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Abstract

Plasma lipids are modulated by gene variants and many environmental factors, including diet-

associated weight gain. However, understanding how these factors jointly interact to influence 

molecular networks that regulate plasma lipid levels is limited. Here, we took advantage of the 

BXD recombinant inbred family of mice to query weight gain as an environmental stressor on 

plasma lipids. Coexpression networks were examined in both nonobese and obese livers, and a 

network was identified that specifically responded to the obesogenic diet. This obesity-associated 

module was significantly associated with plasma lipid levels and enriched with genes known to 

have functions related to inflammation and lipid homeostasis. We identified key drivers of the 
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module, including Cidec, Cidea, Pparg, Cd36, and Apoa4. The Pparg emerged as a potential 

master regulator of the module as it can directly target 19 of the top 30 hub genes. Importantly, 

activation of this module is causally linked to lipid metabolism in humans, as illustrated by 

correlation analysis and inverse-variance weighed Mendelian randomization. Our findings provide 

novel insights into gene-by-environment interactions for plasma lipid metabolism that may 

ultimately contribute to new biomarkers, better diagnostics, and improved approaches to prevent or 

treat dyslipidemia in patients.
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1. Introduction

Plasma lipids are controlled by both genetic and environmental variables, particularly 

physical activity and diet. The main components of plasma lipids are triglycerides (TG), 

which are involved in energy storage, and total cholesterol (TC), which is mainly used to 

synthesize cell membranes and sterols. Epidemiological studies have shown that abnormal 

plasma lipid levels, such as elevated low-density lipoprotein cholesterol (LDL) or TG, are 

strong risk factors for metabolic syndrome [1], type two diabetes [2], atherosclerosis [3,4], 

coronary artery disease [5], and cardiovascular disease [6–8], the leading cause of death 

worldwide [9].

Genetic studies in humans have uncovered dozens of key regulators of plasma lipid 

concentrations, including LDLR, APOB, APOE, CETP, LPL, ABCA1, LCAT, and LPL 
[10]. Also, recent genome-wide association studies (GWAS) have linked hundreds of genetic 

variants and disease causing genes to plasma lipids levels [11–14]. For example, 826 

variants across 118 novel and 268 previously identified loci were associated with lipid 

levels in 312,571 US veterans [14]. In addition to human studies, extensive studies on the 

genetic basis of plasma lipid levels have been conducted in mouse models. For instance, 

our previous studies [15,16] in the BXD mouse reference population have revealed several 

quantitative trait loci (QTLs) genes that are associated with plasma lipid levels. In addition, 

according to the Rat Genome Database (RGD, https://rgd.mcw.edu/) [17], about 100 TC, 1 

LDL, 60 TG, and 140 high-density lipoprotein cholesterol (HDL)-related QTLs have been 

mapped on the mouse genome. However, previous studies, taken together, explained only a 

small fraction of the variation in plasma lipid levels due to potential unmeasured variables, 

termed “missing heritability,” such as gene-by-gene or gene-by-environment interactions 

[18–20]. Therefore, we aimed to quantify how individual genes interact and form molecular 

networks and how these interactions respond to changes in environment, such as the 

introduction of an obesogenic diet to address the need for clarity in genetic modifiers of 

plasma lipids.

Although reductions of dietary fat and cholesterol have positive effects on plasma lipids 

at the population level, much individual variability exists, a trend that could be explained 

by interactions between diet and gene polymorphisms [21]. However, analysis of these 
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interactions in human populations is difficult as it is hard to control environmental 

factors and access relevant tissues for molecular analyses [22]. Murine models provide an 

alternative way to dissect gene-by-diet interactions by introducing controlled environmental 

perturbations into high-precision genetic reference populations, such as the BXD strains 

derived from a cross between C57BL/6J mice (B6) and DBA/2J mice (D2) with more 

than 20 consecutive generations [23]. Currently, more than 150 BXD stains are available 

and numerous phenome data sets have been published over the past decades, making it 

an invaluable resource for system genetics studies [24]. As each BXD strain has been 

stably inbred, each strain can be replicated in large numbers as desired, facilitating precise 

mapping of complex traits with low to moderate heritability [25] and the discovery of 

candidate genes and mechanisms related to many phenotypes, including plasma lipids.

The advantage of our approach is that compared to differential gene expression analysis 

which focuses on single genes, network-based analysis can directly link gene modules (sets 

of tightly correlated genes) to clinical traits. In addition, network analysis of gene expression 

under different conditions can be performed to identify differential coexpression networks 

or modules that are specific to particular environmental conditions [26]. To date, a number 

of algorithms have been developed for network based analysis of gene expression data 

sets [27], such as Weighted Gene Co-Expression Network Analysis (WGCNA) [28]. This 

approach has been successfully used to identify plasma lipid associated modules and hub 

genes in human populations with hyperlipidemia [29] and dyslipidemia [30] and in mouse 

F2 populations [31] and knockout models [15,32].

In this study, plasma lipid levels and liver transcriptomes were examined in 42 strains of 

the BXD mouse population, with roughly 10 individuals of each strain separated evenly 

into cohorts of control diet (CD) or high-fat diet (HFD). Diet-induced obesity (DIO) 

resulted in the differential expression of thousands of genes and altered the composition 

of the coexpressed gene modules that were identified using WGCNA. We analyzed 

network modules identified for both conditions to identify a DIO-induced gene module 

that was associated with plasma lipid concentrations which contained many genes that 

have functions related to lipid metabolism. Bayesian network based causative analysis was 

conducted to determine relationships among genetic variation, gene expression, and linked 

phenotypes. Finally, correlation analysis confirms coexpression of some of these genes 

in humans, and inverse-variance weighed Mendelian randomization with human Genotype-
Tissue Expression (GTEx) normalized liver gene expressions and 249 body weight- and 
lipid-related traits suggests that the activation of these genes in humans might be linked to 

reduced free cholesterol and lower levels of TG in very large HDL.

2. Materials and methods

2.1. Mice and phenotyping

The BXD recombinant inbred (RI) mice were born and raised at the École Polytechnique 

Fédérale de Lausanne (EPFL) in Switzerland. Briefly, 10 males from 42 strains of the 

BXD family and both parental strains (C57BL/6J and DBA/2J) were grouped into two 

cohorts at 8 weeks of age, five animals per strain on a CD (6% kcal/fat, 20% protein, 74% 

carbohydrate, Harlan 2018) and 5 animals per strain on HFD (60% kcal/fat, 20% protein, 
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20% carbohydrate, Harlan 06,414). All mice were sacrificed at 29 weeks of age after 

fasting overnight. Under isoflurane anesthesia, blood was removed from the vena cava and 

animals were perfused with 4°C phosphate-buffered saline. Tissues were taken immediately 

and frozen in liquid nitrogen. The detailed procedure for plasma analysis and phenotype 

measurement can be found in our previous publications [33,34].

2.2. Histopathologic evaluation

Samples of the liver tissue were fixed in 4% paraformaldehyde, embedded in paraffin, 

cut, and stained with hematoxylin and eosin (H&E). Fat was identified morphologically as 

sharply demarcated clear cytoplasmic vacuoles. Abundant lipid produces large coalescing 

vacuoles that displace the nucleus to the cell margin (macrovesicular steatosis), while 

smaller amounts produce small spherical clear vacuoles scattered in the cytoplasm 

(microvesicular steatosis). Glycogen is differentiated morphologically as it produces ragged 

clear spaces that are not spherical and do not have sharp margins or displace nuclei.

2.3. RNA isolation and microarray

Total RNA was extracted from 100 mg pieces of liver tissue using Trizol reagent 

(Invitrogen) followed by a standard phase separation extraction using chloroform and 

precipitated by isopropanol. Individual RNA samples from all mice of the same strain 

and cohort (3–5 mice) were pooled equally (by microgram of RNA) into a single RNA 

sample. Pooled RNA samples were then purified with RNEasy (QIAGEN). Agilent 2,100 

Bioanalyzer was used to evaluate RNA integrity and quality. Samples that passed quality 

control (RIN > 8.0) were run on Affymetrix Mouse Gene 1.0 ST at the University of 

Tennessee Health Science Center (UTHSC).

2.4. Microarray normalization and preprocessing

Raw microarray data from both cohorts were normalized together using the Robust 

Multichip Array (RMA) method [35]. The expression data were then renormalized using 

a modified Z score described in a previous publication [36]. Briefly, RMAs were first 

transformed into log2-values. Then the data of each single array was converted to Z-scores, 

multiplied by two, and a value of eight was added. Before microarray data was used in the 

analysis discussed below, the data was filtered to remove probes that lacked annotation or 

had low expression. Specifically, of the ~35,000 probe sets on Affymetrix Mouse Gene 1.0 

ST, 18,453 probes (corresponding to 15,754 genes) remained after removing unannotated 

Affy probes and probes with mean expression level < 7. These probes were used in 

subsequent analysis.

2.5. Differential expression analysis

The Limma package from R Bioconductor [37] https://www.nature.com/articles/

nature16,064-ref-CR35 was used for the normalized microarray data to analyze 

differentially expressed genes (DEGs) between HFD and CD cohorts. Genes below a 

Benjamini-Hochberg false discovery rate (FDR) [38] threshold of 5% were considered 

DEGs.
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2.6. Gene set over-representation analysis

To investigate the biological functions of the gene sets of interest, such as the DEGs, 

WebGestalt (http://www.webgestalt.org/) [39], an open-source online analysis toolkit, was 

used for enrichment analysis for Gene Ontology (GO) biological processes and KEGG 

pathways. GO biological process terms were filtered to only include terms at hierarchical 

level nine to limit redundancy in the GO terms. Mouse genome was used as reference gene 

set and the minimum number of genes for a category was set to five. The FDR < 0.05 

indicated significant overrepresentation in a category for the queried genes.

2.7. Weighted gene coexpression network analysis (WGCNA)

We constructed gene coexpression networks for both cohorts (CD and HFD) separately 

using the WGCNA v1.63 package in R (v3.1.3) [40]. Briefly, a soft threshold power (β = 5
for HFD and β = 6 for CD) was selected by pickSoftThreshold based on the criterion of 

approximate scale-free topology. Then, the signed adjacency matrix aij was calculated with 

the following equation:

signed
ij

= cor xi, xj + 1
2

β

where xi and xj are the ith and jth gene expression traits. Subsequently, a Topological 

Overlap Matrix (TOM) was constructed. Genes were aggregated into modules by 

hierarchical clustering based on TOM and further refined using the dynamic tree cut 

algorithm. We also evaluated the module-trait association by calculating the correlation 

coefficient between traits and module eigengenes (MEs), defined as the first principal 

component of a given module.

2.8. Criteria for identifying gene modules induced by HFD and associated with plasma 
lipids

Gene modules identified by WGCNA that were both induced by HFD and associated with 

plasma lipid levels were evaluated to select gene network modules. First, modules were 

identified in which at least 44.5% of the genes were identified as being differentially 

expressed (i.e., FDR < 0.05) because this cut-off value was twice the percentage of DEGs in 

the entire data set (22.3%). Second, modules were selected that were induced only after the 

introduction of HFD. We calculated the Jaccard coefficient, for each pair of modules from 

the two conditions with the following equation:

J A, B = A ∩ B / AB

where A and B are the genes from the CD and HFD modules, respectively. Jaccard 

coefficient is a measure of similarity between two elements. The index ranges from 0–1. 

The closer to zero, the less similarity of the two data sets. For this, HFD modules with 

Jaccard coefficient < 0.15 when compared with each CD module were then selected as 

being induced by HFD. Third, modules were selected that were significantly enriched with 

genes associated with plasma lipid-related biological processes in GO. We performed GO 
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enrichment analysis to identify biological processes that were significantly overrepresented 

(FDR < 0.05) among the genes in each module. Last, we examined associations between 

modules and plasma lipid phenotypes and identified modules in which the ME was 

significantly correlated with these phenotypes.

2.9. Identification of hub genes

Module hub genes are believed to be highly connected with other module genes and have 

the most significant biological impact for the associated traits. Module hub genes were 

identified and ranked using the following three parameters: (1) intramodular connectivity, 

which refers to the connectivity between genes in the same module; (2) gene significance, 

the correlation coefficient between the expression level of the gene and the phenotype; and 

(3) module membership, which was obtained by correlation analysis between the expression 

level of the gene and the MEs. Ideally, hub genes should have high values of IC and low 

P-values for both GS and MM. All three analyses were done with the WGCNA package.

2.10. Protein-protein interaction (PPI) network

We explored PPI networks for the top 30 hub genes in HFD module M9 in the STRING 

database (https://string-db.org/) [41] with a minimum interaction score of 0.4.

2.11. Human GWAS

The NHGRI GWAS Catalog (https://www.ebi.ac.uk/gwas/) [42] is a continuously updated 

public resource to facilitate researchers to quickly and efficiently access current GWAS 

results. In order to validate human GWAS with BXD RI model findings, we collected 

GWAS signals with P-values less than 1 × 10−6 for plasma lipid and fasting glucose levels.

2.12. Mammalian phenotype ontology (MPO)

Plasma lipid, body weight, and glucose-associated genes were retrieved from Mouse 

Genome Informatics (http://www.informatics.jax.org/) with the 32 MPO terms listed in 

Supplementary Data 1.

2.13. QTL mapping

QTL mapping was conducted with WebQTL in GeneNetwork (http://

www.genenetwork.org/). The 7,320 informative SNP markers which segregated in BXD 

RI strains were used for interval mapping. Likelihood ratio statistics (LRS) were used to 

assess the association or linkage between differences in traits and differences in particular 

genotype markers. We report quantitative trait loci (QTLs) achieving significance (genome 

wide P-value < .05) based on 2,000 permutation tests. The 1.5-logarithm of the odds (LOD) 

confidence interval was used to filter the candidate genes. In addition, phenotype-associated 

QTL using the Haley and Knott method were further confirmed with GEMMA [43], a linear 

mixed model mapping algorithm that accounts for kinship among the BXD strains.

2.14. Causative analysis with Bayesian network modeling

In order to investigate pathways connecting QTL genotypes, gene expression, and 

phenotypes, we created Bayesian network models using the Bayesian Network Webserver 
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(BNW; http://compbio.uthsc.edu/BNW/) [44,45]. Bayesian networks are graphical models 

that describe the conditional dependencies between data variables, where directed edges 

between network variables imply causal relationships. Bayesian network model structures 

were learned from the data using BNW with the following structure learning settings. Each 

variable had a maximum of four direct parents in any potential model, model averaging of 

the 1,000 highest scoring networks was performed, and directed edges with weights greater 

than 0.5 were included in the final network model.

2.15. Mapping mouse genes to human genes

To map the mouse genes to their corresponding human genes, we used UniProt’s “Similar 

proteins” field or protein BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi? PAGE=Proteins) 

if the former did not provide a human protein with at least 50% identity.

2.16. Genotype-tissue expression (GTEx) normalized liver gene expressions and eQTL 
analysis

Normalized gene expressions were calculated by the GTEx consortium [46] based on 

RNA-Seq count data in three sequential steps: (1) genes were selected that have ≥ 

0.1 transcripts-permillion and ≥ 6 reads in ≥ 20% of the samples, (2) counts were 

normalized with edgeR’s TMM normalization, and (3) normalized expressions were 

inverse-normally transformed. These normalized gene expressions are publicly available 

from GTEx through https://storage.googleapis.com/gtex_analysis_v8/single_tissue_qtl_data/

GTEx_Analysis_v8_eQTL_expression_matrices.tar.cis-eQTLs (adjusted P-value < 5%) 

were mapped by the GTEx consortium with FastQTL [47] based on the 

normalized gene expressions and the data are publicly available at the GTEx 

portal through https://storage.googleapis.com/gtex_analysis_v8/single_tissue_qtl_data/

GTEx_Analysis_v8_eQTL.tar.

2.17. Mendelian randomization

We conducted Mendelian randomization analysis using the TwoSampleMR R package [48]. 

Wald ratio tests were used to calculate the associations of the individual genes with the 

outcomes. Associations between module activation and outcomes were assessed with the 

inverse-variance weighted method [49]. A Benjamini-Hochberg FDR < 5% was considered 

statistically significant.

3. Results

3.1. BXD RI mice on HFD have elevated blood lipid levels

To characterize the effect of diet on plasma lipids, we examined 42 BXD RI strains on two 

diets: 41 strains were fed CD and 40 strains were fed HFD, with 39 strains overlapping in 

both diets. These strains included 37 BXD strains and the two parental strains (C57BL/6J 

and DBA/2J) fed both diets, as well as two strains (BXD60 and BXD92a) fed only CD, 

and one strain (BXD50) fed only HFD. Diet was initiated at 8 weeks of age. Male 

littermates from breeding trios were used, with typically three trios per strain established 

simultaneously. Thirty-two strains yielded sufficient pups for both CD and HFD cohorts 

to be established concurrently (i.e., 7–10 males born within ±2 days), while 7 strains with 
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poor breeding performance yielded CD and HFD cohorts that were separated by birthdate. 

Mice were sacrificed at 29 weeks of age after fasting overnight. Serum and liver were 

collected for phenotyping and mRNA expression profiling (Fig. 1A). Overall, BXD RI 

strains on HFD had a significant increase in body weight (Fig. 1B) and fat mass (Fig. 1C) 

that was accompanied by a decrease in lean mass (Fig. 1D). Concentrations of plasma lipids, 

including TC, HDL, and LDL (Fig. 1E–G), were significantly higher in HFD-fed mice 

compared to CD-fed controls. Diet did not have a significant impact on free fatty acid (FFA), 

TG, and basal plasma glucose levels (Fig. 1H–J).

3.2. BXD RI mice on HFD develop hepatic steatosis of varying severity

In order to evaluate whether HFD promotes hepatic steatosis across the BXD strains, we 

performed hepatic H&E analysis. Results demonstrated that some strains, such as BXD214 

(Fig. 1K), displayed diffuse marked macrovesicular steatosis (accumulation of large lipid 

droplets in hepatocytes), and some strains, such as BXD2 (Fig. 1K), remain resistant to 

steatosis.

3.3. Diet significantly altered lipid metabolism-related transcriptional profiles

To study the impact on the heterogeneity of gene expression induced by HFD across strains, 

liver transcriptomes of strains fed CD or HFD were analyzed. The expression levels of 

3,513 genes (22.3%, Supplementary Data 2) were significantly altered in livers of mice fed 

HFD (FDR < 0.05) compared to controls. Expression of the DEGs was more likely to be 

upregulated in HFD than CD, as 2,109 genes of the DEGs were upregulated in HFD.

In general, the magnitude of differences in message expression between the two groups was 

relatively modest, as only seven genes had fold change (FC) expression differences greater 

than 2.0. The seven genes with FC > 2.0 and FDR < 0.01were Cyp2b9 (FC = 8.8, FDR = 

1.76E-08), Lcn2 (FC = 3.3, FDR = 2.77E-06), Saa2 (FC= 2.3, FDR = 0.001), Serpina4-ps1 
(FC = −2.3, FDR = 5.06E-05), 9030619P08Rik (FC = 2.2, FDR = 5.42E-09), Saa1 (FC = 

2.1, FDR = 0.002), and Cd36 (FC = 2.0, FDR = 6.57E-09). In addition, around 420 of the 

DEGs had 1.2 ~ 2.0 FC with FDR < 0.05. This group included Apoa4, Cidea, Hamp, Gsta1, 
Gsta2, and mir-122.

In order to determine the overall functional relevance of both upregulated and downregulated 

DEGs, we performed gene set over-representation analysis, which identified 40 and 42 terms 

that were significantly enriched (FDR< 0.05) for GO biological processes at hierarchical 

tree level 9 and KEGG pathways, respectively. Notably, many of the enriched terms were 

related to metabolism and plasma lipids. For example, the most enriched GO biological 

process terms were Organic Acid Metabolic Process, Peptide Metabolic Process, and Lipid 

Metabolic Process. Similarly, the most highly enriched KEGG pathway was Metabolic 

Pathways (Table 1).

3.4. Diet influences gene modules identified by WGCNA

It has been widely recognized that coexpressed genes are commonly involved in similar 

biological pathways or processes [50]. Therefore, we constructed gene coexpression 

networks using WGCNA with a soft-thresholding power (β = 5 for HFD and β = 9 for 
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CD) determined by scale-free topology (Fig. 2A–C and Fig. S1). A total of 15,754 genes 

were parsed into 18 and 35 distinct coexpression modules for the HFD and CD cohorts, 

respectively (Supplementary Data 2). The modules identified by WGCNA have a wide range 

of sizes, with some modules containing thousands of genes and other containing only dozens 

(Supplementary Data 2). To identify HFD modules that are impacted by diet, we determined 

the percentage of DEGs from above within each module. The percentages of DEGs in the 

individual HFD modules ranged from 8.2%–70.1% (Table 2 and Supplementary Data 2). 

Compared to the percentage of DEGs among all genes of 22.3%, there were several HFD 

modules that were enriched with DEGs, including 5 modules (M7, M8, M9, M13, and M16) 

that had percentages of DEGs that were more than twice the overall DEG percentage.

To examine the condition-specificity of the modules in the CD and HFD cohorts, we 

calculated the Jaccard coefficient between each of the modules for the two conditions. In 

general, the Jaccard coefficients between the modules in the two conditions were relatively 

low, indicating that WGCNA identified distinct modules in the HFD and CD data (Table 2 

and Supplementary Data 3 and 4). Specifically, the maximum Jaccard coefficient between a 

HFD module and any of the CD modules was ≤ 0.15 for 12 of the HFD modules, thus we 

considered these 12 modules as HFD-specific. However, there were some pairs of HFD and 

CD modules with high Jaccard coefficients, indicating that the module was shared between 

the two diets. Module pairs with a high amount of overlap for the two diets included the two 

largest modules for each diet (HFD module M18 and CD module M33, HFD module M2 

and CD module M2), but there were also some small modules with relatively large Jaccard 

coefficients. For example, HFD module M16 and CD module M32, each of which contained 

~100 genes, had a Jaccard coefficient of 0.38.

Combining the modular specificity as defined by the Jaccard coefficient with the percentages 

of DEGs in each module can further identify modules that are impacted or created by a 

HFD. Specifically, 5 HFD modules (M1, M6, M7, M9, and M17) had a high percentage (> 

44.5%) of genes that were DEGs and low (≤ 0.15) Jaccard coefficients when compared with 

all CD modules. Therefore, the genes within these modules are likely sensitive to changes in 

diet. In contrast, HFD module M18, for example, had a low percentage of DEGs and high 

Jaccard coefficient with a CD module, indicating that the expression and interactions of the 

genes in this module were highly responsive to the different environments of CD and HFD.

3.5. Several modules identified by WGCNA are associated with plasma lipid levels in HFD 
condition

In order to investigate biological functions related to the HFD modules, we conducted GO 

enrichment analysis, which identified 15 modules that were significantly enriched (FDR < 

0.05) in different biological processes (Fig. 2C and Supplementary Data 5). Notably, two 

modules, M9 and M15, were enriched with genes involved in the lipid metabolic process and 

fatty acid catabolic process, respectively (Fig. 2C). The genes of modules M5, M6, and M12 

were not significantly enriched with genes for any functional annotations in our analysis. In 

addition, we correlated the MEs for each module to the external phenotypes. Seven modules 

showed significant correlation (FDR < 0.05) with at least one of the investigated traits. 
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Module M9 was associated with several of the phenotypes of interest, with MEs that were 

significantly correlated with HDL, LDL, TG, and FFA (Fig. 2D).

3.6. M9 is a HFD-induced specific module that is significantly associated with plasma 
lipid levels

Based on analysis of both the condition specificity of CD and HFD modules and 

associations between module genes and plasma lipids, HFD module M9 was identified as 

a module that was induced and specific to HFD. Module M9 was the only HFD module 

that met the following criteria: it had a Jaccard coefficient ≤ 0.15 when compared with all 

CD modules; more than 44.5% of the genes in the module were identified as DEGs; it was 

significantly associated with most plasma lipid phenotypes; and it was enriched with genes 

involved in a relevant biological process after GO enrichment analysis. Therefore, we sought 

to further investigate key genes and interactions in module M9.

3.7. M9 module hub genes are associated with plasma lipid levels

Among the 340 genes in M9 module, we computed and ranked the genes with intramodular 

connectivity, gene significance, and module membership (see materials and methods). The 

top 30 hub genes are shown in Table 3. Many of these, including Cidec, Cd36, Mogat1, 
Slc6a8, Apoa4, Serpine1, Cidea, Pparg, and Nqo1, are known to regulate genes for plasma 

lipid metabolism (http://www.informatics.jax.org/). Additionally, all the 30 genes showed 

strong correlations (P < .05, Supplementary Data 6) with hepatic steatosis parameters 

Alanine transaminase and Aspartate transaminase. Moreover, Pparg, a ligand-dependent 

nuclear hormone transcription factor, could be a master regulator since it regulates the 

transcription of 19 out of the 30 hub genes (Cidec, Cd36, Serpine1, Pcx, Cidea, Adcy6, 
Prune, Slc16a5, Plin4, Acot2, Slc25a10, Nqo1, Ctsd, Srxn1, Gpx4, Slc6a8, Ly6d, Slc16a7, 

and Morc4) directly according to the PPAR gene database (http://www.ppargene.org/) [51]. 

The expression level of Pparg in liver shows large variability across the BXD strains in 

response to HFD (Fig. 2E). For instance, PParg mRNA levels in BXD90 show resistance to 

HFD (9.8 in CD and 9.9 in HFD), but vulnerable in BXD51 (9.1 in CD and 10.6 in HFD). 

Overall, Pparg showed a 1.3-fold increase in HFD mice compared with CD mice (Fig. 2F).

In addition, by searching PPI networks from the STRING database, we identified three 

subnetworks for the top 30 hub genes (Fig. 2G). The largest one included nine genes in 

which Pparg directly interacts with Cidec, Cidea, Plin4, Serpine1 and Cd36, and with Apoa4 
and Mogat1 through Cidec. The second subnetwork included three genes: Gpx4, Nqo1, 

and Srxn1, which are all involved in antioxidant defense. These genes harbor antioxidant 

response elements that are targeted by nuclear factor erythroid two–related factor two (Nrf2) 

[52–55]. The last subnetwork contained only two genes: Ctsd and Psap.

3.8. M9 module genes implicated in previous GWAS and mouse models

Among the 340 M9 genes, 42 were found to be associated with either TC, HDL, LDL, TG, 

FFA, glucose, body weight, and fat mass (Fig. 2H) in the MPO database. Furthermore, 26 

genes were identified as functional genes in TC, HDL, LDL, TG, or glucose GWAS (Fig. 

2I). Eight genes (Tnfaip1, Apoa4, Pparg, Pltp, Cdkn1a, Gpihbp1, Cd36, and Lepr) met both 

of these criteria (Fig. 2J).
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3.9. Bayesian network-based causative analysis for M9 module genes

In order to investigate how M9 module genes cause phenotype variation, we created 

Bayesian network models that included a QTL genotype, expression of M9 module genes, 

and phenotypes. First, we performed QTL mapping to identify a genomic locus (Chr11: 

rs26890724) that controls body weight (GN:17562) and perirenal white adipose mass (GN: 

17790) (Fig. 3A–B). Five M9 module genes (LOC728392, Myo1c, Flot2, Rab34, and 

Tnfaip1) were selected that were located within this Chr 11 QTL interval. A Bayesian 

network model was created from these 8 variables (including the Chr 11 QTL genotype, 

5 gene expression traits, and two phenotypes) (Fig. 3C). The structure of the network was 

learned from the data, and, thus, the causal relationships (only included the genes that on 

the paths from the QTL to the phenotype) shown in the network were implied by the data. 

Expression of Flot2 did not influence the phenotypes or any other network variable. For 

clarity, we removed Flot2 expression from the network; the removal of this node did not 

alter any edges between the other network variables.

The Bayesian network model linking the Chr 11 QTL with body weight and perirenal white 

adipose mass has a couple of interesting features. First, the only direct parent of body weight 

in the network is perirenal white adipose mass, implying that the QTL and genes in the 

network do not directly influence body weight. Instead, these variables indirectly impact 

body weight through their effects on perirenal white adipose mass. Second, one pathway 

links QTL genotype and phenotype through four of the five M9 genes located at the Chr 

11 QTL. In this pathway, TNF Alpha Induced Protein one (Tnfaip1) is the direct parent 

of perirenal white adipose mass, indicating that Tnfaip1 is the gene in the network that 

most strongly influences the phenotypes. This result is in line with our investigation of 

the correlations between the M9 module genes in the network and the phenotypes, as the 

correlation coefficient between Tnfaip1 and perirenal white adipose mass is greater than 

the correlation coefficient between any of the other genes and phenotypes in the network. 

Finally, a network edge directly links the QTL genotype with perirenal white adipose mass, 

indicating that the influence of the genotype on the phenotypes was not entirely explained 

by the expression of the genes in M9 model that were located near the QTL and included in 

the network model. Indeed, genomic regulation of body weight is extremely complex, with 

many genes interacting with each other [18–20]. Thus, other factors, such as the expression 

of other genes like Pld2 that is also encoded within our QTL region and linked to body 

mass, as well as proteomic or other molecular level traits, may need to be considered to fully 

explain the link between the Chr 11 QTL and perirenal white adipose mass.

3.10. Expression and association with lipid metabolism of the top module M9 genes in 
humans

To assess the validity of module M9 in humans, we mapped the top 30 mouse genes in 

module M9 (Table 3 and Supplementary Data 7) to their corresponding human genes. Of 

these 30 human genes, 11 had at least one significant cis-eQTL in liver in the human 

Genotype-Tissue Expression (GTEx) database (FDR < 5%, Supplementary Data 7). We then 

calculated the eigengene of these 11 human genes with WGCNA. All genes, except ACOT2, 

correlate significantly with the eigengene, and out of 66 pairwise comparisons (11 genes 

and the eigengene), 51 had a significant Pearson correlation (FDR < 5%, Fig. 4A). This 
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indicates that the eigengene captures the module’s expression well and that these genes 

tend to be coexpressed in humans. CTSD is the only gene that significantly correlates with 

all other 10 genes and the eigengene. GPX4 and MOGAT2 are the only two genes with 

a significant negative correlation with both the eigengene and CTSD. This overall strong 

degree of correlation in human liver gene expression suggests that these 11 genes might 

form part of a gene coexpression module in humans as well.

To assess potentially causative effects of the genes in module M9 on lipid metabolism 

and weight gain in humans, we used inverse-variance weighed Mendelian randomization 

to link their liver gene expressions to a set of 249 body weight- and lipid-related traits 

(Supplementary Data 8) through their most significant GTEx liver eQTLs. Our Mendelian 

randomization analysis relies on four assumptions: (1) that the 11 genes from part of a gene 

module in humans, (2) that each of the SNPs affect the expression of this gene module, (3) 

that the SNPs influence the outcomes only through activation of the module, and (4) that the 

SNPs are not associated with measured or unmeasured confounders. For each gene g, the 

most significant cis-eQTL in liver was selected. Fig. 4B shows the point estimates for each 

gene g whereby β̂g,exposure is shown on the x-axis and β̂g, outcome on the y-axis.

β̂g,exposure is a summary statistic for the most significant cis-eQTL of gene g, obtained from 

GTEx as explained higher. It denotes the average difference in normalized GTEx liver gene 

expression between the minor and the major allele of the corresponding SNP. It is positive if 

the expression of gene g is higher in the minor allele and negative if the expression of gene 

g is lower in the major allele, except for GPX4 and MOGAT2, where we inverted the sign 

because these genes correlate negatively with both the eigengene and CTSD, the only gene 

with a significant correlation with all other genes (Fig. 4A). ACOT2 does not significantly 

correlate with the eigengene, but has a significant positive correlation with CTSD, hence, we 

opted not to invert its sign.

β̂g, outcome is a summary statistic obtained from various sources through the 

“available_outcomes” function from the TwoSampleMR R package [48]. β̂g, outcome denotes the 

average difference in outcome between the minor and the major allele of the corresponding 

SNP. It is positive if the expression of gene g is higher in the minor allele and negative 

if the expression of gene g is lower in the major allele for all genes, including GPX4 and 

MOGAT2.

The error bars in the horizontal and vertical directions denote the asymptotic 95% 

confidence intervals of β̂g, exposure and β̂g, outcome, respectively (assuming normality). These were 

calculated based on their estimated standard errors that were provided as summary statistics 

together with the point estimates.

CIDEC was excluded from the analysis because its only liver cis-eQTL, rs4582033, was 

palindromic with intermediate allele frequencies, leaving 10 genes for the analysis. We 

assumed that increased liver expression for each of these genes is a proxy for increased 

module activation, except for GPX4 and MOGAT2, whose decreased expressions are 

assumed to be linked to module activation because of their significant negative correlations 

with the eigengene and CTSD. Four traits were significant at 5% FDR: “TG in very large 
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HDL,” “Free cholesterol,” “L-lactate dehydrogenase C chain” (negative associations with 

increased gene expressions in liver (Fig. 4B), as well as “Urinary albumin-to-creatinine 

ratio” (positive association with gene expressions). The last trait was however only based 

on eQTLs for ABHD4 and MOGAT2 and this result is therefore less representative for the 

whole gene set.

4. Discussion

In order to investigate gene-by-diet interactions in BXD strains, we first analyzed the impact 

of an obesogenic diet on plasma lipid-related phenotypes. HFD exposure significantly 

increased body weight, adiposity, and plasma lipid concentrations (e.g., cholesterol, HDL, 

LDL, and TG). In addition, long-term HFD feeding induced fatty liver in a heterogeneous 

manner, including marked macrovesicular steatosis in some strains, such as BXD214. This 

phenotypic variability could be largely modulated by genetic factors, as the BXD parental 

strain B6 is highly susceptible to diet-induced nonalcoholic fatty liver disease (NAFLD) 

[56,57]. Thus, BXD strains could serve as a reference population to mimic NAFLD 

susceptibility in natural human populations.

Phenotypic changes in fatty liver presented herein were accompanied by significant 

changes in the liver transcriptome, resulting in the differential expression of thousands 

of genes. Those genes were significantly involved in regulating lipid levels through 

metabolic pathways as highlighted in Table 1. The expression of Cyp2b9, a member of 

the cytochromes P450 2b family, was most affected by HFD compared to control [58]. 

Cytochrome P450s are essential for oxidizing steroids, fatty acids, and xenobiotics in 

liver. RNAi-mediated Cyp2b knockdowns have enlarged livers and increased abdominal 

fat deposition [59]. Furthermore, Cyp2b-knockdown mice treated intraperitoneally with 100 

μL corn oil had elevated plasma TC, TG, HDL, HDL, and very low-density lipoprotein 

[60]. Additionally, the expression of several other cytochrome P450s genes, such as Cyp1a2, 

Cyp26a1, Cypa22, and Cyp2b10, changed significantly after HFD in our study, suggesting 

the cytochrome P450 family plays a significant role in maintenance of lipid homeostasis. 

The expression of transcripts such as Lcn2, Saa1, and Saa2 were also elevated more than 

two-fold in DIO mice compared to lean mice. Lcn2, which encodes Lipocalin two, is 

widely expressed in various tissues, including lung, liver, thymus, kidney, small intestine, 

adipocytes, and macrophages [61]. Mice carrying null Lcn2 alleles show potentiated DIO, 

dyslipidemia, fatty liver disease, and insulin resistance [62]. The expression of Lcn2 is 

considered a potential biomarker for metabolic diseases [63,64]. Saa1 and Saa2 encode 

the apolipoproteins serum amyloid A1 and A2, respectively. Altered expression of these 

genes has been associated with inflammatory diseases including atherosclerosis [65]. Saa1- 

and Saa2-deficient mice have increased levels of circulating TC, but not HDL [66]. We 

also found several miRNAs whose expression was impacted by diet, including miR-122. 

miR-122 is the first known lipid metabolism-related miRNA [67] and has been associated 

with hyperlipidemia [68] and fatty liver [69]. miR-122 inhibition in normal mice resulted 

in reduced TC levels, increased hepatic fatty-acid oxidation, and a decrease in hepatic 

fatty-acid and cholesterol synthesis rates [70]. miR-122 inhibition in a DIO mouse model 

resulted in decreased TC levels and a significant improvement in liver steatosis [70].
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However, examining differential expression of individual genes does not fully leverage 

the power of the BXD family to investigate the genetic basis of disease and phenotype 

differences, as this approach does not consider how conditions, such as the DIO studied 

here, disrupt genetic networks [71]. In our study, we used 42 BXD RI strains in two diet 

groups, where each isogenic strain has a unique genetic background inherited from the 

parental B6 and D2 strains. This design provides the sample size and genetic variability 

required for the construction of robust genetic networks using WGCNA, a powerful tool 

for the identification of gene coexpression networks [40]. After using WGCNA to identify 

coexpression modules for both CD and HFD groups, we used a variety of tools, including 

modular specificity analysis, GO, PPI networks, and phenotype correlations, to investigate 

how these coexpression modules respond to changes in diet and to identify the hub genes 

that drive these responses.

The coexpression modules identified by WGCNA after HFD indicated strong relationships 

between gene expression, the quantitative phenotypes investigated here, and biological 

processes. Of the 18 coexpression modules identified by WGCNA in the HFD expression 

data, module M9 was identified as an HFD-induced module that may contain some of 

the keys to elucidating the relationship between changes in liver gene expression and 

plasma lipid phenotypes after DIO. In the PPI subnetworks constructed from the top 30 

M9 module hub genes, Pparg, Cidec, and Cidea have the most connections with other 

genes. As a sensor of lipid status in a cell, PPARγ regulates the expression of a large 

number of genes in many physiological and pathological processes, including adipogenesis, 

inflammation [72], atherosclerosis [73], insulin resistance [74], glucose metabolism [75], 

lipid metabolism [76,77], and lifespan [78]. Our results showed that 19 out of the top 30 

hub genes in M9 are directly regulated by Pparg, suggesting that Pparg could be a master 

regulator of plasma lipid metabolism in response to diet. In fact, genetic variants in Pparg 

interact with diet to regulate plasma lipid levels [21]. In addition, transcriptional activation 

of Pparg in the liver induces the lipogenic program to store fatty acids in lipid droplets. 

Knockout of the hepatic Pparg gene ameliorates hepatic steatosis induced by diet or genetic 

manipulations [79]. Hepatic PPARγ expression is robustly induced in NAFLD patients and 

experimental models [80]. Liver PPARγ regulates triglyceride homeostasis, contributing 

to hepatic steatosis, but protects other tissues from triglyceride accumulation and insulin 

resistance [81]. Currently, there are no FDA-approved medications for the treatment of 

NAFLD, hence further understanding the regulatory factors for PPARγ expression and 

activity will help develop preventative and therapeutic agents [79,80]. Both Cidea and Cidec 

belong to the cell death-inducing DNA fragmentation factor-α-like effector (CIDE) family. 

CIDE are lipid droplet-related proteins which are highly expressed in liver and brown and 

white adipose tissues. CIDE proteins’ main function is to participate in lipid storage, lipid 

droplet formation, and lipolysis, which impact the development of obesity, diabetes, and 

liver steatosis [82–86]. Although several studies have shown that the expression of CIDEC is 

positively related to PPARγ [87,88], the underlying interaction remains unclear.

In addition to the Pparg subnetwork, we identified an antioxidant subnetwork which contains 

three genes: Gpx4, Nqo1, and Srxn1. These genes harbor antioxidant response elements 

(ARE) that are targeted by NRF2 (nuclear factor, erythroid derived two, like two) [52–55]. 

As a major metabolic tissue, the liver can continuously produce reactive oxygen species 
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which could cause cell damage and lead to various liver diseases such as liver inflammation, 

alcoholic and nonalcoholic steatohepatitis, fibrosis, and cirrhosis. The progression from 

inflammation to diseased tissue is highly impacted by oxidative stress [89]. The transcription 

factor Nrf2 is a master regulator of the oxidative stress pathway that binds to the ARE, 

an upstream promoter region located in genes with anti-oxidant functions [90,91]. NRF2 

inhibits lipid accumulation in mouse liver after an HFD [92] and modulates metabolic 

diseases such as obesity, type two diabetes mellitus, and atherosclerosis [93]. For example, 

a potent NRF2-regulated antioxidant defense enzyme, glutathione peroxidase four (GPX4) is 

essential for reducing hydroperoxides in membrane lipids and lipoproteins [94]. Decreased 

expression of Gpx4 in mice resulted in increased hepatocyte apoptosis and mitochondrial 

damage, accompanied with body weight loss and death within 2 weeks [94]. Mice with 

deficiency of the NRF2-dependent Nqo1, a member of the NAD(P)H dehydrogenase family, 

have decreased plasma glucose, and increased TG levels [95]. Last, the NRF2-dependent 

sulfiredoxin (Srxn1) is associated with oxidative stress but is less well studied.

To more fully exploit the potential of the BXD RI family, we created a Bayesian network 

model that describes how M9 module genes may link genotype and phenotype (Fig. 3). Such 

models are based on the idea that the genetic variation within a diverse population, such as 

BXD mice, naturally provides perturbations that can be used to infer causal relationships 

between quantitative traits such as gene expression and phenotypes [96]. These relationships 

can be learned and represented using Bayesian networks, probabilistic graphical models in 

which a group variables are linked by directed edges that indicate dependencies between 

the variables [97]. We trained a Bayesian network here after identifying several M9 module 

genes that were located near a QTL (rs26890724 on Chr 11) that regulated two plasma lipid-

related phenotypes (body weight and perirenal white adipose mass). Thus, the Bayesian 

network model integrated three levels of data (genotypes, gene expression, and higher 

order phenotypes) and indicated several interesting relationships about the pathway linking 

genotype and phenotype. First, the genotype at this locus directly influenced the expression 

of Rab34 and LOC728392; the other M9 module genes in the network depended on the 

expression of these two genes. Second, Tnfaip1 was the M9 module gene near the QTL that 

had the most direct impact on the phenotypes. Third, body weight depended on perirenal 

white adipose mass and was not otherwise directly influenced by the QTL genotype or other 

M9 module genes in the network. Finally, the Bayesian network model suggested that the 

influence of the QTL genotype on perirenal white adipose mass was not entirely explained 

by the expression of the five M9 module genes located near the QTL; thus, factors that were 

not included in this network model are likely involved in the molecular pathway linking this 

genotype and phenotype such as visceral white adipose depots or brown fat. By mapping 

the top genes of module M9 to their human counterparts, we were able to demonstrate 

that the expressions of these genes also tend to correlate in human livers, which suggests 

that module M9 might be conserved in humans. With inverse-variance weighted Mendelian 

randomization, we showed that the activation of such a module in the liver is causally linked 

to decreased TG in very large HDL, decreased free cholesterol, and decreased L-lactate 

dehydrogenase C chain in blood. This indicates that activating our module might reduce 

cholesterol in humans and thus forms an interesting target against cardiovascular disease.
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In summary, by applying systems genetics analysis, we provide evidence that plasma lipid 

metabolism is significantly regulated by both HFD, which is well known, but herein 

we have identified key functional gene networks that provide novel insight into lipid 

regulation that was previously unappreciated. One of the key findings of the study is 

that, using the power of the BXD RI family, we uncovered a plasma lipid related gene 

coexpression module that was induced by DIO. Although further functional analysis is 

needed to understand the biological mechanisms behind the module, our findings could 

be beneficial for clinical diagnosis and prevention. The study highlights the benefit of 

integrating differential expression, gene coexpression networks, analysis of module hub 

genes, and Bayesian networks in investigations of the impact of environment on gene 

expression and treatment. Such an integrated analysis could be applied to the investigation of 

other phenotypes and diseases to examine the changes in gene expression and gene networks 

that underlie links between variations in genotypes and phenotypes.
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Data availability

Both phenotype and liver transcriptome data of the BXD mice used in this study were 

uploaded to our GeneNetwork (http://www.genenetwork.org) and systems-genetics (https://

www.systems-genetics.org/) websites [33,34].

The phenotype data can be accessed with the following GN accession number for HFD: 

17,562, 17,572, 17,576, 17,602, 17,604, 17,788, 17,790, 17,800, 17,802, 17,804, 17,806, 

17,808, 17,810, and 17,812; and for CD: 17,561, 17,571, 17,575, 17,601, 17,787, 17,789, 

17,799, 17,801, 17,803, 17,807, 17,809, and 17,811.

Raw microarray data is available on GEO (https://www.ncbi.nlm.nih.gov/geo/)) under the 

identifier GSE60149. The normalized data is available on GeneNetwork under the “BXD” 

group and “Liver mRNA” type with the identifier “EPFL/LISP BXD CD Liver Affy Mouse 

Gene 1.0 ST (August 18) RMA” for the control diet cohort, and “EPFL/LISP BXD HFD 

Liver Affy Mouse Gene 1.0 ST (Aug18) RMA” for the high-fat diet cohort.

Abbreviations:

CD Control diet

DIO Diet induced obesity
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DEGs Differentially expressed genes

FDR False discovery rate

FFA Free fatty acid

GWAS Genome-wide association studies

GTEx Genotype-Tissue Expression

GO Gene Ontology

HFD High-fat diet

HDL High-density lipoprotein cholesterol

LDL Low-density lipoprotein cholesterol

MPO Mammalian phenotype ontology

QTL Quantitative trait locus

TG Triglycerides

TC Total cholesterol

WGCNA Weighted Gene Coexpression Network Analysis
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Fig. 1. 
Effects of HFD on body weight, body composition, and plasma lipid. (A) Study design. 

BXD strains are crosses of C57BL/6J (B) and DBA/2J (D). BXDs and parental strains were 

divided into two diet groups. Blood serum phenotypes and liver transcriptomes of male 

mice were analyzed. (B–J) Boxplots showing differences between CD and HFD cohorts in 

obesity and plasma lipid-related phenotypes. ****P < 0.0001. (K) Histologic analysis shows 

heterogeneity in fatty liver across strains. Representative images for strains BXD214 (one 

and three) and BXD2 (two and four). Scale bars 500 microns (one and two) and 25 microns 

(three and four).
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Fig. 2. 
HFD module M9 is responsive to diet and associated with plasma lipids. (A) Soft 

thresholding index R2 as a function of soft-thresholding power β . β = 5 indicated scale-free 

topology. (B) Mean connectivity (degree) as a function of β. (C) 18 coexpression modules 

identified from HFD liver transcriptome data by dendrogram branch cutting and their 

most significantly enriched GO term among discrete biological processes. (D) Associations 

(Pearson correlation r, with FDR in parentheses) between HFD module eigengenes and 

plasma lipid phenotypes. (E) Pparg expression across BXD strains. (F) Mean difference 

in Pparg expression between diets. ****FDR < 0.0001. (G) Protein-protein interaction 

subnetworks from the top 30 hub genes in module M9. 14 genes have predicted interaction 

scores > 0.4 (medium confidence). (H-I) Module M9 gene-trait heatmap retrieved from the 

MPO (H) and human NHGRI GWAS Catalog (I). Blue cells represent genes with functional 

roles critical or associated with the corresponding trait(s). (J) Venn diagram of gene overlap 

between MPO and GWAS.
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Fig. 3. 
Causal analysis of M9 module genes (A-B) QTL mapping for body weight and perirenal 

white adipose mass on chromosome 11 (C) Bayesian network structure connecting QTL 

genotype (rs26890724), gene expression, and body weight (BW) and perirenal white adipose 

mass (PWAM) phenotypes. Numbers next to each network edges indicate edge confidence 

from model averaging of the 1,000 highest scoring networks.
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Fig. 4. 
M9 hub genes are linked to lipid metabolism in humans. (A) Correlations between 

expression of human homologs of 11 M9 hub genes with each other and their eigengene. 

Diagonal panels show histograms and kernel density estimates of normalized expression in 

human liver in GTEx data. Panels in the lower triangle show bivariate scatter plots with 

a LOWESS smoother with locally-weighted polynomial regression as implemented in R’s 

lowess function. Panels in the upper triangle show Pearson correlation and significance 

after Benjamini-Hochberg correction (FDRs are denoted by: “no symbol”: > 0.1; “.”:< 

0.1; “*”:< 0.05; “**”:< 0.01; “***”:< 0.001). (B) Inverse-variance weighted Mendelian 

randomization suggests upregulation of M9 genes in humans reduces TG in very large HDL, 

free cholesterol, and L-lactate dehydrogenase C chain. The horizontal axis shows the effect 

of the most significant eQTL in liver for each gene on its expression. The vertical axis shows 

the effects of these eQTLs on the outcomes. P-values for single-SNP Wald ratio tests are 

given; whiskers are asymptotic 95% confidence intervals. Green slopes denote estimated 

causal effects: −0.0334, −0.176, and −0.0518 (FDR: 0.04 each).

Xu et al. Page 26

J Nutr Biochem. Author manuscript; available in PMC 2024 February 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Xu et al. Page 27

Ta
b

le
 1

To
p 

10
 e

nr
ic

hm
en

t t
er

m
s 

of
 G

O
 (

bi
ol

og
ic

al
 p

ro
ce

ss
) 

an
d 

K
E

G
G

 p
at

hw
ay

 f
or

 th
e 

D
E

G
s 

in
du

ce
d 

by
 H

FD
 in

 B
X

D
 R

I 
m

ic
e.

Te
rm

D
es

cr
ip

ti
on

N
. G

en
es

F
D

R

G
O

 (
B

io
lo

gi
ca

l P
ro

ce
ss

)

G
O

:0
00

23
76

im
m

un
e 

sy
st

em
 p

ro
ce

ss
44

4
<

 2
.0

6E
-1

4

G
O

:0
00

26
82

re
gu

la
tio

n 
of

 im
m

un
e 

sy
st

em
 p

ro
ce

ss
23

9
<

 2
.0

6E
-1

4

G
O

:0
00

60
82

or
ga

ni
c 

ac
id

 m
et

ab
ol

ic
 p

ro
ce

ss
25

4
<

 2
.0

6E
-1

4

G
O

:0
00

65
18

pe
pt

id
e 

m
et

ab
ol

ic
 p

ro
ce

ss
17

4
<

 2
.0

6E
-1

4

G
O

:0
00

66
29

lip
id

 m
et

ab
ol

ic
 p

ro
ce

ss
32

1
<

 2
.0

6E
-1

4

G
O

:0
00

66
31

fa
tty

 a
ci

d 
m

et
ab

ol
ic

 p
ro

ce
ss

11
3

<
 2

.0
6E

-1
4

G
O

:0
00

69
15

ap
op

to
tic

 p
ro

ce
ss

36
2

<
 2

.0
6E

-1
4

G
O

:0
00

69
52

de
fe

ns
e 

re
sp

on
se

26
8

<
 2

.0
6E

-1
4

G
O

:0
00

69
55

im
m

un
e 

re
sp

on
se

25
5

<
 2

.0
6E

-1
4

G
O

:0
00

82
19

ce
ll 

de
at

h
38

4
<

 2
.0

6E
-1

4

K
E

G
G

 p
at

hw
ay

m
m

u0
11

00
M

et
ab

ol
ic

 p
at

hw
ay

s
34

5
2.

03
E

-1
1

m
m

u0
30

10
R

ib
os

om
e

60
6.

65
E

-0
9

m
m

u0
41

42
Ly

so
so

m
e

49
4.

93
E

-0
6

m
m

u0
52

04
C

he
m

ic
al

 c
ar

ci
no

ge
ne

si
s

39
1.

36
E

-0
5

m
m

u0
02

60
G

ly
ci

ne
, s

er
in

e 
an

d 
th

re
on

in
e 

m
et

ab
ol

is
m

20
4.

58
E

-0
4

m
m

u0
42

10
A

po
pt

os
is

47
6.

27
E

-0
4

m
m

u0
01

40
St

er
oi

d 
ho

rm
on

e 
bi

os
yn

th
es

is
33

8.
87

E
-0

4

m
m

u0
08

30
R

et
in

ol
 m

et
ab

ol
is

m
33

1.
34

E
-0

3

m
m

u0
09

80
M

et
ab

ol
is

m
 o

f 
xe

no
bi

ot
ic

s 
by

 c
yt

oc
hr

om
e 

P4
50

26
1.

79
E

-0
3

m
m

u0
51

50
St

ap
hy

lo
co

cc
us

 a
ur

eu
s 

in
fe

ct
io

n
22

2.
04

E
-0

3

J Nutr Biochem. Author manuscript; available in PMC 2024 February 26.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Xu et al. Page 28

Ta
b

le
 2

Si
ze

 a
nd

 c
on

di
tio

n 
sp

ec
if

ic
ity

 o
f 

H
FD

 m
od

ul
es

.

H
F

D
 m

od
ul

e
N

um
be

r 
of

 g
en

es
 in

 m
od

ul
e

%
 o

f 
m

od
ul

e 
ge

ne
s 

th
at

 a
re

 D
E

G
s

M
ax

im
um

 J
ac

ca
rd

 c
oe

ff
a

M
os

t 
si

m
ila

r 
C

D
 m

od
ul

eb
N

um
be

r 
of

 g
en

es
 in

 m
os

t 
si

m
ila

r 
C

D
 m

od
ul

e

M
1

35
6

35
.3

9
0.

06
M

4
26

1

M
2

38
93

22
.9

9
0.

40
M

2
39

55

M
3

14
02

29
.3

2
0.

14
M

12
58

9

M
4

76
1

32
.8

5
0.

12
M

13
14

2

M
5

28
28

.5
7

0.
04

M
18

27
1

M
6

28
42

.8
6

0.
04

M
31

83

M
7

12
58

.3
3

0.
02

M
24

19
7

M
8

82
8

54
.8

3
0.

27
M

1
36

6

M
9

34
0

54
.1

2
0.

13
M

23
10

9

M
10

12
03

23
.1

9
0.

11
M

2
39

55

M
11

49
8.

16
0.

05
M

28
31

0

M
12

52
26

.9
2

0.
04

M
20

11
0

M
13

86
53

.4
9

0.
09

M
9

88

M
14

35
4

26
.8

4
0.

18
M

6
12

9

M
15

24
5

31
.8

4
0.

27
M

26
26

3

M
16

87
70

.1
1

0.
38

M
32

97

M
17

11
9

34
.4

5
0.

07
M

8
29

9

M
18

67
19

9.
23

0.
74

M
33

63
39

* M
ax

im
um

 v
al

ue
 o

f 
th

e 
Ja

cc
ar

d 
co

ef
fi

ci
en

t b
et

w
ee

n 
gi

ve
n 

H
FD

 m
od

ul
e 

an
d 

an
y 

C
D

 m
od

ul
e.

† Id
en

tit
y 

of
 th

e 
C

D
 m

od
ul

e 
w

ith
 th

e 
m

ax
im

um
 J

ac
ca

rd
 c

oe
ff

ic
ie

nt
 w

ith
 th

e 
H

FD
 m

od
ul

e.

J Nutr Biochem. Author manuscript; available in PMC 2024 February 26.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Xu et al. Page 29

Table 3

Top 30 hub genes in M9 module.

Symbol Intramodular connectivity Module membership significance Gene significance* Rank

Ly6d 1.00 0.00 9 1

Cidec 0.88 5.61E-12 8 2

Ctsd 0.87 4.50E-12 8 3

Prune 0.85 2.37E-11 6 4

Srxn1 0.85 1.85E-11 8 5

Slc16a5 0.83 1.01E-10 10 6

Gpx4 0.82 2.17E-10 11 7

Srd5a3 0.82 6.82E-11 7 8

Cd36 0.82 2.80E-10 9 9

Plin4 0.81 2.15E-10 4 10

Acot2 0.80 8.95E-10 7 11

Mogat1 0.80 1.30E-09 6 12

Slc41a3 0.79 2.45E-09 4 13

Wfdc2 0.78 3.96E-09 6 14

Slc6a8 0.77 2.77E-09 8 15

Slc16a7 0.77 5.19E-09 10 16

Apoa4 0.76 6.54E-09 8 17

Morc4 0.76 5.22E-09 4 18

Serpine1 0.75 5.86E-09 7 19

Pcx 0.75 1.31E-08 4 20

Abhd4 0.74 1.12E-08 3 21

Cidea 0.74 3.77E-08 8 22

Pparg 0.73 3.13E-08 5 23

Slc25a10 0.72 3.97E-08 7 24

Adcy6 0.72 3.67E-08 5 25

Golt1a 0.72 2.13E-08 4 26

Nqo1 0.72 3.86E-08 7 27

Myo1d 0.72 4.72E-08 2 28

Tuba8 0.72 3.49E-08 8 29

Psap 0.71 8.07E-08 5 30

Bold indicates known involvement in plasma lipid regulation.

*
Number of traits (TC, HDL, LDL, TG, FFA, body weight, body weight gain, and perirenal white adipose mass) significantly associated with the 

gene.
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