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ABSTRACT
The escalation of antibiotic resistance and the diminishing antimicrobial pipeline have emerged as significant threats to
public health. The ESKAPE pathogens – Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae,
Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. – were initially identified as critical
multidrug-resistant bacteria, demanding urgently effective therapies. Despite the introduction of various new
antibiotics and antibiotic adjuvants, such as innovative β-lactamase inhibitors, these organisms continue to pose
substantial therapeutic challenges. People’s Republic of China, as a country facing a severe bacterial resistance
situation, has undergone a series of changes and findings in recent years in terms of the prevalence, transmission
characteristics and resistance mechanisms of antibiotic resistant bacteria. The increasing levels of population mobility
have not only shaped the unique characteristics of antibiotic resistance prevalence and transmission within People’s
Republic of China but have also indirectly reflected global patterns of antibiotic-resistant dissemination. What’s more,
as a vast nation, People’s Republic of China exhibits significant variations in the levels of antibiotic resistance and the
prevalence characteristics of antibiotic resistant bacteria across different provinces and regions. In this review, we
examine the current epidemiology and characteristics of this important group of bacterial pathogens, delving into
relevant mechanisms of resistance to recently introduced antibiotics that impact their clinical utility in China.
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Introduction

Antimicrobial resistance (AMR) has emerged as a major
public health threat in the twenty-first century and
caused serious societal and economic burden [1,2]. If
AMR is not controlled, 10 million people could die
from bacterial infections by 2050 [3]. The irrational use
of antimicrobial agents is a significant and critical issue
in China, contributing to the development of severe bac-
terial resistance [4]. In recent years, China has issued two
“National Action Plans for Combating Bacterial Resist-
ance (2016–2020, 2022–2025)”, implementing effective
antimicrobial stewardship, rational use policies and sur-
veillance [5,6]. China’s efforts to combat antimicrobial
resistance have shown significant results. The rate of anti-
biotic use has notably decreased, and the detection rate of
some commonly encountered clinically resistant bacteria
has either decreased or remained stable [7,8]. However,
numerous challenges persist inChina’s current landscape
of AMR, including the escalating antibiotic resistance
rates of certain common bacteria [9], continual discovery
of new resistance mechanisms [10–12], and dynamic

changes in prevalent clones [13,14]. Comprehensive con-

trol of nosocomial infections is still a pending task.
Surveillance and mechanistic studies of bacterial

resistance are the most important measures in terms of
controlling the spread of resistant bacteria [15–17].
There are several nationwide surveillance networks in
China nowadays. CARSS (China Antimicrobial Resist-
ance Surveillance System), currently managed by the
National Health Commission, evolved from Mohnarin
[18]. BRICS established by Zhejiang University, focused
on surveillance of antimicrobial resistance in national
bloodstream infection [9]. CHINET established by
Fudan University, included more than 70 tertiary and
second-class hospitals in China [18,19] (Figure 1).
Besides the national surveillance networks, there are sev-
eral independently established hospitals and local sur-
veillance programmes, and some other special surveys
including children hospitals [20]. These initiatives con-
tribute valuabledata that can aid in formulating strategies
for the rational use of antimicrobial agents. With the
establishment and development of these antimicrobial
resistance surveillance networks, the quantity andquality
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of research output on antimicrobial resistance in China
has remarkably increased [18], including molecular epi-
demiology and theunderlying andgenetic basis and evol-
ution of antimicrobial resistance [21,22]. These studies
make a significant and valuable contribution to the scien-
tific community engaged in researching antimicrobial
resistance, offering insights that inform strategies for
mitigating antimicrobial resistance.

We published a review paper related to epidemiology
and characteristics of antimicrobial resistance in China
in the first decade of 21th [23]. From the second decade
of 21th to now, dynamic changes have made in epide-
miology, underlying mechanisms and evolution of anti-
microbial resistance. To comprehensively illustrate the
extent and dynamics of antimicrobial resistance in
China over the last decade, we examined data mainly
onESKAPEpathogens (includingEnterococcus faecium,
Staphylococcus aureus, Klebsiella pneumoniae, Acineto-
bacter baumannii, Pseudomonas aeruginosa, and Enter-
obacter species) that often trigger severe nosocomial
infections in critically ill and immunocompromised
individuals [24] (Figure 2), and are notable for their pro-
pensity to develop antibiotic resistance mechanisms.
Most of the data came from CARSS, BRICS and CHI-
NET, which covered all the regions of China.

Enterococcus faecium

Enterococcus, mainly consisted by Enterococcus faeca-
lis and Enterococcus faecium, is a globally important
opportunistic pathogen, and can persist in the gastro-
intestinal tract for an extended period without causing
any symptoms of infection, similarly enduring in the
hospital environment [25,26]. The widespread use of
antimicrobial agents in clinical treatment has led to
the emergence and global spread of antibiotic-resist-
ant enterococci, particularly multi-drug resistant
(MDR) isolates such as vancomycin-resistant Entero-
cocci (VRE) and linezolid-resistant Enterococci (LRE)
[25]. Although ten years ago the isolation rate of
E. faecium was significantly lower than that of
E. faecalis in China, now the two are comparable as
each around 50% (CARSS data in 2022). The antimi-
crobial resistance of E. faecium was more severe than
that of E. faecalis, such as fosfomycin (30.3% vs.
4.8%), ciprofloxacin (85.4% vs. 30.6%) and nitrofuran-
toin (46.4% vs. 1.6%), except for chloramphenicol
(5.2% vs. 22.6%), linezolid (0.6% vs. 3.4%) and conte-
zolid (0% vs. 1.1%) (CHINET data in 2022) (Figure 3).

The prevalence of VRE in China is relatively low,
with a stable low resistance around 0.1% in
E. faecalis, while the nationwide incidence of

Figure 1. Surveillance networks. Geographical distribution of sentinel hospitals of BRICS and CHINET. Due to the extensive number
of sentinel hospitals in CARSS (exceeding 1,500), it is impractical to display them individually on the map. Therefore, CARSS senti-
nel hospitals have not been marked on the map.

2 Q. LUO ET AL.



vancomycin-resistant E. faecium (VREfm) was fluctu-
ate downtrend from 2010 (3.6%) to 2018 (1.2%), and a
slow upward trend from 2019 (1.0%) to 2022 (2.2%)
[27–30] (Figure 3). Of note, the prevalence of
VREfm in Beijing and Guangdong province were
markedly higher, and increased to 11.7% and 8% in
2022, respectively (CARSS data). Yan et al., reported
an extremely high prevalence of VRE in patients
admitted to ICUs in tertiary hospitals in Beijing,
with 31.1% (46/148) patients carried VRE and 91.3%
among them being E. faecium [32]. Compared to the
globally predominant vanA and vanB genes associated
with vancomycin resistance, the most prevalent van-
comycin resistance genes in China are vanA and
vanM [30–32]. Among these, vanA has the highest
prevalence, reported to be in the range of 78.3%
−81.7% [30,32]. vanM has been predominant in
VRE strains since 2011 and showing a greater preva-
lence than vanA in Shanghai, and later spread to
other regions such as Zhejiang and Beijing, becoming
the second most prevalent vancomycin resistance gene
in China [30,32]. The isolation rate of vanM has
gradually increased, with recent reports indicating
around 15.3%−16.7% [30,32]. Generally, both vanA
and vanM genotype are characterized by an acquired
high-level of resistance to both vancomycin and teico-
planin. The horizontal transfer capability of antibiotic
resistance plasmids plays a crucial role in the dissemi-
nation of VRE strains. Multi-locus sequence type (ST)

78 VREfm are predominant in China, ranging from
47.6% to 57.1% in studies [30,32]. In contrast to
Europe and Australia, where the VRE subtype ST80
has isolation rates ranging from 40% to 67.1%, ST80
has been rarely reported in clinical cases in China.
However, recent findings by Li et al. have documented
an outbreak of ST80 in a hospital in Shenzhen,
suggesting that ST80 may be emerging in China
[34]. Clonal expansion and horizontal transfer of
resistance genes have contributed to VREfm increased
prevalence in hospitals in China, which deserved
further study.

Linezolid serves as one of the final lines of defense
against Gram-positive bacteria. Before 2010, linezolid-
resistant enterococci (LRE) was not found in any
national survey. In recent years, with the widespread
application of linezolid in clinics, the gradual increas-
ing reports of linezolid resistant gram-positive patho-
gens highlights the enhanced risk of linezolid
resistance transmission [35,36]. From 2010 on, the
escalating emergence of LRE has evolved into a signifi-
cant concern in nosocomial infections. LREfm was
0.1% in 2011 increased to 0.6% in 2022, and LREfs
was 0.2% from 2011 increase to 3.4% in 2022 (CHI-
NET data) (Figure 3). Several genes are related to line-
zolid resistance, but optrA and poxtA, is a growing
concern, as it is being increasingly reported in both
human and veterinary medicine [37]. OptrA was pri-
mary mechanism in LRE that was first detected in a

Figure 2. Trends in the prevalence of the predominant antimicrobial resistant bacteria in China. (A) data from CHINET. (B) data
from BRICS.

Figure 3. Antimicrobial resistance trends for E. faecium. (A). data from CHINET. (B). data from BRICS.
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clinical E. faecalis from China in 2015, and was com-
monly localized within chromosomes or plasmids and
can be transmitted through horizontal gene transfer
(HGT) via mobile genetic elements such as transpo-
sons, integrative and conjugative elements, and inser-
tion sequences [38,39]. The recently reported poxtA
gene, mediating resistance to oxazolidinones, tetra-
cyclines, and phenicols, was first described in an
MRSA isolate from an Italian patient [40]. Yi et al.
reported that 46.7% (7/15) of linezolid-resistant clini-
cal isolated E. faecium were positive for optrA, and
13.3% (2/15) of isolates had poxtA in China [41].
Besides, Tn558 and IS1216Es may play an important
role in the dissemination of optrA and poxtA, respect-
ively [41]. poxtA is found more in the environment or
food-producing animals than human samples and
E. faecium has higher prevalence than E. faecalis, indi-
cating the necessity of applying the “One Health” per-
spective to analyse the evolutionary dynamics of
poxtA-positive E. faecium in clinical and non-clinical
settings worldwide [42,43]. Although linezolid is cur-
rently effective in the treatment of Enterococcal infec-
tions, advanced monitoring of changes in the
resistance mechanism of linezolid is needed in the
future.

Staphylococcus aureus

S. aureus is a commensal bacterium in humans, but it
also serves as a pathogen responsible for various infec-
tions, ranging frommild skin and soft tissue infections
to more severe conditions like endocarditis, pneumo-
nia, and sepsis. Approximately 30% of healthy individ-
uals harbour S. aureus in their anterior nares. The
global prevalence of S. aureus in human populations
has been on the rise, potentially attributed to the con-
tinual emergence of antibiotic-resistant strains, par-
ticularly methicillin-resistant S. aureus (MRSA).

Epidemiology of antimicrobial resistance

The high prevalence of MRSA was once a critical anti-
microbial resistance issue for S. aureus in China, with
an isolation rate exceeding 50% before 2010 [23]
(Figure 4). This is attributed to the effective
implementation of antimicrobial stewardship and
rational use policies in China [4]. The isolation rates
of MRSA vary geographically, with rates in regions
such as Tibet, Shanghai, and Jiangsu remaining
above 40% in recent years (CARSS data). The resist-
ance rate of MRSA to antimicrobial agents is higher
than that of methicillin-sensitive S. aureus (MSSA),
except for trimethoprim-sulfamethoxazole (6.4% vs.
12.4% in 2022, CHINET data). MRSA is higher resist-
ance rates to macrolides, clindamycin, aminoglyco-
sides and quinolones compared with MSSA [44].
The rate of rifampicin resistance in MRSA, which

was about 50% in 2010, has sharply declined to
about 3% in 2022, though it remains higher than in
MSSA (Figure 4). The rate of sulfamethoxazole-tri-
methoprim resistance in MSSA has remained stable
around 15% from 2011 to 2022, whereas in MRSA, it
decreased from 20.1% to 6.4% (CHINET data).
S. aureus is still highly sensitive to vancomycin, linezo-
lid, teicoplanin, contizolamide and tigecycline. Among
the major treatment options for MRSA, no vancomy-
cin, linezolid or teicoplanin resistant strains were
reported in the surveillance data in China. Whereas
in-host evolution of daptomyxin resistance and het-
eroresistance in MRSA were reported with mutations
inmprF and yycH [45,46]. The role ofmprFmutations
in seesaw effect of daptomyxin resistance MRSA pro-
vides fundamental insights into the combination
therapy of beta-lactam antibiotics and daptomycin
for treating MRSA infections [46]. Nevertheless, as
these antibiotics are widely utilized, there has been a
rising number of reports on the emergence of drug
non-susceptible strains among these antibiotics called
the “MIC creep” phenomenon [47,48].

Susceptibility tests on four major MRSA STs
(ST239, ST5, ST59, and ST398) isolated from 61 hos-
pitals in China from 2014 to 2019 discovered that all
strains maintained resistance to penicillin and all
MRSA exhibited sensitivity to vancomycin, daptomy-
cin, and linezolid [49]. The susceptibility of other anti-
biotics changed between STs [49]. Overall, ST239
clone showed a high (>66%) and increasing trend of
resistance rate in tetracycline and quinolones. The
ST5 clone maintained a consistently high resistance
rate (>78%) to quinolones and erythromycin. The
ST59 clone exhibited high resistance rates (>80%)
only to erythromycin and clindamycin, with an overall
decreasing trend for moxifloxacin, and the resistance
rates to amikacin and tetracycline began to decline
after reaching their peak in 2016. The ST398 clone
showed relatively low overall resistance rates to anti-
microbial drugs, with a generally increasing trend
for clindamycin and high fluctuation for erythromycin
and tetracycline [49].

To date, at least 15 major staphylococcal cassette
chromosome mec (SCCmec) types (I–XV) have been
identified [49–51]. Over the past decade, MRSA-
SCCmec IV and SCCmec V has spread widely in
China, gradually replacing previously prevalent hospi-
tal-acquired MRSA-SCCmec II and III types [53,53].
While MRSA-SCCmec II has shown a declining
trend in recent years, it still dominates in the East
China region [54,55]. SCCmec elements IV (21–
24 kb) and V (27 kb), being relatively smaller, facilitate
their transfer among S. aureus strains, enhancing their
potential for dissemination. MRSA carrying IV and V
SCCmec elements typically show sensitivity to many
non-β-lactam antibiotics and are predominantly
found in community-acquired MRSA (CA-MRSA)
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in China [49]. In China, the recently prevalent ST59
clone is primarily associated with SCCmec IV
[56,57]. IV and V elements are also present in some
widely distributed healthcare-aquired (HA)-MRSA
clones, such as ST22-MRSA-IV, ST45-MRSA-IV,
and ST5-MRSA-VI [58]. A rising number of variants
of SCCmec elements that harbour composite cassettes
and pseudo-SCCmec elements but do not harbour ccr
genes, have also been detected in recent years. This
reflected the ongoing intra/interspecies genetic
rearrangements [59]. Among the 1,006 MRSA strains
collected between 2014 and 2020 in China, a total of 25
non-duplicate MRSA strains with non-typeable
SCCmec elements were detected, provide evidence
for the ongoing evolution of SCCmec elements within
MRSA [60]. mecA-positive but phenotypically suscep-
tible to oxacillin, suggesting potential frameshift
mutations or single base substitutions in nucleotide
repeat regions within mecA, with the capability to
revert to resistance when exposed to antibiotics [61].

Reshaping the epidemiology of MRSA

Between 2005 and 2010, the ST239 clone dominated
MRSA clones in China (50–80.8%), followed by the
ST5 clone (15.5%) [54,61]. Since 2010, multiple studies
have confirmed a decrease in the prevalence of the
dominant MRSA ST239 and ST5 clones in China,
while ST59 has been steadily increasing [21,62]. The
isolation rate of ST59-MRSA increased from 25.09%

in 2014 to 35.58% in 2019 [63,64]. Jin et al. discovered
that in bloodstream infections, the ST59 clone becom-
ing the dominant clone in most Chinese hospitals
(33%−36.98%), with varying prevalence rates among
different provinces ranging from 17.86% to 80.95%;
the ST239 clone causing decreased from 10.29% in
2014 to 3.05% in 2019, while ST5 sharply declined
from 39.71% to 9.64% during the same period [49].

In the past decade, the “main battlefield” of MRSA
has shifted from hospitals to the community, with a
reciprocal influence from the community to hospitals
[65–67]. The boundary between HA-MRSA and CA-
MRSA has become increasingly blurred. With the
rapid development of whole-genome sequencing,
CA-MRSA is defined based on microbiological and
molecular characteristics, utilizing SCCmec typing
and phylogenetic methods [21,68]. The prevalence of
CA-MRSA in China has become significant, reaching
a rate of 24%, with the unique Chinese CA-MRSA
clone CC59 (mainly ST59) has been steadily increas-
ing [52,62]. Studies reported that HA-MRSA strains
belonged to the CC59-MRSA-IV/V-t437 clone, exhi-
biting characteristics of traditional Chinese CA-
MRSA, carrying SCCmec IVa, and being PVL-positive
[52,63]. However, HA-MRSA ST59 displayed higher
resistance to compound sulfamethoxazole and genta-
micin, while CA-MRSA ST59 was more likely to be
resistant to clindamycin and levofloxacin. The sak
and chp genes carried by MRSA ST59 and higher
toxin gene content may be associated with the

Figure 4. Antimicrobial resistance trends for S. aureus. (A, B). data from CHINET. (C). data from BRICS.
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increased transmission success of this clone [49,64].
It’s worth noting that Chen et al. found that almost
all CC59 isolates in China (91%) exhibited sensitivity
to the combination of penicillin and clavulanic acid
due to the susceptible genotype [52]. The increasing
prevalence of ST59 clones in Chinese hospitals high-
lights the multifaceted adaptive evolution of MRSA
as a pathogen, extending beyond the community
healthcare environment.

ST5 HA-MRSA clone is considered a representative
epidemic clone in East China, with high prevalence
reported in Shanghai and Zhejiang [55,69]. Wu et al.
reported that ST5-t311-II lineage has become the pre-
dominant ST5 clone in Zhejiang Province (65%) [55].
The expansion and structurally unstable nature of the
CC5 population were noted, with ST5-t311-II, ST764-
t1084-II, ST5-t2460-II and ST764-t002-II existing
complex competition [63]. The intra-hospital dissemi-
nation of ST5-MRSA has led to nosocomial outbreaks
[70]. Simultaneously, the proportion of some sporadic
STs, such as ST30, ST4513, ST1821, and ST5529, caus-
ing bloodstream infections in China increased from
5.88% in 2014 to 20.30% in 2019, demonstrating a ris-
ing diversity of MRSA strains over the years. It is note-
worthy that, despite its lower prevalence, the ST398
clone has shown an increasing trend; as reported, an
increase in the isolation rate of the ST398 clone
from 1.47% in 2014 to 9.14% in 2019 [49,69].

As the isolation rate of HA-MRSA declines, increas-
ing attention is being directed towards MRSA’s animal
hosts [71]. The livestock-associated MRSA (LA-MRSA)
is predominantly associated with CC398 (in Europe)
and CC9 (in Asia), causing infections primarily
among individuals engaged in livestock farming [71].
However, recent observations indicate that LA-MRSA
can also infect some individuals who have not had
direct contact with animals. Phylogenetic analysis
along with the distribution of resistance genes demon-
strated that HA-ST9 MRSA and LA-ST9 MRSA share
similar genetic backgrounds, which provides evidence
that multidrug-resistant LA-MRSA-ST9, evolved in
the livestock industry, spreads to communities and
clinical settings through trade chains [60].

Vancomycin-intermediate S. aureus (VISA) and
heterogeneous VISA (hVISA)

hVISA/VISA infections, reported since 1996, have
been linked to poor patient outcomes. A meta-analysis
reveals that Vancomycin-resistant S. aureus (VRSA),
VISA and hVISA isolates have a worldwide prevalence
of 1.5%, 1.7% and 4.6% in S. aureus, respectively [72].
No VRSA cases have been reported in China; however,
VISA and hVISA are present at rates of 0.5% and
10.0%, respectively, with hVISA showing a signifi-
cantly higher isolation rate compared to global levels
[72]. Moreover, there is a growing concern due to

the increasing prevalence of hVISA in recent years.
Shen et al. identified 7.6% (36/476) hVISA among
S. aureus isolated in 2010–2011 [73], while Liang
et al. discovered 10.8% (22/204) hVISA among isolates
from inpatients and outpatients in 2019–2021 [74].
With the recent decrease in MRSA isolation rates,
the proportion of MRSA among VISA/hVISA has
also declined [73,74]. Liang et al. reported 22.7% of
hVISA isolates belonged to ST72 and CC5 (ST5/965/
7197), followed by CC59 (ST59) and ST25 (18.2%,
respectively), which indicated that previous dominant
hVISA/VISA clone ST239 in China is changed [74].

Klebsiella pneumoniae

Klebsiella pneumoniae rose from about 15% to around
20% in all the clinical isolated bacteria nationwide
(CARSS data). In the nationwide bloodstream infec-
tions surveillance (BRICS), K. pneumoniae increased
from 9.91% in 2014–18.9% in 2021 (Figure 2). Over
the past decade, no matter in all clinical samples or
in bloodstream infection samples, K. pneumoniae
has exhibited an overall steady rise of resistance to
cephalosporins, aminoglycosides, fluoroquinolones,
polymyxins and tigecycline [9,19]. In special, the
increasing isolation rate of carbapenem-resistant
K. pneumoniae (CRKP) is concerning [75]. Further-
more, K. pneumoniae demonstrates relatively high
sensitivity to tigecycline, polymyxin, and ceftazi-
dime-avibactam, with nationwide surveillance in
2022 indicating resistance rates of 2.6%, 2.8%, and
6.2% for these antibiotics (CHINET data) (Figure 5),
respectively. The issue of drug resistance in
K. pneumoniae has become one of the most challen-
ging among Enterobacteriaceae worldwide [76].

Resistance to carbapenems

With widespread clinical use, resistance to carbape-
nems among Enterobacteriaceae, particularly CRKP,
has become increasingly serious in China [76–78].
According to CHINET, the resistance rates of
K. pneumoniae to imipenem and meropenem have
straightly climbed from 8.8% and 8.9% in 2010–
25.0% and 26.3% in 2018. However, a stabilizing
trend is observed from 2019 onwards, with rates of
22.6% and 24.2% in 2022. This suggests a plateauing
of carbapenem resistance development, potentially
influenced by optimized antimicrobial drug use in
China and a reduction in nosocomial infections due
to the COVID-19 pandemic since 2019 [19]. Regional
variations in resistance rates are substantial, with
resistance predominantly concentrated in eastern
China [19,79]. Similarly, the incidence of CRKP in
BRICS countries sharply increased from 2014 to
2018 (5.2% to 21.4%) and has been slowly declining
from 2018 to 2021 (21.4% to 15.8%) [9] (Figure 5).
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KPC enzymes account for more than 70% of CRKP,
followed by NDM-producing strains, while the preva-
lence of IMP, VIM, and OXA-48 enzymes is relatively
low in China [79,80]. China reported the first KPC-
producing CRKP in 2007 [81], and the prevalent gen-
otype is blaKPC-2, most commonly associated with the
epidemic clone ST11, accounting for approximately
60–80% of the CRKP isolation rate [82]. Different
from the classical Tn4401 background reported in
the United States, China identified unique genetic
backgrounds for blaKPC-2, such as Tn3 transposon
and partial Tn4401 fragments [83]. New structures
like Tn1721-blaKPC-2-Tn3 and Tn1721-blaKPC-2-
ΔTn3-IS26 have been discovered in China [84,85].
The predominant plasmid carrying blaKPC-2 in ST11
CRKP in China is IncFII type [86,87]. In contrast, in
other international regions, diverse plasmids like
IncFIA, IncX, IncP, IncN, and IncC are common car-
riers of blaKPC-2, indicating the diversity and wide-
spread dissemination of KPC-2 resistance plasmids
between regions [88,89]. These plasmids, containing
blaKPC-2, often carry genes conferring resistance to
other antibiotics, resulting in the multidrug resistance
of CRKP [89].

Another representative of the epidemic CRKP
strains carries NDM enzymes, belonging to class B
metallo-β-lactamases dependent on zinc. These
enzymes can hydrolyze all β-lactam antibiotics except
aztreonam and are not inhibited by β-lactamase inhibi-
tors. In China, the main genotypes are blaNDM-1 and
blaNDM-5, and although the isolation proportion is
lower than that of KPC-2, it is more common in
CRKP isolated from pediatric patients [90–92]. Fur-
thermore, there has been an increase in the reported
incidence of blaOXA-48-like genes in China in recent
years. Individual regions have experienced small-
scale outbreaks, with blaOXA-232 being the most preva-
lent, mainly associated with ST15 CRKP and carried by
ColKP3-type plasmids [93]. In Taiwan, blaOXA-48 has
been reported in ST11 K. pneumoniae [94]. Moreover,
in China, the combination of blaNDM and blaKPC is
prevalent among K. pneumoniae [78,95].

In recent years, it has been observed that CRKP in
China is undergoing evolution with the acquisition of
high virulence traits, and there is an increasing num-
ber of reports on highly virulent CRKP [96–102]. Cur-
rent studies suggest that the emergence of highly
virulent CRKP is primarily the result of bidirectional
evolution involving both high virulence and high
resistance [14,103,104]. One pathway involves classic
high-virulence K. pneumoniae (hvKP) acquiring plas-
mids or mobile elements containing carbapenem-
resistant genes. Another pathway is CRKP acquiring
virulence plasmids or mobile elements containing
virulence genes [83,105–107]. It is noteworthy that
through widespread transposon-mediated transposi-
tion or the fusion of resistance plasmids and virulence
plasmids, virulence and resistance genes can be
located on the same conjugative plasmid [108,109].
In recent years, an alternating trend of sub-clones
has been observed among the prevalent ST11-type
CRKP strains in China, with KL64 gradually replacing
the earlier KL47 type [14,104]. KL64 carries a series of
virulence genes associated with high pathogenicity,
contributing to a high mortality rate in clinical infec-
tions [14]. An analysis of 1,052 CRKP strains from 19
regions and 56 centres in China between 2015 and
2017 revealed that 34.2% of CRKP strains carried viru-
lence genes, primarily iron carrier genes (iucA, iroN),
and capsular polysaccharide expression regulatory
genes (rmpA and rmpA2). 80% of these strains
belonged to the ST11-KL64 clone carrying the
blaKPC-2 gene [96]. Zhou et al. revealed the gradual
replacement of the once prevalent sub-clone OL101:
KL47 by O2v1: KL64, with the latter exhibiting an
increased abundance of mobile genetic elements.
Additionally, a specific point mutation in the recC of
O2v1: KL64 significantly enhances recombination
proficiency [104]. The prevalent ST11 clone of
CRKP in China is undergoing rapid evolution, form-
ing a pathogenic and highly transmissible high-risk
sub-clone, posing significant challenges to clinical
diagnosis and treatment as well as infection control
in healthcare settings [110,111].

Figure 5. Antimicrobal resistance trends for K. pneumoniae. (A). data from CHINET. (B). data from BRICS.
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Resistance to ceftazidime/avibactam

Ceftazidime/avibactam (CAZ/AVI) is currently the
first novel β-lactam/β-lactamase inhibitor combi-
nation available for the treatment of infections caused
by KPC-producing Enterobacteriaceae [112]. It was
officially launched in China in early September 2019.
Avibactam, within this combination, inhibits KPC
and OXA-48 enzymes but does not inhibit metallo-
enzymes like NDM. With its clinical application,
there have been reported cases of non-metallo-enzyme
CRKP resistance to CAZ/AVI [113]. The resistance
rates to CAZ/AVI in China have been monitored
since 2020, with resistance rates decreasing from
11.8% and 14.9% in 2020 to 6.2% and 9.1% in 2022
for K. pneumoniae and CRKP, respectively. Moreover,
resistance rates were higher in children compared to
adults, possibly due to a higher prevalence of
metallo-enzymes like NDM in children.

CAZ/AVI resistance primarily due to mutations in
the blaKPC gene and alterations in outer membrane
porins [75,113]. To date, over 150 variants of blaKPC
have been reported globally, with the majority of
new variants identified in the last three years, warrant-
ing public concern [75]. The variant KPC protein
increases its affinity to ceftazidime while reducing its
affinity to avibactam through structural changes,
thereby facilitating bacterial resistance to CZA [75].
Zhang et al. reported that resistance against CAZ/
AVI in CRKP emerged before clinical use of CAZ/
AVI in China, although most of the CRKP isolates
maintained the susceptibility [113]. Among the resist-
ant isolates, 53.1% (17/32) were metallo-blactamase-
producing K. pneumoniae (MBL-KP), 40.6% (13/32)
were KPC-producing K. pneumoniae (KPC-KP) and
6.3% (2/32) produced both MBL and KPC [113].
MBL production, blaKPC-2 point mutation and high
KPC expression played an important role in CAZ/
AVI resistance [113]. Shi et al. reported CAZ/AVI
resistance caused by the change from KPC-2 to
KPC-33 carbapenemase via the D179Y variant [12].
Plasmid-mediated novel CMY-type AmpC β-lacta-
mase, leading to high-level resistance to CAZ/AVI,
was discovered [114]. Therefore, enhanced monitor-
ing is essential to prevent the spread of novel CAZ/
AVI -resistant strains in China.

Resistance to polymyxins

Polymyxins (polymyxin B and polymyxin E) were
officially introduced into clinical use in China in
2018. Prior to its clinical use, there was a lack of atten-
tion to polymyxins resistance in China’s clinical anti-
microbial resistance monitoring system. However, it
had been closely monitored in the country’s animal
bacterial resistance monitoring system because poly-
myxins had been widely used in livestock farming

before being reintroduced for clinical use [10,115].
Due to prolonged exposure to low concentrations of
polymyxins, there has been a selection pressure lead-
ing to the prevalence and spread of low-level poly-
myxin-resistant strains mediated by the mobile
resistance gene mcr [115].

The continuous increase in polymyxins resistance
among clinically isolated strains, especially in
countries with a high proportion of MDR and carba-
penem-resistant strains, is a particularly concerning
issue [116]. Research data from the European Antimi-
crobial Resistance Surveillance Network (EARS-Net)
indicates that CRKP exhibits a much higher resistance
rate to polymyxins than carbapenem-sensitive strains,
especially in countries with a high prevalence of
CRKP, such as Greece and Italy. In China, the resist-
ance rates of K. pneumoniae to polymyxin B and poly-
myxin E have increased from 1.1% and 1.2% in 2018–
4.8% and 2.8% in 2022, respectively. The resistance
rate of CRKP to polymyxins has increased from
3.6% in 2020–8.2% in 2022 (CHINET data). In recent
years, the increase in polymyxins resistance among
K. pneumoniae has been significantly greater than
that observed in other Gram-negative bacteria
(BRICS and CHINET data) (Figure 5). It can be antici-
pated that without the proper use of polymyxins, the
resistance rates of Gram-negative bacteria in China,
especially CRKP, to polymyxins will continue to rise,
leading to a further loss of effective antibiotic treat-
ment options [116].

The resistance mechanisms of different bacterial
species to polymyxin can be broadly classified into
chromosome gene mutation-mediated and plasmid
mcr gene-mediated [117]. Chromosome gene
mutations associated with polymyxin resistance that
have been reported include pmrCAB, phoPQ, mgrB,
pmrD, etc [118]. Additionally, mutations in the
crrAB two-component regulatory system have been
reported in K. pneumoniae [119,120]. What’s more,
one significant factor contributing to the increasing
trend of polymyxins resistant CRKP is the high pro-
portion of heteroresistance characteristics in
K. pneumoniae, making them prone to mutations
that induce full-resistance [121]. Therefore, the resist-
ance of clinical isolates to polymyxins underscores the
importance of addressing chromosomal gene
mutations leading to heteroresistance as a conse-
quence of clinical polymyxin use.

Resistance to tigecycline

In recent years, the heavy use of tigecycline (TGC) in
clinical settings has resulted in the global emergence of
resistance [122]. Tigecycline was introduced to the
clinical in China at the end of 2011. The tigecycline
resistance rate of clinical isolated K. pneumoniae in
China has increased from 2.1% in 2017–3.9% in
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2022. Tigecycline resistant rate of CRKP was higher,
reaching to 5% in 2022 (Figure 5).

The mechanisms underlying TGC resistance in
Enterobacteriaceae are complicated and have not
been fully elucidated. Studies revealed that TGC resist-
ance is primarily due to chromosome-encoding mech-
anisms, including overexpression of efflux pumps and
ribosome protection [123–125]. An uncommon
mechanism of TGC resistance is provided by enzy-
matic inactivation mediated by the flavin-dependent
monooxygenase Tet(X) [11,126]. Fortunately, the
mobile tigecycline-resistance tet(X) genes currently
are rarely found in clinical isolates. A nationwide epi-
demiological analysis discovered no K. pneumoniae
isolates were positive to tet(X) genes though 4% iso-
lates were resistant to TGC [127].

Resistance to aminoglycosides

Aminoglycosides are important options for treating
life-threatening infections and are generally adminis-
tered in combination with β-lactam agents [128]. In
China, the resistance rate of K. pneumoniae to genta-
micin decreased from 34.0% in 2010–25.1% in 2022,
possibly attributed to a reduction in the usage of gen-
tamicin. In contrast, the resistance rate to amikacin
showed a slow decrease from 14.4% in 2010–13.7%
in 2022. Additionally, in 2022, CRKP exhibited resist-
ance rates of 75.8% to gentamicin and 62.2% to amika-
cin (CHINET data) (Figure 5).

The predominant mechanism of aminoglycoside
resistance involves the activity of aminoglycoside-
modifying enzymes (AMEs) [129]. However, a signifi-
cant mechanism mediating resistance to nearly all
clinically available aminoglycosides is the production
of 16S rRNA methyltransferase (16S-RMTase) [130].
rmtB and armA are the most widespread 16S rRNA
methylase genes [131]. Furthermore, there is an emer-
ging trend of high-level aminoglycoside resistance
(HLAR) in K. pneumoniae isolates in China, where
they carry 16S rRNA methylase genes (armA and
rmtB), resulting in aminoglycoside MIC values
exceeding 256 μg/mL [132]. Zhang et al. reported an
incidence of 13.7% (40/292) HLAR strains, with
rmtB being the predominant resistance gene (70%,
28/40), identified in a Chinese teaching hospital, and
discovered conjugative armA and AME genes carrying
plasmid [132].

Resistance to fosfomycin

Fosfomycin, an old antibiotic, has been re-introduced
to fight infections caused by CRKP. However, the
trend of fosfomycin resistance among CRKP is
increasing dramatically in China, and becomes an
emerging problem. CHINET data indicates that the
resistance rate of CRKP to fosfomycin has remained

consistently around 50% from 2019 to 2022. However,
data from BRICS reveals that the resistance rate of all
bloodstream K. pneumoniae isolates to fosfomycin has
shown a linear increase, rising from 0.4% in 2014–
11.57% in 2021 (Figure 5). Huang et al. reported that
80.0% (64/80) carbapenemase-producing
K. pneumoniae (KPC-KP) were resistant to fosfomy-
cin from three tertiary hospital in China (2014–
2017) [133], and is similar to the report by a systematic
review of the literature (73.5%) [134].

Bacterial resistance to fosfomycin can be caused by
multiple mechanisms, including transporter defect
(i.e. GlpT- or Uhp-deficient strains), target modifi-
cation and FosA-mediated inactivation [133]. Most
fosA3-carrying KPC-KP strains are highly resistant
to fosfomycin (MIC > 2048mg/L) [133]. Huang et al.
and Xiang et al. reported that 36.3% (29/80) and
45.4% (44/97) of the KPC-KP were positive for the
mobile fosfomycin resistance gene fosA3, respectively,
in China [133,135]. All fosA3-positive strains belonged
to the dominant ST11-pulse type [135]. Findings indi-
cate that the two major mechanisms of resistance
identified were plasmid-mediated fosfomycin resist-
ance gene fosA3 and mutation of the target gene
glpT [133,135].

Escherichia coli

Although E. coli is not included in the ESKAPE patho-
gens, its clinical isolation rate (accounting for stable
approximately 29% of Gram-negative bacteria,
CARSS data) has consistently been 8–10 percentage
points higher than that of K. pneumoniae in China.
It has remained the most prevalent species in terms
of isolation rates among Gram-negative bacteria and
displayed important MDR phenotypes. Therefore,
we included E. coli in this review. The bloodstream
infection isolation rate of E. coli has increased in
recent years, rising from 29.13% in 2014–37.60% in
2021 (BRICS data) (Figure 2). However, this growth
trend, while notable, has not been as rapid as the
nearly twofold increase observed in K. pneumoniae
during the same period.

As two of the most representative species within the
Enterobacteriaceae family, E. coli exhibits similar anti-
biotic resistance characteristics compared with
K. pneumoniae. However, in recent years, the resist-
ance trend in E. coli has shown a more moderate
increase compared to K. pneumoniae. From various
clinical isolation sources, E. coli has shown a generally
stable or decreasing trend in resistance rates to most
antibiotics in recent years. In 2022, E. coli exhibited
high resistance rates to ciprofloxacin (61.4%) and cefe-
pime (25.1%). However, resistance rates to ceftriax-
one, fosfomycin, piperacillin-tazobactam, polymyxin
B, and tigecycline were relatively low, at 9.7%, 4.4%,
4.3%, 2.2%, 1.0%, and 0.1% in 2022, respectively

EMERGING MICROBES & INFECTIONS 9



(CHINET data). From 2014 to 2021, the resistance
rates of bloodstream-isolated E. coli to imipenem and
meropenem have consistently remained between 1%
and 1.6%. The resistance to polymyxin B (0.5% to
3.1%) and ceftazidime-avibactam (0.56% to 1.2%),
and tigecycline (0% to 0.3%) have consistently been
low. The resistance to ciprofloxacin varied from 27%
to 30.4%. Over the same period, resistance to cefpera-
zone-sulbactam (15.3% to 5%) and cefoxitin (19.5% to
9.15%) decreased, while resistance to fosfomycin
increased from 0.1% to 3.57% in bloodstream-isolated
E. coli. The bloodstream-isolated E. coli has exhibited a
notable upward trend in resistance to fosfomycin, mir-
roring the trend observed in bloodstream-isolated
K. pneumoniae (BRICS data) (Figure 6). This contrasts
with the generally stable or decreasing resistance rates
to most antibiotics, highlighting a divergent pattern
that warrants continued attention and further research
into the mechanisms underlying fosfomycin resistance.

Carbapenem-resistant E. coli (CRECO) in China
typically carry the NDM gene. Bi et al. reported that
70.83% (102/144) CRECO isolates that produced var-
ious NDMs. In addition, CRECO also produced KPC-
2 (n = 15), IMP-4 (n = 3), and OXA-48 (n = 3) [136].
The blaNDM gene is rarely found on the chromosome
but is predominantly located on plasmids, with plas-
mid types covering IncX3, IncFII, IncC, IncFIB,
IncHI1B, and others [137]. This indicates that various
plasmids can acquire blaNDM and facilitate horizontal
transfer through plasmid mediation [137]. In China,
IncX3 is the most common plasmid type carrying
blaNDM, suggesting that IncX3 plasmids may be the
primary vehicles mediating the dissemination of
blaNDM in China [138,139]. An analysis of all NDM-
1 gene sequences revealed the consistent presence of
the ISAba125 sequence in the upstream 100 bp region
of the blaNDM-1 gene, indicating that the blaNDM-1

gene likely first appeared in A. baumannii, mediated
by ISAba125 [140,141]. Furthermore, downstream of
the blaNDM-1 gene, there is a consistent presence of
the bleMBL gene, conferring resistance to bleomycin
[140]. Other blaNDM variants share a similar genetic
background with blaNDM-1, often associated with

upstream ISAba125 (complete or truncated) and
downstream bleMBL [142]. E. coli exhibits resistance
mechanisms to antibiotics such as polymyxins, amino-
glycosides, and fosfomycin that are similar to those
observed in K. pneumoniae [143]. Reports suggest
that the prevalence of the fosA3 gene in fosfomycin-
resistant E. coli may be higher than K. pneumoniae.
Li et al. reported that 83.3% of fosfomycin-resistant
E. coli carry the fosA3 gene, with 70% of the fosA3
genes located on transferable resistant plasmids
[144]. This indicates that the dissemination of fosfo-
mycin resistance in E. coli is likely to be a significant
concern.

Acinetobacter resistance

Acinetobacter baumannii is an opportunistic human
pathogen that infected particularly in critically ill
patients, mainly causing hospital-acquired (HAP)
and ventilator-associated pneumonia (VAP)
[145,146]. A. baumannii is now considered a global
threat in the healthcare setting mainly owing to its
propensity to acquire multidrug resistance phenotypes
and to thrive in the healthcare environment at pre-
viously unforeseen rates [147,148]. What’s more,
A. baumannii globally exhibits a high MDR rate,
reaching approximately 45% [149]. The overall mor-
tality rate estimate for A. baumannii infection reach
up to 45% and is a major concern for nosocomial
infection control [149,150]. Studies estimated that in
2019, carbapenem-resistant A. baumannii (CRAB)
ranked as the fourth most burdensome pathogen–
drug combination in high-income regions and the
third in South Asia [2,151]. In China, CRAB consist-
ently demonstrating pan-drug resistance and suscepti-
bility only to polymyxins and tigecycline, has an
isolation rate of around 70%, which has been increas-
ing in recent years [152].

According to the CHINET monitoring results from
2015 to 2021, A. baumannii maintains an absolute
dominance among all clinically isolated Acinetobacter
species, with an average composition ratio of 89.6%
over the seven years [19]. Apart from minocycline,

Figure 6. Antimicrobial resistance trends for E. coli. (A). data from CHINET. (B). data from BRICS.
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tigecycline, and polymyxin B, A. baumannii exhibit
higher resistance rates to other antimicrobial agents
such as β-lactams, aminoglycosides, and fluoroquino-
lones [9]. From 2015 to 2021, there was an increasing
trend in the resistance of A. baumannii to cefopera-
zone-sulbactam (from 40.6% to 52.8%) and piperacil-
lin-tazobactam (from 64.5% to 73.2%), while a
decreasing trend was observed in resistance to tigecy-
cline (from 10.3% to 2.8%) and minocycline (from
30.4% to 21.0%) (Figure 7).

A study of nationwide and genome-based surveil-
lance on CRAB strains collected from intensive care
units (ICUs) in hospitals in different provinces in
China found that CRAB strains were prevalent in
71.4% (55/77) of the ICUs surveyed. The study further
indicated that CRAB isolates exhibited a notably low
resistance rate to colistin (0.4%) and tigecycline
(2.5%), while displaying a high resistance rate to cefta-
zidime–avibactam (70.2%) [153]. 59% among the Gen-
Bank available genomes of A. baumannii belongs of
global clone (GC)2 according to the Institut Pasteur
MLST scheme [154], which is mainly clonal complex
(CC)92 according to the Oxford MLST. ST195, ST191
and ST208 are the most prevalent A. baumannii STs
belonging to CC92 [155–158]. Clonal dissemination
of CRAB was identified in 37.6% (29/77) of ICUs,
revealing a total of 22 distinct clones and majority of
these clones demonstrated transmissibility within a
single ICU [153].

The major mechanism of carbapenem resistance in
A. baumannii occurs through the action of acquired
OXA-type carbapenem-hydrolyzing class D β-lacta-
mases, which are encoded by blaOXA-23-like, blaOXA-
40-like, blaOXA-58-like, blaOXA-143-like, and blaOXA-
235-like genes [159,160]. CRAB is less commonly
mediated by MBLs and only exceptionally by class A
KPC and GES beta-lactamases [160]. The AdeABC
efflux pump system contributed to CRAB isolates, as
evidenced by the high expression of some of its encod-
ing genes [150]. CRAB from the global T.E.S.T. world-
wide surveillance between 2012 and 2016 (data from
hospitals in 47 countries representing a total popu-
lation of around 2.2 billion people spread over five

geographical regions) that acquired OXA-type carba-
penemase genes were found in 300 (96%) isolates
with blaOXA-23-like and blaOXA-40-like predominating,
which constitutes a significant increase compared to
their findings from 2010 [161].

Polymxyins and tigecycline are commonly regarded
as potent first-line agents for treating infections caused
by CRAB [162]. While most CRAB strains remain
highly sensitive to colistin and tigecycline, there has
been a growing number of reports on A. baumannii
strains resistant to these antibiotics in recent years.
In 2022, CHINET revealed CRAB exhibited 1.2%
resistance to polymyxins and 3.1% resistance to tigecy-
cline (Figure 7). However, currently, over 50% of clini-
cal A. baumannii strains demonstrate resistance to
CAZ-AVI [112]. Presently, mutations in the pmrA/
pmrB and lpxACD genes are the primary mechanisms
of A. baumannii resistance to colistin [163,164]. Con-
versely, mutational changes in the tet(X) gene and the
overexpression of resistance-nodulation-cell division
(RND) efflux pumps are the major mechanisms
observed in tigecycline-resistant A. baumannii isolates
[165].

Pseudomonas aeruginosa

The isolation rate of P. aeruginosa has seen a relatively
stable trend in China, from 12.7% in 2014 to 11.9% in
2022, and still ranks third among clinically isolated
Gram-negative bacteria in China. MDR and exten-
sively drug-resistant XDR P. aeruginosa poses an
increasing global threat of nosocomial infections
[166]. According to CHINET, P. aeruginosa shows a
generally stable or decreasing trend in resistance to
most drugs in China, and decreased for almost all anti-
biotics, during the five-year period. Resistance to imi-
penem and meropenem decreased in P. aeruginosa
nationwide. From 2010 to 2022, the rates of imipenem
and meropenem resistant isolates decreased from
30.8% to 22.1% and from 25.8% to 17.6%, respectively.
However, CRPA in Zhejiang Province increased
annually from 22% in 2015–38.67% in 2017 and that
Zhejiang had the highest rates of CRPA of all

Figure 7. Antimicrobial resistance trends for A. baumannii. (A). data from CHINET. (B). data from BRICS.
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provinces in China in 2017 [167]. Resistance to CAZ/
AVI in P. aeruginosa significantly decreased from
11.1% in 2018–6.3% in 2022 [19]. Furthermore, in
the recent five-years, the resistance rates to cefopera-
zone-sulbactam, piperacillin-tazobactam, ceftazidime,
ciprofloxacin and amikacin decreased from 17.1% to
15%, 16.7% to 13.5%, 19.3% to 14.9%, 24.1% to
15.3%, and 6.2% to 3.8%, respectively. The resistance
rates of colistin and polymyxin B fluctuated around
1.5% and 0.5% respectively (CHINET data). Neverthe-
less, the nationwide bloodstream surveillance system
BRICS discovered an increase of P. aeruginosa in
resistance to piperacillin-tazobactam (from 8.5% in
2014 to 11.75% in 2021), fosfomycin (from 0% in
2014 to 6.5% in 2021) and meropenem (from 6.1%
in 2014 to 13.5% in 2021) (BRICS data) (Figure 8).
Therefore, we still cannot relax our vigilance against
the antibiotic resistance of P. aeruginosa.

P. aeruginosa demonstrates diverse characteristics
in the prevalence of its clones [168]. Several STs of
P. aeruginosa, including ST235, ST111, ST463 etc,
are of special concern [168,169]. These infamous STs
are strongly linked to adverse clinical outcomes and
harbour a multitude of horizontally acquired resist-
ance determinants. In recent years, prevalent clones
have emerged in various regions across China. In Zhe-
jiang, ST463 poses a potential health threat due to its
unique combination of pyocyanin production and
virulence genes [170]. In Shenzhen, the detection of
blaNDM-1 and mcr-1 in MDR P. aeruginosa under-
scores the need for continuous surveillance in pedi-
atric patients [171]. In Shanghai, a low prevalence of
polymyxin-resistant P. aeruginosa, including the glob-
ally disseminated ST277, was observed following poly-
myxin administration in a tertiary teaching hospital
[172]. Furthermore, CRPA strains were reported in
Shandong (ST244), Sichuan (ST277), and Hainan
(ST357), respectively [173].

Enterobacter species

Enterobacter species rank fifth in the isolation rate of
Gram-negative bacteria, comprising 3–5% of all

bacterial isolates in China (CARSS data). Enterobacter
species extracted from clinical samples are usually
reported as E. cloacae, and sometimes E. asburiae,
E. hormaechei, or E. kobei. They are all members of
E. cloacae complex (ECC) [174,175]. The resistance
rates of Enterobater species to imipenem and merope-
nem increased from 5.2% and 4.8% in 2010 to 9.7%
each in 2022. Enterobacter species are highly sensitive
to amikacin (resistant rate 1.6% in 2022), and tigecy-
cline (resistant rate 1.9% in 2022) (CHINET data).
Additionally, Enterobacter species exhibit a very
high resistant rate (93.6%) to cefotaxime. Regarding
the resistance of Enterobacter species to polymyxins,
there is a discrepancy between the CHINET and
BRICS data. CHINET data indicates that the resist-
ance rate of Enterobacter species to polymyxin ranged
from 2% to 5% from 2019 to 2022. However, BRICS
data shows a different trend, with the resistance rate
increasing from 1.5% in 2014 to 29.58% in 2021
(Figure 9). Although the exact prevalence of polymyx-
ins resistance is uncertain, Enterobacter appears to
exhibit a higher resistance rate than Escherichia and
Klebsiella (usually <2% for both) [176,177]. What’s
more, Enterobacter species often exhibit heteroresis-
tance to polymyxins [178], may cause the “skipped
wells” phenomenon in broth microdilution, poten-
tially influencing the observed resistance rate.

Strains of carbapenem-resistant Enterobacter (CR-
Ent) have emerged in the last two decades that contri-
buting majorly by carbapenemases, with 99.9% of
Enterobacter clinical strains reported to be carbape-
nem-susceptible prior to 2001 [177]. A variety of car-
bapenemases have been found in Enterobacter with
geographic specificity. KPC is prevalent in the Amer-
icas, VIM is most common in Europe, NDM is mostly
encountered in India and mainland China [177].
Enterobacter has demonstrated faster carbapenem
penetration via porins compared with Klebsiella,
suggesting that porins may play an important role in
carbapenem resistance in Enterobacter [179].

Clinical laboratories commonly categorize Entero-
bacter species as the ECC, leading to challenges in cor-
relating antimicrobial resistance with specific

Figure 8. Antimicrobial resistance trends for P. aeruginosa. (A). data from CHINET. (B). data from BRICS.
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Enterobacter species. The widespread adoption of
genomic sequencing analysis technology has made
the classification ECC strains more convenient and
accurate. Zong et al. analysed 4,899 Enterobacter
genomes from GenBank, and revealed that
E. xiangfangensis is the most prevalent species world-
wide, with the blaNDM gene predominantly found in
China [177]. Study revealed that the most common
human-source CR-Ent species in China was
E. xiangfangensis (66/92, 71.93%), and the proportion
of carbapenemase-producing Enterobacter (CP-Ent)
in CR-Ent was high (72/92, 78.26%) in comparison
to other global regions [177]. The high risk of
carbapenemase-producing ST171 and ST116 E. xiang-
fangensis, and the blaNDM-harbouring IncX3-type
plasmid were detected and emphasized in China
[180]. Furthermore, globally distributed strains, such
as ST90, ST93, and ST114 E. xiangfangensis, and
ST78 E. hoffmannii, are associated withmultiple carba-
penemases (VIM, NDM, KPC, and OXA-48) [181].
ECC is conventionally regarded as a low-virulence
pathogen. However, an epidemic hypervirulent clone
of Enterobacter hormaechei, ST133, showing high inva-
siveness and mortality in clinical settings was reported
[182,183].

Concluding remarks and future directions

From the second decade of 21th, although the resist-
ance rates of clinically isolated bacteria in China to
common antibiotics continue to exhibit an increasing
trend, there has been a slight stabilization or even a
modest decline in resistance to certain antibiotics
among some bacteria in recent years [19]. Moreover,
the detection rates of critically important carbape-
nem-resistant bacteria, such as CRKP and CRPA,
which have shown a continuous increase over many
years, have recently demonstrated a consecutive
decline [9,19]. This suggests the importance of enhan-
cing bacterial resistance monitoring and implement-
ing multidisciplinary collaboration, along with
hospital infection prevention and control measures,
as effective strategies to curb the epidemic spread of

antibiotic resistant bacteria [4,5]. What’s more, the
variation in antibiotic resistant rates in China during
the three-year period of COVID-19 pandemic control
(from late 2019 to the end of 2022) may be influenced
by differences in nosocomial infection control strat-
egies [184]. Therefore, ongoing monitoring and atten-
tion are needed to assess the trend in antibiotic
resistant rates in Chinese clinical settings starting
from 2023.

In recent years, there has been a continuous evol-
ution of prevalent antibiotic resistant bacterial clones.
For instance, the prevalence of CA-MRSA strain ST59
invading clinical settings has gradually surpassed that
of HA-MRSA ST239 and ST5 [49,53,62]. The pro-
portion of A. baumannii ST208 in bloodstream infec-
tions has been steadily increasing [185,186], while the
prevalence of high-virulence CRKP strains, such as
ST11-KL64, is on the rise, with a simultaneous
decrease in the prevalence of ST11-KL47 strains
[104]. The emergence of next-generation sequencing
has facilitated the development of advanced tools for
monitoring and addressing the dissemination of anti-
biotic resistant bacteria [187,188]. Leveraging the
advancements in high-throughput sequencing tech-
nology to study their systematic evolutionary
dynamics and resistance evolution trends will aid in
predicting the future direction of antibiotic resistant
bacteria, providing essential insights for proactive
monitoring and effective resistance control.

Data from the Centre for Antibacterial Surveillance
in China indicates that in recent years, the utilization
of antibiotics among outpatients and inpatients has
significantly decreased. However, there is a continu-
ous increase in the use or intensity of cephalosporin/
beta-lactamase inhibitor combinations, carbapenems,
and tigecycline [189]. The persistent high concen-
tration of antibiotic usage is likely to have a direct
impact on bacterial resistance [189]. Ongoing efforts
in the antibiotic stewardship will play a crucial role
in preventing and controlling antibiotic resistance.

The prevention and control of antibiotic resistance
are not limited to clinical concerns; they also involve
issues related to animal farming, environmental

Figure 9. Antimicrobial resistance trends for Enterobacter species. (A). data from CHINET. (B). data from BRICS.

EMERGING MICROBES & INFECTIONS 13



pollution, food safety, and more [189,190]. Resistant
bacteria in areas such as animals, the environment,
and food can be transmitted to humans, as seen in
the case of MRSA [191,192]. The use of antibiotics
in animal farming and other sectors can lead to resist-
ant bacteria, impacting the selection of antibiotics in
clinical settings, such as the resistance issue with poly-
myxins [10,115]. Therefore, it is essential to adopt a
One Health strategy to address antibiotic resistance
in clinical settings, fostering collaboration across var-
ious sectors and optimizing the use of antibiotics in
both human and animal contexts.
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