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Abstract

Cardiac arrhythmia is associated with high morbidity and its underlying mechanisms are poorly 

understood. Computational modeling and simulation approaches have the potential to improve 

standard-of-care therapy for these disorders, offering deeper understanding of complex disease 

processes and sophisticated translational tools for planning clinical procedures. This review 

provides a clinician-friendly summary of recent advancements in computational cardiology. 

Organ-scale models automatically generated from clinical-grade imaging data are used to 

custom tailor our understanding of arrhythmia drivers, estimate future arrhythmogenic risk, and 

personalize treatment plans. Recent mechanistic insights derived from atrial and ventricular 

arrhythmia simulations are highlighted and the potential avenues to patient care (e.g., by 

revealing new anti-arrhythmic drug targets) are covered. Computational approaches geared 

towards improving outcomes in resynchronization therapy have used simulations to elucidate 

optimal patient selection and lead location. Technology to personalize catheter ablation procedures 

are also covered, specifically preliminary outcomes form early-stage or pilot clinical studies. To 

conclude, future developments in computational cardiology are discussed, including improving the 

representation of patient-specific fibre orientations and fibrotic remodelling characterization and 

how these might improve understanding of arrhythmia mechanisms and provide transformative 

tools for patient-specific therapy.

Introduction

Simulations of cardiac electrophysiology have contributed to an increased understanding of 

arrhythmia, and the emergence of patient-specific computational models marks a potential 

paradigm shift in healthcare delivery. Currently, arrhythmia is associated with substantial 

morbidity and economic costs. Atrial fibrillation (AFib) alone affects an estimated 46.3 

million people worldwide [1]. Ventricular arrhythmias are thought to cause 75% to 80% 

of cases of sudden cardiac death, resulting in the loss of an estimated 4.25 million lives 

per year worldwide [2]. Computational modelling promises to improve our standard of 
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care by enabling the execution of personalized simulations tailored to each individual’s 

disease manifestation. This creates a possibility for individualized treatment decisions 

such as ablation strategies and resynchronization therapy. Moreover, multi-scale cardiac 

electrophysiology models integrate experimental and clinical findings, thereby enhancing 

our mechanistic understanding of the complex arrhythmia pathophysiology. Here, we 

review recent developments in personalized computational modelling intended for use 

to better understand complex arrhythmias to improve clinical arrhythmia prevention, risk 

stratification, and therapy.

Cell-, Tissue- and Organ-scale Modelling Overview

Modern cardiac models incorporate an extraordinary amount of structural and biophysical 

detail. In particular, significant effort is devoted to producing models that realistically 

represent effects of cardiac fibrosis, considered a key element in both atrial [3] and 

ventricular arrhythmias [4]. Generally, the objective of these models is to facilitate 

simulations that can be used to study the likelihood, timing, frequency, and location of 

so-called arrhythmia “driver” phenomena, which are broadly categorized as either focal 

or reentrant [5–7]. Focal drivers arise when cell-scale spontaneous activity gives rise to 

repetitive, propagating ectopic wavefronts that override sinus rhythm; reentrant drivers 

are self-perpetuating patterns of excitation that rely on repetitive, sequential activation of 

a spiral- or circular-like spatial region. Reentrant driver initiation and perpetuation are 

predicated on an interplay between critically timed “trigger” events (e.g., ectopic beats) and 

the complex underlying “substrate” (e.g., non-conductive obstacles or spatial gradients in 

refractoriness). An in-depth review of reentrant driver mechanisms can be found elsewhere 

[8].

To properly represent these phenomena of interest, computational models of cardiac 

electrophysiology must be properly calibrated. At the cellular scale, differential equations 

are solved to represent ion channel gating kinetics and other intrinsic processes contributing 

to action potential dynamics. As part of the model calibration process, these electrical 

parameters are routinely adjusted to match emergent properties (e.g., action potential 

duration [APD]) in different types of cardiac tissue (e.g., affected by disease-related 

remodelling and/or fibrosis). These properties are particularly important for realistically 

representing reentrant drivers in organ-scale models [9, 10]. A more recent thrust is 

the incorporation of patient-specific electrophysiological parameters derived from catheter 

measurements. These models were capable of predicting personalized atrial activation times 

with correlations ranging from 0.65 to 0.96 [11]. Model calibration, parameter selection, 

and efforts to gauge uncertainty in these measurements has been previously reviewed [12]. 

In general, data for parameterization are obtained from multiple experimental protocols and 

parameters are further calibrated to minimize difference between clinical observations and 

model simulation.

At the tissue-scale, alterations in conduction velocity and spatially heterogeneous 

anisotropic conduction arise from fibrotic remodelling and local cardiac fibre orientations. 

The latter are difficult to obtain from in vivo imaging given current technology yet retain a 

preserved pattern throughout the population. This calls for techniques to diffeomorphically 

Bifulco et al. Page 2

Heart. Author manuscript; available in PMC 2024 February 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



map fibre orientations from anatomically based human atlas models or ex vivo diffusion 

tensor MRI data sets. Minimal approaches, like that used by Hoermann et al., use image 

registration and reorientation methods based on an atlas atrium with fibres predefined from 

detailed histological observations [13]. In contrast, rule based approaches, which generate 

mathematical descriptions based on histological observations, have been used by Roney et 

al. in which a universal atrial coordinate system was established, then fibres derived from 

diffusion-tensor MRI were inherently defined relative to user-defined anatomical structures 

[14]. In the ventricles [15], wherein the fibres follow a uniform helical pattern, rule-based 

methodologies are simpler than those that can be used in the atria, in which discontinuities 

in prevailing direction exist between some myocardial sheets.

At the organ scale, realistic geometry obtained from magnetic resonance imaging (MRI), 

computed tomography scans, or electroanatomical mapping is the norm for patient-specific 

computational modelling. Segmentation of these images defines the cardiac anatomy, and 

subsequent finite element representation provides a computer-readable description of the 

heart’s geometry. Image segmentation, whether manually or automatically [16], can cause 

anatomical variation in the model due to imaging resolution, contrast, or artefacts. By 

developing a framework to quantify “left atrial uncertainty”, Corrado et al. showed that 

variation in shape affects simulations of left atrial activation times [17]. Lastly, the use 

of contrast agents (e.g., late gadolinium enhanced MRI (LGE-MRI)) can reveal each 

individual’s unique pattern of disease-related remodelling. Patient-specific distribution of 

fibrosis is a significant determinant of initiation and maintenance of AFib, as well as an 

important factor in localization of re-entrant drivers in cardiac arrhythmias [9, 18, 19].

Atrial Arrhythmias

Role of Fibrosis.

Atrial fibrosis estimated by LGE-MRI has been independently associated with the likelihood 

of recurrent arrhythmias, suggesting an empirical link between AFib and fibrosis [20]. 

Patient-derived models have substantiated this link by showing that AFib in individuals 

with extensive remodelling is in part perpetuated by reentrant drivers that persist at 

some boundaries between fibrotic and non-fibrotic tissue [18]. Moreover, reentrant drivers 

observed in modelling studies agree reasonably well with those observed by intracardiac 

mapping [21] and body surface mapping [22]. Endo-epicardial decoupling has also been 

previously shown to increase AFib stability and influence breakthrough rate [23]. In a recent 

comparison study, the simulated effects of increasing epicardial fibrosis was compared 

with electroanatomical mapping of long-standing persistent AFib. Increasing epicardial 

fibrosis in the models was correlated with higher rates of breakthrough and endo-epicardial 

dissociation [24]. This suggests that the conduction patterns measured on atrial surfaces 

may not necessarily reflect the overall nature of electrical activity in the 3-D atrial wall, 

highlighting the importance of fully transmural lesions during ablation procedures.

Genetic factors and potential anti-arrhythmic drug targets.

Multi-scale models can represent effects of pro-arrhythmic mutations and elucidate potential 

mechanistic drug targets by modulating ion channel expression levels at the cell/protein 
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scale. Paired-like homeodomain transcription factor 2 (Pitx2) is a key regulator in the 

establishment of left-right cardiac asymmetry, and insufficiency has been strongly associated 

with AFib in a recent genome wide association study [25]. Using a multi-scale model 

that incorporated recent experimental data on Pitx2 electrical and structural remodelling 

established by loss-of-function mouse models, Bai et al. showed that shortened APD, 

slow conduction, and an increase in susceptibility to triggered activity occur by means 

of elevated calcium transport ATPase functionality increasing sarcoplasmic reticulum Ca2+ 

concentration (Fig. 1A) [26]. Flecainide was identified as a potent suppressor of Pix2-

mediated AFib, which blocks ryanodine receptor mediated calcium release thereby reducing 

triggered beats and suppressing reentry by prolonging APD (Fig. 2B) [26]. A common anti-

arrhythmic drug for patients with AFib is amiodarone, but it is known to impair sinoatrial 

node function in some cases. In a sinoatrial node model, amiodarone caused bradycardia by 

partially inhibiting the funny current, L-type calcium channel, and beta-adrenergic receptors, 

indicating that amiodarone ought to be used with caution in patients that have sinoatrial node 

dysfunction associated with AFib. Simulated administration of disopyramide was sufficient 

to reverse the AFib-induced sinus node dysfunction phenotype [27].

New Ablation Strategies.

One of the most tantalizing applications of cardiac modelling personalized ablation, 

designed specifically to neutralize the pro-arrhythmic capacity of each patient’s unique 

electro-anatomic substrate. Patient specific susceptibility to AFib initiation and perpetuation 

was attributed to both electrophysiological properties and fibrosis levels in the pulmonary 

vein region [28]. Specifically, high susceptibility of in silico pulmonary vein reentrant driver 

localization suggested high likelihood of pulmonary vein isolation (PVI) success. In cases 

of failure however, recurrent AFib after PVI was attributed to both preserved fibrotic tissue 

accountable for reentrant drivers missed during the ablation procedure and emergence of 

new reentrant drivers following ablation [29]. Machine learning has been used to bolster 

the results from personalized simulations and has predicted whether patients are likely to 

experience AFib recurrence following PVI. In this study, electrical features derived from 

simulations were found to be more predictive than features derived from LGE-MRI alone, 

potentially due to the fact that the models derived from LGE-MRI used in the simulations 

retained many of the key imaging features while adding important information about the 

substrate’s interaction with electrical stimuli [30].

Novel, simulation driven methods for catheter ablation treatment planning are emerging 

as an exciting opportunity in personalized arrhythmia care. One of the earliest studies in 

this area found that the most effective strategy for terminating persistent AFib in silico 

was applying >4 ablation lines, with localization of ablation lesions to regions of high in 
silico reentrant driver propensity [31]. More recently, the notion of directly personalizing 

a treatment plan based on computational findings was explored in a prospective clinical 

study of ten persistent AFib patients [32]. The method, called “OPTIMA” (OPtimal Target 

Identification via Modelling of Arrhythmogenesis), consisted of iterative personalized target 

identification and ablation followed by arrhythmia simulation until AFib could not be 

re-induced despite aggressive virtual pacing (Fig. 3). The study reported no incidence of 

recurrent AFib, and only one patient had post-ablation atrial flutter by the end of follow-up 
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[32]. A randomized clinical trial comparing OPTIMA to traditional pulmonary vein isolation 

is currently underway (NCT04101539). The clinical usefulness of virtual ablation of AFib 

(CUVIA-AF1; NCT02171364) is also noteworthy [33]. Patients in this study were randomly 

divided into two groups: empirical ablation or model-guided ablation. In the latter, five 

standardized ablation templates were assessed in silico prior to clinical treatment. The lesion 

set that terminated arrhythmia most rapidly was carried out in the clinical procedure. After 

a 31-month follow-up, patients in the model-guided ablation group saw a significantly lower 

recurrence rate (20.8% N=53) compared to those in the empirical ablation group (40%; 

N=55).

Ventricular Arrhythmias—Computational modelling also provides an excellent means 

of investigating mechanisms of electrical reentry associated with ventricular tachycardias 

(VTs) arising from both ischemic and non-ischemic cardiomyopathy. In a recent study, 

slow conduction in ischemic cardiomyopathy models was revealed as a potent substrate for 

arrhythmogenesis in the form of reentry; in contrast, sustained reentry was not observed 

in models with prolonged action potential duration only, indicating that slow conduction 

is primarily responsible for arrhythmogenesis in scar related ventricular tachycardia 

[34]. Moreover, Balaban et al. recently showed that interstitial fibrosis in non-ischemic 

cardiomyopathy also has the potential to sustain reentry [35]. These studies highlight 

ongoing research of reentry mechanisms in ventricular arrhythmias, but more research is 

needed to attain detailed understanding of the structural substrate, which will ultimately 

be a prerequisite for successful long-term deployment of computational models in the 

development of novel therapeutic approaches.

Advances in Resynchronization Therapy.: Cardiac resynchronization therapy (CRT) is 

an effective treatment for some patients with an electrical substrate pathology causing 

ventricular dyssynchrony, but only half of patients experience therapeutic benefit. Multi-

scale cardiac modelling provides an excellent means to improve aspects of CRT such 

as optimal lead locations and patient selection. Specifically, two recent studies [36, 37] 

have investigated effects of scar proximity to CRT pacing sites. The authors’ simulations 

predicted that stimulation closer to scar (0.2cm) increased the dispersion of repolarization 

and thereby the likelihood of unidirectional block compared to more distal pacing sites 

(4.5cm). Results also suggest that pacing ≥3.5cm from scar may avoid increased VT risk 

in ischemic cardiomyopathy patients undergoing CRT [36]. The second of the two studies 

[37] demonstrated that when pacing near scar (0.2cm) endocardial pacing is 34% superior 

to epicardial pacing measured by dispersion of repolarization. [37]. Another modelling study 

suggested that current CRT guidelines may be biased toward male populations due to low 

female enrolment in clinical trials. Simulations that accurately accounted for the smaller LV 

size in females predicted 9–13ms lower QRS duration thresholds than the currently accepted 

guidelines [38].

His bundle pacing and left bundle branch pacing are emerging as novel delivery methods 

for restoring synchronous excitation in heart failure patients with left bundle branch block. 

In a recent simulation study (N=24), both selective and non-selective His bundle pacing 

were superior to conventional biventricular pacing CRT pacing (either endo- or epicardial) 
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in change in QRS duration, LV 95% activation time, 90% biventricular activation time, and 

biventricular dyssynchronous index computed as standard deviation of ventricular activation 

times (Fig. 4) [39]. However, noting the substantial difficulty associated with achieving 

complete His bundle capture, the authors suggest that LV septal pacing may be a suitable 

alternative.

Anti-tachycardia pacing (ATP) is used in modern implantable cardiac defibrillators for 

potential painless VT termination; however, it does not always achieve its intended goal. 

Higher scar heterogeneity, as detected by cardiac MRI texture analysis, has been associated 

with ATP failure due to inability of the paced wavefront to propagate through scar [40]. 

In an effort to improve pacing techniques, an automated algorithm was proposed that 

used the post pacing interval to generate the next sequence based on the prior failed ATP 

sequence [41]. In a recent follow-up which included 259 scenarios generated from seven 

unique hearts, automatic ATP terminated 17% more VTs than traditional ATP for a total of 

73% recovery in virtual patient scenarios. The ATP failure mechanisms were identified as 

insufficient prematurity to close the excitable gap and failure to block the critical isthmus 

[42].

Arrhythmia Risk Stratification.: In 2016, Arevalo et al. described Ventricular Arrhythmia 

Risk Prediction, a personalized approach to assess the propensity of post-infarction patients 

to develop an arrhythmia [43]. In this proof-of-concept study, each virtual heart was paced 

from 19 endocardial sites to determine if reentrant arrhythmia could be elicited [43]. This 

personalized approach significantly outperformed existing clinical metrics in predicting 

future arrhythmic events (hazard ratio of 4.05 [P=0.03] vs. 0.95 for LVEF <35% [P=0.12]) 

Two additional studies have since utilized Ventricular Arrhythmia Risk Prediction for risk 

stratification of patients with paediatric myocarditis and repaired tetralogy of Fallot [44, 

45]. In low risk repaired tetralogy of Fallot patients, Ventricular Arrhythmia Risk Prediction 

correctly identified two VT-positive and five VT-negative patients when blinded to the 

clinical outcome [44]. Similarly, in a population of children with myocarditis, in which there 

is currently no accepted method for VT risk stratification, the approach correctly categorized 

the clinical VT outcome of 12 patients. [45]. However, due to an absence of detailed 

pathophysiological knowledge of VT substrate in repaired tetralogy of Fallot and paediatric 

myocarditis, cell and tissue scale properties from hypertrophic and ischemic cardiomyopathy 

models were used for the repaired tetralogy of Fallot and myocarditis studies, respectively. 

This introduces some ambiguity in interpretation of these studies results; more work is 

necessary to fully justify these substitutions or to generate bona fide representations of 

electrophysiological properties of the actual disease condition.

Risk stratification in computational modelling can also take the form of anti-arrhythmic 

drug screening. Yang et al. developed a multi-scale computational pipeline which integrates 

human ether-a-go-go-related potassium channel structure, dynamics, and channel-drug 

interactions with information from the protein, cell, and tissue scales, to predict emergent 

cardiac rhythm disturbances. In the presence of electrical instability and extra-systolic 

excitable triggers, the application of a clinically relevant dose of dofetilide but not 

moxifloxacin was found to promote profound spatial dispersion of repolarization [46]. 
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Expansion of this platform could have implications in drug discovery, the pre-clinical safety 

screening environment, and in future personalized medicine contexts.

Ablation strategies.: Patient-specific modelling to improve ventricular arrhythmia treatment 

has also garnered significant attention. Like AFib, catheter-based radio-frequency ablation of 

cardiac tissue for ventricular arrhythmias has achieved only modest efficacy. A method 

developed from the aforementioned Ventricular Arrhythmia Risk Prediction approach 

was shown to identify viable ablation targets for patient-specific VT eradication in 21 

retrospective (Fig. 5) and 5 prospective cases, demonstrating the feasibility of using this 

non-invasive approach to guide clinical ablation in the future [47]. Moreover, uncertainty in 

ablation targets for VT in patient-specific ventricular models has been shown to be relatively 

low [48]. However, given the extraordinary personnel and computational load, which 

included up to 8 hours of model reconstruction and 7 hours of high-intensity computing 

per patient, the large-scale clinical applicability of this approach is severely limited.

Outside of biophysical simulation-based techniques, an automated localization system, 

termed “SOLO” (Site of Origin Localization) was developed to identify the site or 

origin of LV activation. This 12-lead ECG-based methodology was able to predict the 

site of LV activation origin with 10 mm accuracy. Since only a few beats for each 

VT morphology are needed, this technology also allows for targeting of unstable or non-

sustained VTs [49]. Clinical implementation of this technology could permit the design of 

an appropriate ablation strategy during the ablation procedure, whereas simulation-based 

methods necessitate pre-procedure preparation.

Future perspective—We have presented an overview of the recent progress in the field 

of computational modelling and simulations, highlighting their potential as tools for future 

clinical translation. Nevertheless, significant obstacles remain before widespread adoption 

of this methodology in the clinic is feasible. Improved representation of patient-specific 

fibre orientations should be achieved through either improved imaging methodologies or 

more robust mapping techniques. Accurate fibrotic remodelling characterization informed 

by tissue and cell scale experimental findings should be implemented to further constraining 

and validate models. Incorporating a realistic representation of pulmonary vein-ectopy into 

the atrial modelling toolkit continues to be a challenge, but inclusion of this facet of AFib 

will open the doors for research specifically tailored for individuals with paroxysmal AFib.

Uncertainty quantification was also discussed briefly in this review. When thinking about 

how modelling and simulation technology can be transferred into a clinical setting, it is 

important to remain mindful of model calibration to reduce uncertainty and improve fidelity. 

Future studies should prioritize these factors (e.g., ambiguous ranges in experimental 

measurements used to constrain models) and characterize their impacts on emerging 

behaviour of organ-level models, as outlined by Pathmanathan et al. [50]. The potential 

for clinical translation is also limited by the small sample sizes of many studies presented 

in this review. As such, advances in supercomputing technology, modelling techniques, or 

both will be necessary to perform simulation-based treatment planning at a large scale. Our 

understanding of arrhythmia mechanisms and patient-specific therapeutic tools has made 
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significant progress, but further development is a critical step towards implementation of 

personalized arrhythmia care.
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Figure 1. 
Modeling workflow for atrial and ventricular simulations. Data defining cardiac geometry 

and fibrosis distribution are obtained from clinical imaging modalities such as LGE-MR 

or computed tomography. Tissue- and cell-scale information, including action potential 

morphology and conduction velocity in different regions (fibrotic, non-fibrotic, gray zone, 

etc.) are derived from scientific literature. Fiber orientations are obtained from human 

atlas geometries and diffeomorphically mapped into patient-specific geometries. These 

components are used to assemble organ-scale models with patient-derived representations 

of the regional distribution of disease-related remodeling, in which electrophysiological 
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properties are perturbed in a generic manner. Virtual electrical stimuli can be applied 

to any area within the model to elicit (1) reentrant drivers, (2) macro-reentry around 

non-conductive boundaries (e.g., around the LIPV, as shown here) or (3) termination 

of arrhythmic activity, indicating a return to sinus rhythm. Simulations have a range 

of applications from mechanistic (e.g., elucidating factors underlying reentry or anti-

arrhythmic drug action) to therapeutic (e.g., ablation planning procedures or arrhythmia 

risk stratification).
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Figure 2. 
Mechanisms of Pitx2-deficiency induced AFib and the ionic mechanisms of the 

antiarrhythmic effects of flecainide. Reprinted with permission from Bai et al. [26].
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Figure 3. 
Workflow of the OPTIMA approach for model-guided ablation in persistent AFib patients. 

Reprinted with permission from Boyle et al. [32].
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Figure 4. 
Simulation results depicting the change in QRS duration (A), LV 95% activation time (B), 

90% BiV activation time (C), BiV dyssynchronous index (D), and RV latest activation time. 

Abbreviations: left ventricle (LV), biventricular (BiV), epicardial (epi), endocardial (endo), 

lateral (lat), septal (sept), selective (S), non- selective (NS), His bundle pacing (HBP), left 

bundle pacing (LBP), QRS duration (QRSd), 95% LV activation time (LVAT-95), 90% 

biventricular activation time (BIVAT-90), biventricular dyssynchronous index (BIV DI), 

right ventricular latest activation time (RV LAT). Reprinted with permission from Strocchi et 

al. [39].
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Figure 5. 
Retrospective results of simulation-guided ablation target identification for infarct-related 

VT. Reprinted with permission from Prakosa et al. [47].
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