressed as

Y = Xβ + Zb + ε. (2)

In model (2), Y = (y′
1, . . . , y

′
n)

′ is an N × 1 vector of all the responses, b = (b′
1, . . . , b

′
n)

′
is an nq × 1 vector for random effects, ε = (ε′

1, . . . , ε
′
n)

′ is an N × 1 error vector, X =
(X′

1, . . . ,X
′
n)

′ is an N × (p + 1) matrix and assumed to be full rank, and Z is an N × nq
block diagonal matrix with diagonal elements Z1, . . . ,Zn.

We note that even though a typical linearmixedmodel requires random effects to follow
a multivariate normal distribution with mean 000 and covariance matrix �, the distribution
of random effects in model (1) is not specified or unknown in many situations, and it is
the same for the distribution of error terms εi. As quasi-likelihood functions only require
the first two moments of the distribution, more flexibility exists when it comes to the dis-
tribution of random effects. In other words, the quasi-score equation could be constructed
when the mean and variance of Y are specified.

To further simplify the notation, it is assumed that ni = m for all i = 1, . . . , n and
Var(εi) = σ 2I, where I is an m × m identity matrix. In a linear mixed model, let μi =
E(yi) = Xiβ andVi = Var(yi) = Zi�Z′

i + Var(εi) = Zi�Z′
i + σ 2I, then the response vec-

tor yi has mean μi and variance covariance matrix Vi. Thus, the log quasi-likelihood
Q(μi; yi) is defined through the following differential equation:

∂Q(μi; yi)
∂μi

= V−1
i (yi − μi). (3)

Note that ∂μi/∂βi = Xi, and Equation (3) could be written in terms of β by:

∂Q(μi; yi)
∂β

= X′
iV

−1
i (yi − Xiβ). (4)

Moreover, using Equation (4), the estimated β̂ can be achieved by solving the following
quasi-score equation

U(β) =
n∑

i=1
X′
iV

−1
i (yi − Xiβ) = 0. (5)

Note that we have

E(U(β)) =
n∑

i=1
X′
iV

−1
i (E(yi) − Xiβ) = 0,
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which means when the first moment of the distribution is correctly specified, the root
of Equation (5), β̂ , is consistent. Moreover, the robust variance estimate of β̂ given by
White [21],

V
β̂

=
( n∑

i=1
X′
iV

−1
i Xi

)−1 { n∑
i=1

X′
iV

−1
i (yi − Xiβ̂)(yi − Xiβ̂)′V−1

i Xi

}( n∑
i=1

X′
iV

−1
i Xi

)−1

,

which is consistent as well provided that E(yi) = Xiβ [22]. Note that we do not include
the overdispersion parameter when constructing the quasi-likelihood function here. As
the mean and variance of Y are independently distributed, the parameter estimation of the
linear mixed model will not encounter overdispersion.

3. Bootstrap-adjusted quasi-likelihood information criteria: QAICb1 and
QAICb2

In this section, we propose twomodel selection criteria, denoted by QAICb1 and QAICb2,
based on the quasi-likelihood function and bootstrap approach and start by extending the
likelihood-based K-L discrepancy [12] to the quasi-likelihood-based function. Bootstrap-
ping is applied to establish these two selection criteria, named QAICb1 and QAICb2. We
prove that QAICb1 and QAICb2 are asymptotically equivalent and asymptotically unbi-
ased estimators of the quasi-likelihood-based K-L discrepancy between the true model
and a candidate model in the Supplemental Appendix. Therefore, QAICb1 and QAICb2
are proposed to serve as two criteria for mixed model selection. In fact, these two criteria
can also be extended to generalized linear models with random effects in future analysis.

3.1. K-L discrepancy based on quasi-likelihood

Similar to the K-L discrepancy in Shang and Cavanaugh [19] and Cavanaugh and
Shumway [4] using the likelihood function, we will define the K-L discrepancy using the
quasi-likelihood function. Letβ0 andβ denote the parameters for the truemodel and a can-
didate model, respectively. The quasi-likelihood function corresponding to the parameters
β for a candidate model is denoted by Q(β ,φ;Y), where φ denotes the nuisance param-
eters containing all covariance parameters. Following Pan [17] and the definition of K-L
discrepancy, the K-L discrepancy based on the quasi-likelihood function between the true
model and a candidate model is defined as

d(β ,β0,φ;Y) = E0[−2Q(β ,φ;Y)],

where the expectation E0 is taken under the true model. Since the quasi-likelihood owns
the same properties as the likelihood function, this discrepancy can reflect the distance
between a fitted model and the true model, indicating the goal of this discrepancy is sim-
ilar to that defined based on the likelihood function. As discussed in the Supplemental
Appendix, the discrepancy d(β ,β0,φ;Y) is valid for β for each of all candidate models in
the neighborhood of β0 with β0 being the local minimizer of d(β ,β0,φ;Y). More impor-
tantly, the unbiased estimator or asymptotically unbiased estimator of this discrepancy can
serve as a model selection criterion, and the minimized criterion value shows the fitted
model is the most appropriate one because it has closest distance with the true model.
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Let β̂ be the estimator of β from a candidate model. Here, β̂ is the estimator derived by
solving the corresponding quasi-score Equation (5). Then, the corresponding discrepancy
can be written as

d(β̂ ,β0,φ;Y) = E0[−2Q(β ,φ;Y)]|
β=β̂

. (6)

It is not possible to evaluate the quantity in Equation (6) because the parameters corre-
sponding to β0 is usually unknown. Let d(β0,φ, k) be the expectation of the discrepancy
in Equation (6) under the true model, and k is the number of estimated parameter for the
candidate model, we now have

d(β0,φ, k) = E0[d(β̂ ,β0,φ;Y)]

= E0[E0{−2Q(β ,φ;Y)}|
β=β̂

]

= E0[−2Q(β̂ ,φ;Y)]

+ E0[E0{−2Q(β ,φ;Y)}|
β=β̂

] − E0[−2Q(β̂ ,φ;Y)]. (7)

According to construction of AIC in Akaike [1], as shown in Equation (7), the quantity
−2Q(β̂ ,φ;Y) is a biased estimator of d(β0,φ, k) and the bias term is

E0[E0{−2Q(β ,φ;Y)}|
β=β̂

] − E0[−2Q(β̂ ,φ;Y)]. (8)

The selection criteria based on the discrepancy in Equation (7) should serve as the unbi-
ased estimators or asymptotically unbiased estimators and then can measure the distance
between the truemodel and a candidatemodel. Next, we will propose two selection criteria
named QAICb1 and QAICb2, which own such properties, as proved in the Supplemental
Appendix.

3.2. Selection criteria: QAICb1 andQAICb2

Let {Y∗(i), i = 1, . . . ,B} be the B bootstrap samples obtained through Y by resampling
on the individual level and {β̂∗(i), i = 1, . . . ,B} be the corresponding estimators from
the bootstrap samples. As discussed in the Supplemental Appendix, we can replace the
terms of the original sample by the related ones from the bootstrap samples. For the brevity
of notation, we remove the φ from the notation of a quasi-likelihood because in a set of
candidate models, we let the covariance structure be fixed and only make a selection from
the fixed effects.

Thus, the quantity in expression (8) of the bias correction term could be expressed as

E∗[E∗{−2Q(β ;Y∗)}|
β=β̂∗] − E∗[−2Q(β̂∗;Y∗)], (9)

where the expectationE∗ is takenwith respect to the empirical distribution of the bootstrap
sample Y∗, and fortunately, the expectation of expression (9) can be estimated numerically
through estimators obtained using the bootstrap samples.

Motivated by the construction of EIC in Ishiguro et al. [11] and AICb1 and AICb2 in
Shang and Cavanaugh [19], the bootstrap estimation of the expectation in expression (9)
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relies on a crucial assumption, which is expressed as

E∗{−2Q(β ;Y∗)} = −2Q(β ;Y), (10)

under the parametric, semiparametric or nonparametric bootstrap approaches. The
detailed proof of the assumption in Equation (10) is provided in the Supplemental
Appendix. Taking advantage of assumption (10), the expectation in Equation (9) can be
expressed as

E∗[E∗{−2Q(β ;Y∗)}|
β=β̂∗] = E∗[−2Q(β ;Y)|

β=β̂∗]

= E∗[−2Q(β̂∗;Y)]. (11)

The bootstrap expectation in Equation (11) can be estimated by

1
B

B∑
i=1

−2Q(β̂∗(i);Y). (12)

As B → ∞, we have

1
B

B∑
i=1

−2Q(β̂∗(i);Y) −→ E∗{−2Q(β̂∗;Y)} a.s.,

according to the law of large numbers (LLN).
Similarly, we can employ the bootstrap approach to directly estimate the quantity in

expression (9) by

1
B

B∑
i=1

−2Q(β̂(i)∗;Y(i)∗). (13)

As B → ∞, we have

1
B

B∑
i=1

−2Q(β̂∗(i);Y∗(i)) −→ E∗{−2Q(β̂∗;Y∗)} a.s.

By utilizing the two bootstrap estimates in expressions (12) and (13), the following
expression, denoted by b1, is to estimate the bias term in expression (9):

b1 = 1
B

B∑
i=1

−2Q(β̂∗(i);Y) − 1
B

B∑
i=1

−2Q(β̂∗(i);Y∗(i))

= 1
B

B∑
i=1

−2
Q(β̂∗(i);Y)

Q(β̂∗(i);Y∗(i))
. (14)

In fact, the expression of b1 in Equation (14) is asymptotically unbiased estimator of the
bias term in expression (8). We, therefore, propose the first bootstrap-adjusted quasi-
likelihood information criteria QAICb1 for the linear mixed model as

QAICb1 = −2Q(β̂ ;Y) + 1
B

B∑
i=1

−2
Q(β̂∗(i);Y)

Q(β̂∗(i);Y∗(i))
. (15)
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Equation (15) is an asymptotically unbiased estimator of the discrepancy between a
candidate model and the true model in Equation (7) as proved in the Supplemental
Appendix.

The second bootstrap-adjusted variant is similarly constructed following the devel-
opment of the AICb in Cavanaugh and Shumway [4] and AICb2 in Shang and
Cavanaugh [19]. The bias term in expression (8) can be written as

E0[E0{−2Q(β ;Y)}|
β=β̂

] − E0{−2Q(β0;Y)} (16)

+ E0{−2Q(β0;Y)} − E0[−2Q(β̂ ;Y)]. (17)

By replacing the expectations in expressions (16) and (17) and using the bootstrap
expectation and applying the crucial assumption in Equation (10), we have

E∗[E∗{−2Q(β ;Y∗)}|
β=β̂∗] − E∗{−2Q(β0;Y∗)}

= E∗{−2Q(β̂∗;Y∗)} − {−2Q(β0;Y)} (18)

and

E∗{−2Q(β0;Y∗)} − E∗[−2Q(β̂ ;Y∗)]

= −2Q(β0;Y) − 2Q(β̂ ;Y). (19)

Under certain conditions, we can show that both quantities in Equations (18) and (19) will
converge as follows when n → ∞:

E∗[−2Q(β̂∗;Y) − {−2Q(β̂ ;Y)}]
−→ E∗{−2Q(β̂∗;Y∗)} − {−2Q(β0;Y)} a.s. (20)

and

E∗[−2Q(β̂∗;Y) − {−2Q(β̂ ;Y)}]
−→ −2Q(β0;Y) − 2Q(β̂ ;Y) a.s. (21)

We now define b2 as a mean over the bootstrap samples and sum up the left-hand side of
expressions (20) and (21), then we have

b2 = 2

{
1
B

B∑
i=1

−2Q(β̂∗(i);Y) − 1
B

B∑
i=1

−2Q(β̂ ;Y)

}

= 2

{
1
B

B∑
i=1

−2
Q(β̂∗(i);Y)

Q(β̂ ;Y)

}
. (22)

Because of convergences in expressions (20), (21) combiningwith Equation (22), the quan-
tity of b2 in Equation (22) will be used to estimate the sum of the converged parts in
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Equations (18) and (19), and this sum is equal to the bias term of the discrepancy in expres-
sion (9).We therefore propose the second bootstrap-adjusted quasi-likelihood information
criterion QAICb2 for the linear mixed model as

QAICb2 = −2Q(β̂ ;Y) + 2

{
1
B

B∑
i=1

−2
Q(β̂∗(i);Y)

Q(β̂ ;Y)

}
. (23)

Therefore, two model selection criteria in Equations (15) and (23) are proposed.

4. Simulations in linear mixedmodels

In this section, the performance of selection criteria QIC(R) in Equation (24), QAICu(R)

in Equation (25), QAICb1 in Equation (15), and QAICb2 in Equation (23) is compared in
the simulated correlated data from model (1). When the nested models are utilized in the
simulations, there are total 10 subsequently nested candidatemodels with the largestmodel
containing all the 10 covariates. Let β0 = (2, 2, 1, 1, 0.5, 0, 0, 0, 0, 0, 0)′ be true parameters
for the fixed effects. The covariatesX1, . . . ,X10 are independently generated from the stan-
dard normal distribution. The error term is generated from a normal distribution with
mean 0 and standard deviations σ = 1, 1.3, and 1.5, respectively. Let the sample size be
n = 25, n = 50, n = 100, and n = 200, respectively. With each sample size, let m = 3 be
the number of repeatedmeasurements. The number of bootstrap samples B is set to be 250,
which is the minimum value of B in which the simulation results can be well obtained. The
true correlation matrix is chosen as EX(ρ) or AR(ρ) or a mixture of different correlation
matrices with ρ = 0.2, 0.4, 0.6, 0.8, and the fitting correlation matrix is exchangeable or
autoregressive.

There are three covariance matrices used in generating the data: exchangeable, first-
order autoregressive, and unstructured. Under these three covariance structures, the vari-
ance for the random effects is determined by specifying the correlations, and the random
effects are generated from a normal distributions. For example, when ρ = 0.2 and σ 2 = 1
and an exchangeable covariance structure is utilized, we can obtain that Var(bi) = � =
0.25 in model (1) because ρ = �/(� + σ 2) and bi are generated from normal distribu-
tion with mean zero and variance 0.25. We note that an exchangeable covariance structure
is also called a compound symmetric structure or a random intercept model. When a
first-order autoregressive model is utilized, the covariance structure is presented as

σ 2

1 − ρ2

⎡
⎣ 1 ρ ρ2

ρ 1 ρ

ρ2 ρ 1

⎤
⎦ .

If ρ and σ 2 are given, the covariance structure is determined. Such a first-order autore-
gressive model serves as linear mixed model and the random effects and error terms
are generated from a normal distribution with mean zero and this covariance structure.
We note that autoregressive linear mixed effects models in which the current response is
regressed on the previous response, fixed effects, and random effects [8].When an unstruc-
tured covariance is utilized, the data are constructed from a combination of data generated
with exchangeable, autoregressive, and self-defined covariances which will be described in
related simulation parts.
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This section is divided into two subsections. The simulations in the first subsection are
via nonparametric bootstrap, and those in the second part are via semi-parametric boot-
strap. We investigate the model selection performance of QAICb1 and QAICb2 using a set
of nested candidate models pairing with different true correlations. When bootstrap is uti-
lized, the performance of QAICb1 and QAICb2 is also examined using candidate models
constructed by different combinations of predictor variables.

We will incorporate GEE in the calculation of the proposed selection criteria, QAICb1
and QAICb2 in Equations (15) and (23). Two different covariance structures are adopted:
exchangeable andfirst-order autoregressive. They are easy to be computedwhenGEE is uti-
lized to estimate the model parameters under the quasi-likelihood setting. However, when
the number of observations within the same individual is large, it is very challenging to
estimate the parameters because of high-dimensional parameters under whichMcCullagh
and Nelder [15] pointed out that the quasi-likelihood function may not exist until certain
requirements aremet. In the process of selecting themost appropriatemodel in a candidate
pool, the model with the smallest value of QAICb1 or QAICb2 is considered to be the best
model. We present a selection criterion now for comparison in the simulations. Pan [16]
proposed an information criterion-based on the quasi-likelihood function for correlation
R, QIC(R), as

QIC(R) = −2Q(β̂(R), φ̂;Y) + 2 trace(	̂ Ĵ), (24)

where φ̂ is estimatedφ based on the largest candidatemodel. In addition, J is the covariance
of β̂ and can be estimated by the robust or sandwich covariance estimator. Additionally, 	̂
is the estimated of 	, and to estimate Q(β ,φ;Y) and 	, we have the following properties:

E0

{
− ∂Q(β ,φ;Y)

∂β

∣∣∣∣
β=β0

}
= 0 and

	 = E0

{
− ∂2Q(β ,φ;Y)

∂β∂β ′

∣∣∣∣
β=β0

}
=

n∑
i=1

X′
iViXi.

We note that 	̂ can be consistently estimated by its empirical estimator −∂2Q(β ,φ;Y)/

∂β∂β ′|
β=β̂

. QIC(R) in Equation (24) is used to select the most appropriate mixed model
by fitting models and selecting the one with the smallest QIC(R). QIC(R) partially under
the independence assumption. QIC(R) treats all the within-individual observations to
be mutually independent. The parameters estimated in QIC(R) are based on the GEE
approach such that QIC(R) is distribution free compared to other AIC-type selection
criteria.

Before going deep into the performance of the proposed criteria QAICb1 and QAICb2,
we now introduce another criterion QAICu defined in Pan [16]. Given a GEE estimator
β̂(R) of β , QAICu(R) is expressed as

QAICu(R) = −2Q(β̂(R), φ̂;Y) + 2k. (25)

Note that k is the number of parameters to be estimated. It has been found in the simula-
tions that QAICu(R) is more efficient when the correlation of the data is relatively large,
compared to the QIC(R). A possible reason would be the use of the bias correction term
2k for QAICu(R). Notice that the term 2k is only associated with the dimension of the
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Table 1. True model selection rates under σ = 1 (nonparametric).

True correlation EX(ρ) AR(ρ)

Fitting correlation Autoregressive Exchangeable

n ρ 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

25 QIC(R) 50.4 50.1 49.7 44.1 54.0 48.8 47.1 43.3
QAICu(R) 74.0 76.8 82.7 90.5 76.7 74.5 80.8 86.6
QAICb1 61.9 66.1 72.0 80.3 65.0 63.7 70.4 76.2
QAICb2 67.4 71.2 75.5 83.1 70.0 68.9 74.9 79.3

50 QIC(R) 60.3 60.0 56.3 49.8 63.4 62.1 57.4 49.8
QAICu(R) 71.9 78.5 81.8 91.5 74.4 77.4 81.6 88.9
QAICb1 66.0 72.5 74.4 86.5 69.6 72.0 76.0 83.3
QAICb2 68.1 74.9 76.8 88.1 72.0 73.9 77.4 84.7

100 QIC(R) 66.1 63.5 60.8 55.3 66.1 64.8 56.9 49.9
QAICu(R) 75.0 77.4 84.3 91.6 73.9 76.7 80.9 90.8
QAICb1 70.6 72.4 80.5 88.9 69.1 73.8 77.2 88.7
QAICb2 71.4 74.7 81.9 89.3 70.2 74.8 78.3 88.8

200 QIC(R) 70.2 66.6 67.8 58.0 70.3 65.6 62.7 55.0
QAICu(R) 75.6 77.1 85.7 92.1 74.9 77.0 84.0 91.0
QAICb1 72.8 75.1 83.6 90.4 72.8 74.8 82.1 88.7
QAICb2 73.5 75.9 84.7 90.7 73.2 75.6 82.1 89.5

candidate models and independent of the correlation structure. As there exist similarities
between the log-likelihood and log quasi-likelihood functions, especially when the normal
models are used, QAICu(R) shares similar properties of AIC, and it is also the asymptotic
result of the QIC(R). Unlike QIC(R), which tends to underestimate the corresponding
discrepancy when the correlation is large, the bootstrap-adjusted criteria QAICb1 and
QAICb2 perform better in model selection across different correlation structures.

4.1. Simulations via nonparametric bootstrap approach

Wewill conduct simulations using a nonparametric approach. In real data sets, it is usually
unknown that the correlation matrix is correctly specified or not. Therefore, the simu-
lations are conducted in the settings where the true correlation matrix is not correctly
specified to investigate the performance ofQAICb1 andQAICb2 inmodel selection, which
means the true correlation and the fitting correlation matrices are distinct. In the first set-
ting, EX(ρ) is the true correlation and autoregressive (AR(ρ)) is the fitting correlation. The
second setting is the opposite, with AR(ρ) being the true correlation and exchangeable
(EX(ρ)) being the fitting correlation.

4.1.1. True correlation is not correctly specified
Tables 1– 3 feature the simulation results corresponding to three different true variances.
A clear trend observed is that regardless of the correlation coefficient ρ and the standard
deviation σ (or variance σ 2), as the sample size n increases, the rate of selecting the true
model turns larger, i.e. the performance of model selection becomes better, indicating the
consistency of the proposed selection criteria QAICb1 and QAICb2. The criterion QIC(R)

performs poorly in selecting the correct model, and it is less effective than the others. As
the correlation ρ increases, its selection performance turns worse.
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Table 2. True model selection rates under σ = 1.3 (nonparametric).

True correlation EX(ρ) AR(ρ)

Fitting correlation Autoregressive Exchangeable

n ρ 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

25 QIC(R) 50.4 49.3 46.1 43.3 50.0 47.5 44.6 39.2
QAICu(R) 46.7 52.5 59.3 75.5 45.9 48.6 55.8 69.5
QAICb1 59.0 62.0 66.2 77.0 62.2 63.4 63.0 72.9
QAICb2 64.6 62.7 70.0 79.3 66.8 67.8 67.3 75.8
Run-time 8.76 seconds 9.74 seconds

50 QIC(R) 59.3 59.3 53.0 49.2 62.5 60.8 56.9 48.0
QAICu(R) 42.5 53.7 59.0 77.9 48.3 54.3 60.2 72.9
QAICb1 64.9 70.8 75.0 85.3 68.1 70.6 75.9 82.9
QAICb2 67.4 73.1 78.5 85.8 70.8 72.8 78.0 83.7
Run-time 10.98 seconds 12.44 seconds

100 QIC(R) 70.1 64.0 62.0 54.8 67.3 64.9 58.2 54.5
QAICu(R) 47.9 51.5 65.0 78.4 46.0 51.9 58.9 76.6
QAICb1 72.5 72.8 82.0 89.4 69.5 72.5 76.7 88.3
QAICb2 73.6 74.5 83.5 90.0 71.5 73.1 78.7 88.9
Run-time 17.82 seconds 16.47 seconds

200 QIC(R) 70.1 65.3 67.7 57.7 70.4 68.0 62.1 54.6
QAICu(R) 46.5 51.5 67.4 80.0 45.5 52.7 60.8 76.1
QAICb1 72.9 74.1 83.2 91.5 72.4 76.2 78.5 89.0
QAICb2 73.9 74.3 83.7 91.6 72.5 76.7 79.2 89.5
Run-Time 25.12 seconds 29.74 seconds

Table 3. True model selection rates under σ = 1.5 (nonparametric).

True correlation EX(ρ) AR(ρ)

Fitting correlation Autoregressive Exchangeable

n ρ 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

25 QIC(R) 48.4 47.0 48.5 41.2 48.8 48.7 44.9 40.8
QAICu(R) 34.7 38.9 51.3 61.5 32.8 37.7 45.5 59.7
QAICb1 59.5 60.6 64.5 69.7 59.2 60.4 61.5 70.6
QAICb2 63.1 63.8 67.8 71.5 62.4 64.5 65.8 73.8

50 QIC(R) 59.0 61.8 57.0 51.5 60.6 59.3 55.2 46.4
QAICu(R) 33.0 41.8 52.6 68.4 31.7 36.8 46.7 62.2
QAICb1 64.8 71.3 75.8 83.4 66.9 69.6 74.2 81.4
QAICb2 67.3 73.8 77.0 85.9 69.7 72.1 76.3 82.7

100 QIC(R) 66.0 64.3 63.3 54.7 67.0 63.6 60.4 53.3
QAICu(R) 30.9 40.2 54.0 68.6 31.9 38.1 48.1 63.1
QAICb1 70.0 75.7 80.5 86.7 69.2 71.5 79.9 86.4
QAICb2 70.3 76.8 81.8 87.2 70.9 73.9 79.9 87.3

200 QIC(R) 67.4 66.8 65.7 55.4 68.9 64.1 65.1 52.0
QAICu(R) 31.7 38.2 53.4 70.1 30.8 34.7 48.5 62.9
QAICb1 70.2 76.9 83.2 91.4 71.5 71.1 82.1 87.7
QAICb2 71.2 76.8 84.3 91.2 72.5 71.1 82.3 88.2

Selection criterion QAICu(R) is not consistent for different values of ρ, although it per-
forms better as ρ becomes large. Using 2k to estimate the bias correction term, the ρ values
will only affect the quasi-likelihood estimation because 2k is not associated with the corre-
lation structure but with the dimension of the candidate models. Under the circumstances
thatρ is small and σ is large, 2k is not able to penalize the quasi-likelihood enough to satisfy
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the selection evaluation. The size of variances heavily affects the effectiveness of QAICu(R).
As the sample size n escalates, the correctly selected rates tend to increase as the correlation
size going up. So, QAICu(R) performs better than QIC(R) when ρ is large and σ is small.

We observe that the selection criteria QAICb1 and QAICb2 outperform QAICu(R) and
QIC(R), and the QAICb2 behaves better than the other criteria in the tables. With the
escalation of ρ, the behavior of QAICb1 and QAICb2 becomes significantly remarkable in
model selection. The performance of QAICb2 is preferred compared with that of QAICb1.

The proposed selection criteria QAICb1 and QAICb2 are much more effective than the
other two in different sample sizes. For example, in Table 2 with an exchangeable fitting
correlation, ρ = 0.6 and n = 100, both the QIC(R) and QAICu(R) have a selection rate of
around 60% while QAICb1 and QAICb2 have a selection rate close to 80%. Even though
with a small sample size n = 25, their selection rates of around 63% and 67% are better
than the other two criteria.

The selection criteriaQAICb1 andQAICb2 not only own the property ofQAICu(R) that
being relatively consistent throughout different correlation coefficients, but also remain
effective with respect to various sample sizes with noise σ . Tables 1 – 3 show that when
the sample size is large, QAICb1 and QAICb2 are much more effective than QAICu(R)

especially for larger variances.
The overall performance of QAICb1 and QAICb2 significantly outperforms the other

two criteria, and generally QAICb2 outperforms QAICb1, which means the two proposed
criteria are appropriate for mixed model selection.

We select the setting under σ = 1.3 in Table 2 to record the running times for pro-
gramming in computing the simulation results. We can see the running speed is generally
fairly fast for the simulations via nonparametric bootstrap when the true correlation is not
correctly specified.

4.1.2. Discussion on selecting overfitted candidatemodels
This section conducts the simulations for selecting nestedmodels andwith the true covari-
ance as a mixture of several covariance matrices to show that QAICb1 andQAICb2 are less
likely to select overfitted candidate models. The data are generated using a mixture of true
covariance structures with 30% of the observations from EX(0.5), 30% from AR(0.5), and
the rest 40% from a self-defined matrix as the following:

σ 2

⎡
⎣ 1 0.9 0.4
0.9 1 0.8
0.4 0.8 1

⎤
⎦ .

Tables 4 – 6 feature the results of selecting the nested models with the largest 10 pre-
dictors, and the 10 candidate models are denoted by M1, M2,. . . , M10. M4 is the true
model. M5 to M10 are the overfitted models, and M1 to M4 are the underfitted models.
The selection rates are recorded in 1000 repetitions.

The results in Tables 4 – 6 show that all of the four criteria have similar selection patterns
that they are more likely to choose overfitted candidate models than underfitted candidate
models. However, QAICb1 and QAICb2 significantly reduce the chance in selecting over-
fitted candidate models. In other words, the true model selection rates of QAICb1 and
QAICb2 are much higher than those of QIC(R) and QAICu(R) by not selecting overfitted
models. Focusing on Table 5, the percentages of choosingM5 as the finalmodel for QIC(R)
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Table 4. Selection results under n = 100 and σ = 1.3 (nonparametric).

True correlation: EX(0.6) Fitting correlation: exchangeable

Criteria M1 M2 M3 TRUE M5 M6 M7 M8 M9 M10

QIC(R) 0 0 0 587 119 77 69 43 53 52
QAICu(R) 0 0 0 656 114 75 51 37 43 24
QAICb1 0 0 0 818 74 48 27 9 17 7
QAICb2 0 0 0 828 70 52 22 7 15 6
Run-time 15.99 seconds

Table 5. Selection results under n = 100 and σ = 1.3 (nonparametric).

True correlation: AR(0.6) Fitting correlation: exchangeable

Criteria M1 M2 M3 TRUE M5 M6 M7 M8 M9 M10

QIC(R) 0 0 0 582 130 83 65 55 48 37
QAICu(R) 0 0 0 589 133 86 64 49 43 36
QAICb1 0 0 0 767 106 54 30 16 19 8
QAICb2 0 0 0 787 100 45 31 15 17 5
Run-time 16.03 seconds

Table 6. Selection results under n = 100 and σ = 1.5 (nonparametric).

True correlation: mixture Fitting correlation: autoregressive

Criteria M1 M2 M3 TRUE M5 M6 M7 M8 M9 M10

QIC(R) 0 0 0 581 133 81 46 55 46 58
QAICu(R) 0 0 0 640 130 78 39 38 35 40
QAICb1 0 0 0 806 116 42 12 8 6 10
QAICb2 0 0 0 816 114 38 10 7 7 8
Run-time 13.37 seconds

and QAICu(R) are 13.0% and 13.3%, respectively, while the percentages for QAICb1 and
QAICb2 are 10.6% and 10.0%, which is a noticeable decrease by around 3% on only one
overfitted model.

The simulation results in Table 6 demonstrate that when the true covariance is a mix-
ture of different covariance matrices, QAICb1 and QAICb2 are less likely to select highly
overfitted candidate models compared to the results in the previous two tables. The selec-
tion rates for candidate models M8 to M10 are all less than 1% which are lower than the
corresponding rates in the previous two tables.

The simulation results demonstrate that QAICb1 and QAICb2 are more likely to avoid
overfitted candidate models than QIC(R) and QAICu(R) along with the result of more
consistent performance. As a result, the highly overfitted candidate models will be rarely
chosen as the final model via QAICb1 and QAICb2.

We record the running times in Tables 4 – 6, and the results can be obtained within
several seconds.

4.1.3. Simulations for candidatemodels with combinations of predictors
In this section, we will use models in different combinations of predictor variables to
select the most appropriate model. We have 5 different covariates X1 to X5 independently
generated from the standard normal distribution and set the true model parameter to
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Table 7. Description of candidate models.

Model Covariates Model Covariates

M1 X1, X2 M5 X1, X2, X3, X4
M2 X1, X2, X3 M6 X1, X2, X3, X5
M3 X1, X2, X4 M7 X1, X2, X4, X5
M4 (True) X1, X2, X5 M8 X1, X2, X3, X4, X5

Table 8. True model selection rates via variable combinations (nonparametric).

True correlation EX(ρ) AR(ρ)

Fitting correlation Exchangeable Autoregressive

n ρ 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

25 QIC(R) 57.3 52.4 53.6 48.6 56.6 55.9 52.2 44.0
QAICu(R) 53.8 53.2 64.4 72.5 53.3 56.5 61.3 70.1
QAICb1 63.4 60.6 68.2 72.6 62.1 64.5 66.3 71.1
QAICb2 66.3 62.8 69.9 74.0 64.4 67.6 68.7 72.4

50 QIC(R) 66.1 60.3 59.8 53.4 64.3 61.2 60.1 51.9
QAICu(R) 54.5 56.9 65.7 78.3 52.3 55.0 61.6 74.0
QAICb1 68.7 70.0 75.0 84.6 67.1 66.8 74.2 81.5
QAICb2 71.0 70.6 75.5 85.6 68.2 67.7 75.8 82.2

100 QIC(R) 68.5 64.3 60.7 53.6 67.8 67.2 59.5 56.8
QAICu(R) 56.5 58.5 65.7 77.2 54.6 59.8 62.8 77.3
QAICb1 70.4 72.3 77.0 86.2 69.9 73.5 75.2 85.0
QAICb2 71.0 71.9 77.7 87.3 71.1 74.5 75.9 85.5

200 QIC(R) 66.5 62.9 59.9 55.4 69.5 68.2 63.4 56.1
QAICu(R) 51.9 56.4 63.8 76.2 54.5 58.3 62.4 70.8
QAICb1 70.5 71.1 77.6 87.2 70.3 73.4 76.0 83.8
QAICb2 70.0 71.3 78.2 87.5 71.6 73.2 75.9 83.7

be β0 = (1,−1, 0.5, 0,−0.5)′. Always keeping the intercept, the different combinations of
models are summarized in Table 7.

We evaluate the performance of the selection criteria with different sample sizes n = 25,
n = 50, n = 100, and n = 200 and a fixed standard deviation of σ = 1.3. The true cor-
relation matrix is set as EX(ρ) or AR(ρ) with ρ = 0.2, 0.4, 0.6, 0.8. Again, the number of
bootstrap samples B is chosen to be 250 in all settings. For themixed true covariance struc-
ture, 30% of the observations are from EX(0.5), another 30% come from AR(0.5), and the
rest 40% from a self-defined matrix as the following:

σ 2

⎡
⎣ 1 0.8 0.3
0.8 1 0.6
0.3 0.6 1

⎤
⎦ .

Tables 8– 10 feature the selection rates for the proposed criteria and the other two cri-
teria used for comparison. We observe that the selection rates of QIC(R) decrease with
the increase of the correlation coefficient ρ while QAICu(R), QAICb1, and QAICb2 have
higher selection rates with relatively larger ρ. Of all the simulation settings, the perfor-
mance of QAICb1 and QAICb2 is almost the same and is generally much more significant
thanQAICu(R). The selection rates of QAICu(R) are about 5% to 18% less than those from
QAICb1 and QAICb2.
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Table 9. True model selection rates via variable combinations (nonparametric).

True correlation EX(ρ) AR(ρ)

Fitting correlation Autoregressive Exchangeable

n ρ 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

25 QIC(R) 57.8 55.8 55.8 48.0 58.0 56.0 50.9 50.5
QAICu(R) 54.0 56.7 56.7 69.4 51.6 55.8 55.1 68.4
QAICb1 63.0 64.8 64.8 70.4 63.3 63.4 61.2 70.8
QAICb2 65.3 67.3 67.3 72.8 65.7 65.5 63.5 72.9

50 QIC(R) 64.7 63.4 59.3 53.2 65.1 63.6 61.2 55.8
QAICu(R) 54.9 60.1 66.2 76.6 53.5 56.6 63.6 71.8
QAICb1 68.2 71.2 74.1 83.2 66.9 69.3 73.0 78.4
QAICb2 68.8 71.8 75.6 84.3 68.5 71.1 74.4 80.0

100 QIC(R) 66.7 68.2 61.6 57.7 67.0 64.8 62.3 57.1
QAICu(R) 50.8 60.2 63.3 76.5 54.3 56.4 62.1 73.6
QAICb1 68.0 74.3 75.9 84.5 68.2 70.7 75.4 83.0
QAICb2 69.2 74.9 76.3 85.0 69.2 71.9 76.1 83.7

200 QIC(R) 67.4 66.4 63.3 60.5 69.3 65.5 66.5 56.4
QAICu(R) 51.5 58.1 63.9 74.2 52.5 55.0 65.0 74.2
QAICb1 68.6 71.5 76.8 85.6 71.8 71.2 78.5 86.2
QAICb2 69.1 71.7 77.2 86.4 71.8 71.5 78.2 86.6

Table 10. True model selection rates via variable combinations (nonparametric).

True correlation Mixture Mixture

Fitting correlation Exchangeable Autoregressive

n 50 100 200 50 100 200

QIC(R) 63.1 63.6 64.5 61.1 61.5 62.2
QAICu(R) 62.7 62.6 62.2 64.6 63.6 62.7
QAICb1 74.7 74.7 75.9 73.5 78.8 79.0
QAICb2 75.5 77.4 76.6 74.5 78.8 79.2
Run-time (s) 7.98 10.73 16.29 6.81 9.49 14.97

The simulation results show that the selection effectiveness of QAICb1 and QAICb2
improves as the sample size increases, especially in the setting where the true covariance
is a mixture. Furthermore, starting from n = 50, when the sample size is large enough,
the selection rates in selecting the true model are hardly impacted by the sample size. As
a result, QAICb1 and QAICb2 perform consistently with smaller n and therefore will be
more capable than QIC(R) and QAICu(R) in small-sample model selection.

In addition to the consistency of QAICb1 and QAICb2 over different sample sizes, the
impact from the true correlation coefficient ρ is not as large as expected. In Table 9, when
n = 100 and the fitting correlation is autoregressive, the selection rates of QAICu(R) under
ρ = 0.2 and ρ = 0.8 are 50.8% and 76.5%, respectively, with a difference 25.7% while the
rate differences in QAICb1 and QAICb2 are all around 16%.

Therefore, the simulation results demonstrate that QAICb1 and QAICb2 have more
outstanding selection performance with respect to both the sample size and correlation
coefficient. More importantly, the proposed selection criteria behaves effectively in a small
sample setting.
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Table 11. True model selection rates under σ = 1 (semiparametric).

True correlation Mixture Mixture

Fitting correlation Exchangeable Autoregressive

n 15 25 35 50 15 25 35 50

QIC(R) 37.5 49.4 54.3 58.0 42.4 50.6 54.3 59.8
QAICu(R) 73.8 77.2 80.8 79.0 75.2 76.7 77.7 78.8
QAICb1 43.8 53.6 57.5 58.8 47.2 53.0 55.5 55.9
QAICb2 49.4 62.3 72.6 74.8 52.5 61.1 70.3 76.2
Run-time (s) 18.10 20.21 25.08 29.34 17.29 19.84 24.29 28.14

We select the settings via variable combinations in Table 10 to record the running times.
We can see the running speed is fairly fast, which indicates that the proposed selection
criteria are applicable and feasible with respect to the computational time.

4.2. Simulations via semiparametric bootstrap approach

The semiparametric bootstrap is utilized to construct the bootstrapping samples. The
semiparametric bootstrap involves sampling with replacement over the residuals after
deducting the mean estimated by a parametric method from the responses under each of
the candidate models. In what follows, the simulation results are presented and discussed
in similar settings as those for the nonparametric method. The sample size n is chosen to
be 15, 25, 35 and 50.

4.2.1. Linearmixedmodels involving different correlation structures
This sectionwill present simulation results when the sample is constructed by observations
from a mixture of three different covariance structures. That is, 40% of the observations
are from EX(0.5), 40% come from AR(0.5), and the rest 20% from a self-defined matrix as
following:

σ 2

⎡
⎣ 1 0.4 0.6
0.4 1 0.3
0.6 0.3 1

⎤
⎦ .

Both the exchangeable and autoregressive fitting correlations are used to fit candidate
models and three values of σ are considered.

The simulation results are summarized in Tables 11 – 12. Firstly, as the sample size n
increases, the selection rates for all four selection criteria go up. When both n and σ are
small, QAICu(R) performs better than the other three selection criteria in selecting the
correct model. In Table 11 when σ = 1, n = 25 and the fitting correlation is exchangeable,
the true model selection rate of QAICu(R) is 77.2% higher than 62.3% of QAICb2. When
n is 50, the selection rate of QAICb2 is 74.8% lower than 79.0% of QAICu(R). In addition,
when σ = 1.5 and n = 50 with the exchangeable fitting correlation, Table 12 shows that
QAICu(R)has 43.8%of the truemodel selection ratewhileQAICb2 achieves amuchhigher
rate of 75.2%.With the increase ofn, QAICb2 becomesmore andmore effective in selecting
the best model, especially in the cases where σ is relatively large (σ = 1.3 or 1.5), QAICb2
has noticeably higher true model selection rates than QIC(R) and QAICu(R).
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Table 12. True model selection rates under σ = 1.5 (semiparametric).

True correlation Mixture Mixture

Fitting correlation Exchangeable Autoregressive

n 15 25 35 50 15 25 35 50

QIC(R) 31.9 45.4 53.6 58.5 35.6 44.8 56.0 59.1
QAICu(R) 37.4 40.6 42.4 43.8 39.5 40.9 43.6 44.1
QAICb1 37.5 46.8 54.3 57.2 40.7 49.4 54.5 54.7
QAICb2 40.6 56.2 66.8 75.2 42.9 58.0 66.8 72.3

Table 13. True model selection rates under σ = 1.3 (semiparametric).

True correlation Mixture Mixture

Fitting correlation Exchangeable Autoregressive

n 15 25 35 50 15 25 35 50

QIC(R) 35.6 48.3 55.2 58.0 35.5 47.4 57.3 56.9
QAICu(R) 49.8 56.7 59.8 55.3 49.0 54.9 56.9 55.3
QAICb1 39.9 52.0 56.5 57.8 39.4 50.0 56.0 58.1
QAICb2 45.1 59.1 69.7 74.2 44.0 60.6 69.6 72.7

Table 14. Selection results under n = 100 and σ = 1.3 (semiparametric).

True correlation: EX(0.6) Fitting correlation: exchangeable

Criteria M1 M2 M3 TRUE M5 M6 M7 M8 M9 M10

QIC(R) 0 0 0 576 132 81 70 42 56 43
QAICu(R) 0 0 0 648 129 68 58 33 39 25
QAICb1 0 0 0 535 247 111 52 27 14 14
QAICb2 0 0 0 849 103 19 17 4 6 2

Secondly, in general, QAICb2 has the best overall selection performance while QAICb1
is not as effective as QAICb2 across all model settings. When the true correlation is a mix-
ture of several correlation structures and the semiparametric bootstrap is utilized, QAICb2
has the most consistent and effective overall selection performance than the others. Possi-
bly affected by the bias introduced from overfitted candidate models, the performance of
QAICb1 is not optimal when compared to the results from the nonparametric bootstrap.

We want to remark that the program running times under semiparametric bootstrap
are slightly longer than those for nonparametric bootstrap with computation in selected
simulation settings, as shown in Table 11, but sufficiently short.

4.2.2. Discussion on selecting overfitted candidatemodels
In this section, we intend to show that QAICb2 is less likely to select overfitted candidate
models while QAICb1 ismore likely to do so, which results in the nonoptimal performance
of QAICb1. The simulation results are presented in Tables 14 – 15.

From the three tables, we can see that all of the four selection criteria do not select
candidate models smaller than the true model, and QAICb2 owns the highest true model
selection rates by not selecting relatively large candidate models. In Table 14, the selection
rates of M6 for QIC(R) and QAICu(R) are 8.1% and 6.8%, respectively, while the corre-
sponding rate for QAICb2 is 1.9%; QAICb2 rarely chooses highly overfitted candidate
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Table 15. Selection results under n = 100 and σ = 1.3 (semiparametric).

True correlation: mixture Fitting correlation: exchangeable

Criteria M1 M2 M3 TRUE M5 M6 M7 M8 M9 M10

QIC(R) 0 0 0 627 110 66 53 57 48 39
QAICu(R) 0 0 0 584 118 75 56 66 50 51
QAICb1 0 0 0 529 236 94 56 43 23 19
QAICb2 0 0 0 811 97 40 20 19 8 5

Table 16. Selection results under n = 100 and σ = 1.3 (semiparametric).

True correlation: AR(0.6) Fitting correlation: autoregressive

Criteria M1 M2 M3 TRUE M5 M6 M7 M8 M9 M10

QIC(R) 0 0 0 599 113 91 68 51 40 38
QAICu(R) 0 0 0 654 112 82 57 42 30 23
QAICb1 0 0 0 550 237 104 60 25 13 11
QAICb2 0 0 0 875 68 30 20 5 2 0

models M8 to M10. Similar pattern can be found in Tables 16 and 15, where the selec-
tion of candidate model M5 is avoided by QAICb2. Tables 14 – 15 also demonstrate that
QAICb1 is not as effective as QAICb2 because QAICb1 tends to choose more relatively
larger models than QAICb2.

In the semiparametric bootstrap process, the resampling accommodates the residuals
obtained from the candidate models. The bootstrap estimation in Equation (14) relies
on the candidate model, and both the numerator and denominator are calculated using
GEE estimators from the bootstrap samples, and also the denominator in the fraction of
Equation (14) utilizes the Y∗(i) from the bootstrap samples. Because the value of QAICb1
heavily depends on the semiparametric bootstrap samples, if a candidate model is biased,
the estimation in Equation (14) tends to be biased.

5. Application

To further investigate the performance of the proposed two criteria in mixed model selec-
tion, an application in Parkinson’s ProgressionMarkers Initiative (PPMI) data is conducted
in this section. Within the application, we construct the candidate models first and then
apply QAICb1 and QAICb2 to obtain the most appropriate model.

5.1. Data description

The PPMI [14] is a longitudinal clinical study trying to identify the significant factors con-
tributing to the progression of Parkinson’s disease. Taking place at various sites from four
different countries, the PPMI comprehensively evaluated the characteristics of participated
subjects based on different perspectives, including brain imaging, genetics, behavioral
assessments. The data of the PPMI study was provided by The Michael J. Fox Foundation
for Parkinson’s Research.

There are 441 subjects participated in this clinical studywith eachmeasured by the base-
line and 3 follow-ups, so there are total 1764 data points with 4 repeated measurements
for each individual. For simplification, we choose 12 predictor variables featuring genetics
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Table 17. A description of predictor variables.

Name Description

PD Status of Parkinson’s disease, ‘yes’ = 1, ‘no’ = 0
GP1 Genetic piece: chr12 rs34637584 GT
GP2 Genetic piece: chr17 rs11868035 GT
GP3 Genetic piece: chr17 rs11012 GT
GP4 Genetic piece: chr17 rs393152 GT
GP5 Genetic piece: chr17 rs12185268 GT
GP6 Genetic piece: chr17 rs199533 GT
RS1 Part I of the unified Parkinson’s disease rating scale
RS2 Part II of the unified Parkinson’s disease rating scale
RS3 Part III of the unified Parkinson’s disease rating scale
Sex Index of an individual’s sex, ‘female’ = 0, ‘male’ = 1
Weight Numerical value of an individual’s age
Age Numerical value of an individual’s age
ID Index of an individual

and individual assessments out of the original variables. A detailed description of all the
variables is displayed in Table 17. It is worth noting that the rating scale is one of the funda-
mental tools used to evaluate the stage of Parkinson’s disease in patients. The usual rating
scales consist of 5 different segments covering different movement hindrances of Parkin-
son’s disease while in our data only 3 segments are available with Mentation, Behavior,
and Mood in Part I (RS1), Activities of Daily Living in Part II (RS2), and Motor Examina-
tion in Part III (RS3). The variables GP1-GP6 measure different gene pieces for possibly
controlling the motion of an individual.

5.2. Data processing and candidatemodels

The PPMI data encounters missing values. One way to deal with this issue is to remove
the data points with missing inputs if the percentage of missing points is low and missing
data are at random. However, the missing rate is high for this data set, we consider using
multiple imputation and obtain the complete data by theweighted predictivemeanmatching
imputation approach and all of our model selection analysis is based on the imputed data
set.

There are total of 12 predictor variables except the response variable ‘PD’ and the index-
ing variable ‘ID’. As described in Table 17, ‘PD’ is an indicator of Parkinson’s disease status,
and the response variable is the logit of probability of having the Parkinson’s disease. The
model is to predict this probability using the most appropriate fixed effects and random
effects. ‘ID’ denotes the index of patients.With each index of ‘ID’, themeasures are repeated
4 times for each individual. So, the ‘ID’ variable has random effects in the model and the
covariance structure is exchangeable.

If we consider all the possible candidate models, there are 212 possibilities, which is not
realistic. So, we first go through a pre-screening procedure in which we select the predictor
variables by applying the step-wise model selection approaches. In this pre-screening pro-
cedure, we useQAICu(R), and no bootstrapping is needed for it, the forward and backward
step-wise approaches give us different fixed effects but both with ‘ID’ as the random effects
in the models: both the forward and backward step-wise approaches select ‘Sex’, ‘RS1’,
‘RS2’, and ‘RS3’, but the forward approach also selects ‘GP1’; the backward approach also
selects ‘Weight’ and ‘Age’. Therefore, after this pre-screening procedure, we will keep ‘Sex’,
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Table 18. Candidate models for PPMI data analysis.

Name GP1 Age Weight Sex RS1 RS2 RS3

M1 ××× ××× ××× ×××
M2 ××× ××× ××× ××× ×××
M3 ××× ××× ××× ××× ×××
M4 ××× ××× ××× ××× ××× ×××
M5 ××× ××× ××× ××× ×××
M6 ××× ××× ××× ××× ××× ×××
M7 ××× ××× ××× ××× ××× ×××
M8 ××× ××× ××× ××× ××× ××× ×××

‘RS1’, ‘RS2’, and ‘RS3’ as the fixed effects and will select the predictor variables among
‘GP1’, ‘Age’, and ‘Weight’ because the two step-wise approaches have distinct selections
among these 3 predictor variables.We, therefore, have 8 candidate models in the candidate
pool, which are presented in Table 18. From the table, we can see that in the pre-screening,
the forward step-wise method chooses the model ‘M2’; the backward step-wise chooses
the model ‘M7’.

We can further remark on why we have these candidate models. Based on the correla-
tions in Figure 1, we notice that there are two sets of variables that are highly correlated
with each other, and the correlations for each of the two sets are shown in Figures 2 and 3
respectively. Based on the correlations in Figure 2, the first set contains six variables from
‘GP1’ to ‘GP6’, and these are measures of genetic pieces. Five of these variables from ‘GP2’
to ‘GP6’ are not considered because QAICu(R) does not select them in the pre-screening.
So, only ‘GP1’ is selected in the model from the first correlated set by the forward step-
wise approach, indicating that only ‘GP1’ is a potential gene that may relate to Parkinson’s
disease.

The second set consists of 3 variables: ‘RS1’, ‘RS2’, and ‘RS3’, as shown in Figure 3,
which are themeasures of a person’s stage of Parkinson’s disease. As the two pre-screening
approaches select ‘RS1’, ‘RS2’, and ‘RS3’, and the correlation between them are not very
high, we keep them in our candidate models.

Wewill also include the predictor variables ‘Weight’ and ‘Age’ into the candidatemodels
to better characterize a subject. Considering these 2 variables and ‘GP1’will greatly simplify
the process of model selection, we test all the variable combinations of the 3 predictor
variables ‘GP1’, ‘Weight’, and ‘Age’, which results in the selection of 8 possible candidate
models. The summary of all the candidate models is in Table 18.

5.3. Presentation of selection results

After the four different model selection criteria are applied to select the candidate models,
the selection results are presented in Table 19. The number of bootstrap samples is set to
be 250. This number is theminimum value which can achieve efficient and effective results
for the bootstrap method, and a larger number of the sample size can be used but does not
improve the results much.

From the table, we can see QIC(R) selects the model ‘M2’ and QAICb1, QAICb2, and
QAICu(R) all select themodel ‘M4’ as themost appropriate model, which adds ‘Age’ to the
model ‘M2’.
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Figure 1. Visualization of PPMI correlation matrix.

Figure 2. Correlation of gene expression.
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Figure 3. Correlation of RS.

Table 19. Selection results using different selection
criteria.

Criterion Final model Criterion Final model

QIC(R) M2 QAICb1 M4
QAICu(R) M4 QAICb2 M4

The selection results show that model ‘M4’ is more likely to be the most appropriate
model. This model ‘M4’ shows that the status of Parkinson’s disease can be effectively
predicted by ‘Age’, ‘Sex’, rating scales for movement hindrances ‘RS1’, ‘RS2’, ‘RS3’, and
a gene-piece measure ‘GP1’, which complies with a common understanding about Parkin-
son’s disease. In this particular data set, although QAICb1, QAICb2, and QAICu(R) all
select the same model, the previous simulation results show that QAICb2 outperforms the
other compared criteria in selecting a correct model.

6. Concluding remarks and discussion

Wepropose two criteria QAICb1 in Equation (15) andQAICb2 in Equation (23) formixed
model selection by adopting the quasi-likelihood function and bootstrap approaches.

Fully specifying the distribution of the data may not be realistic when it comes to some
practical problems. To overcome the limitations of the traditional model selection criteria
on distributions, we propose the selection criteria depending less on the parametric distri-
bution and is easy to fulfill. We replace the log-likelihood function in the K-L discrepancy
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by the log quasi-likelihood, in which the approach depends less on the parametric distri-
bution and much easier to calculate with the existence of correlation in the data. QAICb1
and QAICb2 are developed to serve as asymptotically unbiased estimators of the quasi-
likelihood based on K-L discrepancy between a candidate model and the true model. We
can therefore utilize them as model selection criteria to select the most appropriate model
among a candidate pool in mixed models.

The proposed selection criteria QAICb1 and QAICb2 consist of two components: the
log quasi-likelihood and an estimation of the bias correction term. To compute the log
quasi-likelihood function, we utilize GEE to obtain themodel parameters from the original
data with a prespecified fitting correlation matrix. The estimation of the bias correlation
term is based on the bootstrap approach, which provides us withmore significant selection
performance of QAICb1 and QAICb2 for mixed models.

Both QAICb1 and QAICb2 are based on the quasi-likelihood functions without
assumptions of distributions, so these two model selection criteria are general methods
when the distribution is not specified or unknown in linearmixedmodels.When the distri-
bution is specified, not only nonparametric bootstrap but also parametric bootstrap can be
utilized for calculating QAICb1 andQAICb2. In the parametric bootstrap, the distribution
information can be well employed.

To extensively study the model selection performance of QAICb1 and QAICb2, the
simulations with different model settings are conducted. The simulation results demon-
strate that the proposed criteria generally outperform some other selection criteria such as
QIC(R) andQAICu(R) in selecting the bestmodel.With the escalation of the correlation ρ,
the behavior ofQAICb1 andQAICb2 becomes significantly remarkable inmodel selection.
The results also show that the performance of QAICb1 and QAICb2 is almost the same in
large samples except for the situationwhere the semiparametric bootstrap approach is used
to generate bootstrap samples. The selection performance of QAICb1 is not as optimal as
that ofQAICb2 for the semiparametric bootstrap. Based on the simulation results, QAICb2
is preferred when the semiparametric bootstrap is utilized.

We note that there exist many model selection criteria, and it is common sense that no
unique selection criterion can take all advantages for model selection. Although the recent
trend towards variable selection in linear mixed models adopts many penalized meth-
ods for high-dimensional situations, for small to medium size of predictors involved in
the model selection, the proposed QAICb1 and QAICb2 perform effectively and focus on
the performance improvement in model selection over QIC(R) and QAICu(R) using the
quasi-likelihood functions and bootstrap methods. For high-dimensional cases where the
number of predictors is very large, the proposed selection criteria QAICb1 and QIACb2
do not perform as well as in small to medium-dimensional settings. Therefore, we prefer
to adopt QAICb1 and QAICb2 for small or medium-dimension model selection.

A suitable number of bootstrap samplesB should be considered to achieve the best selec-
tion performance ofQAICb1 andQAICb2 in bootstrapping. In the simulations,B is chosen
to be 250, which serves as the minimal number of bootstrap samples needed to effectively
estimate the bias term in QAICb1 and QAICb2, respectively. Increasing B from 250 does
not significantly increase the performance of the proposed selection criteria.

To compare other selection criteria with the proposed QAICb1 and QAICb2, we can
remark on the InformationComplexityCriteria (ICOMP) [2,3] performance in the settings
where we conduct the simulations. We compute some ICOMP values in the simulation
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settings, but not presented here.When the distribution is normal, the ICOMP significantly
outperforms the proposed selection criteria QAICb1 and QAICb2, and the ICOMP com-
putation relies on the distribution in a mixed model. Based on the ICOMP, Shang [18]
developed a diagnostic of influential cases in generalized linear mixed models. However,
for the unknowndistributions inmixedmodels and other distributions (e.g. logistic regres-
sion), the proposed selection criteria outperform the ICOMP in selecting the true model.
We address that the proposed QAICb1 and QAICb2 focus on the performance improve-
ment in model selection over QIC(R) and QAICu(R) using the quasi-likelihood functions
and bootstrap methods.

When establishing theoretical properties and conducting simulations, we initially pro-
pose QAICb1 andQAICb2 for linearmixedmodels. The utilization of the quasi-likelihood
and GEE could also be extended to typical generalized linear mixed effects models with
both fixed and random effects included in Zeger et al. [22]. We will extend QAICb1 and
QAICb2 to generalized linear models with random effects by including the estimation
of overdispersion parameter in future research. Also, we plan to develop the proposed
selection criteria into an R function accessible to general users.
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