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Abstract

Analyzed endometrial cancer (EC) genomes have allowed for the identification of molecular

signatures, which enable the classification, and sometimes prognostication, of these can-

cers. Artificial intelligence algorithms have facilitated the partitioning of mutations into driver

and passenger based on a variety of parameters, including gene function and frequency of

mutation. Here, we undertook an evaluation of EC cancer genomes deposited on the Cata-

logue of Somatic Mutations in Cancers (COSMIC), with the goal to classify all mutations as

either driver or passenger. Our analysis showed that approximately 2.5% of all mutations are

driver and cause cellular transformation and immortalization. We also characterized nucleo-

tide level mutation signatures, gross chromosomal re-arrangements, and gene expression

profiles. We observed that endometrial cancers show distinct nucleotide substitution and

chromosomal re-arrangement signatures compared to other cancers. We also identified high

expression levels of the CLDN18 claudin gene, which is involved in growth, survival, metasta-

sis and proliferation. We then used in silico protein structure analysis to examine the effect of

certain previously uncharacterized driver mutations on protein structure. We found that cer-

tain mutations in CTNNB1 and TP53 increase protein stability, which may contribute to cellu-

lar transformation. While our analysis retrieved previously classified mutations and genomic

alterations, which is to be expected, this study also identified new signatures. Additionally,

we show that artificial intelligence algorithms can be effectively leveraged to accurately pre-

dict key drivers of cancer. This analysis will expand our understanding of ECs and improve

the molecular toolbox for classification, diagnosis, or potential treatment of these cancers.

Introduction

Cancers of the female reproductive organs can be generally classified into ovarian, uterine, cer-

vical, vulvar, fallopian, and vaginal [1]. These cancers can occur in women of all ages but are
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more prevalent in older and post-menopausal women [2, 3]. Uterine cancers can be subdi-

vided into endometrial cancers arising from the lining of the uterus and uterine sarcoma from

uterine muscles [4]. Endometrial cancers (ECs) are the most common uterine cancers, are

more aggressive than sarcoma, and have higher mortality [5].

ECs have historically been classified by estrogen status: Type I cancers are estrogen driven

and occur in younger women, while Type II cancers are not driven by estrogen and occur in

older women [6]. Type II cancers also tend to be more aggressive. Recent advances in genome

sequencing and genetic characterization of cancer genomes driven primarily by The Cancer

Genome Atlas (TCGA) has enabled classification of ECs by molecular status [7–9]. Four differ-

ent EC molecular types are recognized: 1) POLE-mutant (ultra-mutated) showing mutations

in the proofreading region of polymerase epsilon, one of the major replicative polymerases, 2)

microsatellite instability (MSI+) characterized by mutations in mismatch repair genes, 3)

microsatellite stable, and 4) copy number high/serous-like [10–13]. The latter two types are

characterized by low mutation rates. Regardless of classification, all four types are distin-

guished by mutations of PTEN, PIK3CA, ARID1A, TP53, and KRAS genes, as well as other

signal transduction, chromatin remodeling factors and histones being highly represented [11,

14–17].

The Catalogue of Somatic Mutations in Cancers (COSMIC) deposits analyzed cancer

genomes data from both TCGA as well as other independent studies into a database [18].

Building on previous EC molecular data, we used rigorous artificial intelligence algorithms to

classify all occurring mutations as either driver or passenger. In silico protein structure/func-

tion analyses were then employed to investigate how high frequency driver mutations affect

protein structure and function. We also analyzed nucleotide substitution signatures, chromo-

somal re-arrangements, gene expression patterns, as well as other parameters with the goal to

extract a more comprehensive genetic and genomic map for ECs.

Materials and methods

Genetic analysis

Complete mutation and chromosomal structural variation files were downloaded from COS-

MIC in Excel format. Gene expression data normalized as Z-values were also downloaded for

TCGA samples.

S1B Table shows a listing between the percentages of total base pair mutations of the speci-

fied type among all types and the integer number of base pair mutations of the specified type.

To compare nucleotide changes in endometrial vs. all cancers, additional data were extracted

from COSMIC for all cancer tissues. Approximately 1200 genes were analyzed but only the

nucleotide changes in the top 100 most mutated genes in endometrial cancers are shown in

S1A Table. There are twelve different nucleotide substitution mutation possibilities: A>C,

A>G, A>T, C>A, C>T, C>G, G>A, G>C, G>T, T>A, T>C, T>G. The percentages for

every case of the twelve cases of base pair mutations were recorded. Twelve columns were cre-

ated for the added-up integer values in the categories for all twelve nucleotide substitution

mutation possibilities. Next an Independent Samples T-test was performed to compute signifi-

cant probabilities (shown in red in S1C Table).

Descriptions for the functions of the most mutated genes in endometrial cancers were

extracted from NCBI (S3 Table).

The STRING database (https://string-db.org/) was used to identify connections between

genes and proteins. The database mines other databases and extracts validated connections (both

physical and genetic) and makes computational predictions about the strength of connections
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and provides a score. The higher the score, the higher the likelihood that a meaningful connec-

tion exists. S1F Table only shows those pathways with a strength score of 0.1 or higher.

Driver and passenger mutations were classified using the OpenCRAVAT CHASM tool [19,

20]. To create valid input files from the COSMIC database to be used in OpenCRAVAT,

Python was used to write a code that took an input.csv file containing genomic mutation data

and processed it into a format suitable for analysis by the OpenCRAVAT tool. First, the.csv

was converted into a tab separated.tsv file (csv_2_tsv), which provided an intermediate file for

parsing. Next, the TSV file was filtered to extract only the HGVSG column containing the vari-

ant annotations (tsv_2_HGVSG). The HGVSG strings were parsed via regular expressions to

pull out key details—chromosome, position, reference base, alternate base—into variables

(HGVSG_2_CRAVAT). These components were written line-by-line into a new.tsv file in the

specific columns required by OpenCRAVAT. By automating these sequential steps of file con-

version, parsing, and reformatting, the original CSV data was transformed into the proper for-

mat for computational mutation analysis by OpenCRAVAT. The full pipeline was executed by

calling csv_2_CRAVAT. This provided an efficient methodology for preparing large genomics

datasets for downstream research applications. Link to the GitHub can be found here: https://

github.com/dhakxls/cosmic-parser.

Gene expression analysis

COSMIC reports gene expression levels for certain TCGA studies obtained either from micro-

array analysis or RNA-seq as a Z-value with values above Z = 2 considered over-expressed and

under Z = -2 under-expressed while a value between -2 and 2 is interpreted as normal expres-

sion [21, 22]. We extracted gene expression data for all TCGA samples and computed the aver-

age Z-value expression change (S2 Table). S2 Fig shows those genes with a Z change greater

than than 2. There were no changes with a score lower than -2.

Effect of driver mutations on protein structure

The PDB files of the wild-type PPP2R1A (PDB ID: 1B3U) [23], PTEN (PDB ID: 1D5R) [24],

PIK3CA (PDB ID: 2RD0) [25], CTNNB1 (PDB ID: 6M90) [26], and TP53 (PDB ID: 8F2I) [27]

human protein 3D structures were downloaded from the Protein Data Bank. There was not a

published crystal structure for human FGFR2 protein available on the Protein Databank web-

site, so an AlphaFold [28, 29] model was downloaded instead. Amino acid mutations were

made computationally using the mutagenesis function in the PyMOL Molecular Graphics Sys-

tem, Version 2.5.5 Schrödinger, LLC. Side chain polar interactions in a 4 Å radius were

selected using PyMOL for the wild-type and mutant residue. All six protein PDB wild-type

(WT) files were uploaded to the BRENDA Enzyme Database website and the stability of point

mutations in comparison to WT were calculated using BRENDA’s CUPSAT calculation tool

[30]. To analyze the electrostatic surface potential maps of the selected driver mutations, the

PyMOL program with the APBS electrostatics plugin was used to visualize change between

WT protein and driver mutated protein [31]. The localized area of the target mutation

sequence was used as the center point for all observation and analysis.

All figures were made in Photoshop or PowerPoint.

Results and discussion

Mutation distribution in endometrial cancers

Genetic mutation can occur in coding regions (translated into proteins) and non-coding

regions (untranslated). COSMIC reports both coding and non-coding mutations with the
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caveat that non-coding represents only 5’ and 3’ UTRs and intronic rather than all “junk”

DNA. About 65% of observed mutations are reported in coding regions with the remaining

approximately 35% in non-coding regions (Fig 1A). Both coding and non-coding mutations

have the potential to drive cellular transformation and immortalization. Coding mutations can

directly affect protein/enzyme function while non-coding mutations can affect gene expression

or splicing. When we characterized all forms of EC histology, we observed that most coding

mutations occur in carcinoma (Fig 1B, S1 Fig).

Not all mutations affect gene function equally. For example, non-silent mutations introduce

a direct change in amino acid sequence (e.g., missense, non-sense, InDel) and are predicted to

have a higher impact on gene function than silent mutations. However, certain non-silent

mutations have a more profound effect on gene function than others. For example, a missense

mutation in the active site of an enzyme would be predicted to have a greater effect on gene

function than a mutation elsewhere in its sequence. To understand which mutations are most

likely to drive ECs, we used two ‘gold standard’ artificial intelligence algorithms: Cancer-Spe-

cific High-Throughput Annotation of Somatic Mutations (CHASMplus) [20] and the Variant

Effect Scoring Tool (VEST4) [32]. CHASM can classify missense mutations as driver or pas-

senger while VEST4 predicts the probability that they are pathogenic. The algorithm computes

a score and p-value. A p-value below 0.05 is considered statistically significant (e.g. mutation is

driver). Using this approach, we distilled all EC mutations to only those predicted to have a

major role in transformation and immortalization. This analysis shows that only about 2.5% of

all coding mutations are predicted to be driver and about 4% pathogenic, while fewer than

0.5% of all non-coding mutations are likely to be either driver or pathogenic (Fig 1C, S1A

Table). This indicates that most mutations in ECs are probably passenger mutations and may

play minor roles in cellular transformation or immortalization.

We next examined the type of point mutations arising in ECs (Fig 1D, S1B Table). A previ-

ous report has investigated mutation signatures in endometrial adenocarcinoma and found

that A:T>T:A and G:C>C:G are increased in proficient MMR cancers compared with defi-

cient MMR [33]. Here, we analyzed each transversion and transition independently and com-

pared the frequency of each nucleotide change in ECs to the frequency in other cancers

(independent samples t-test). The goal was to understand whether EC mutations show a pat-

tern different from other cancers. All comparisons produced significant p-values suggesting

that ECs have unique mutation signatures than other cancers (S1C Table). As expected, G>A

and C>T mutations occur at a higher frequency than the other mutations [33]. However, five

mutation types (C>G, G>C, G>T, T>A, T>C) show a statistically significant higher fre-

quency compared to other cancers. Of these, the C>G and G>C transversions are statistically

more represented in ECs than other cancers (p = 1.3E-14 and p = 7.8E-24, respectively). The sig-

nificance of this is not immediately obvious but the high levels of both changes suggests that

they are replication rather than transcription driven (e.g., they occur on both DNA strands).

Additionally, this cannot be due to MMR status because 1) previous findings showed that defi-

cient MMR ECs have fewer G:C>C:G mutations [33] and 2) most cancers used for this com-

parison are not MMR unstable. Thus, the increase in the G:C>C:G signature is unique to ECs.

Conversely, there is a higher level of G>T than C>A changes which indicates a strand bias.

When these data are integrated with previous studies, there appears to be a unique mutational

signature in ECs.

We next interrogated global chromosomal re-arrangements in ECs (Fig 1E and 1F, S1D

Table). Chromosomal inversions account for almost 70% of all re-arrangements with deletions

coming in second (about 20%) and translocations third (about 10%). When the data were par-

titioned by chromosome number, the longer chromosomes (e.g., 1–10) showed a higher level

of inter-chromosomal re-arrangements (translocations) than the shorter chromosomes, which
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Fig 1. Mutation distribution in endometrial cancers. A. Percent coding and non-coding mutations in endometrial cancers. B. Distribution of

coding mutations by endometrial cancer histology. C. Percent coding driver (CHASM) and pathogenic (VEST4) mutations out of total

mutations in A in endometrial cancers. D. Distribution of nucleotide substitutions in coding endometrial mutations (blue) compared with

coding mutations in other cancers (red). Significant p values between the two samples are shown (t-test: independent samples, unequal variance,

two tails). E. Chromosomal re-arrangements in endometrial cancers. Data extracted using the CONNAN function on COSMIC.

https://doi.org/10.1371/journal.pone.0299114.g001
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have a higher level of intra-chromosomal re-arrangements (e.g., deletions). The only five chro-

mosomes not following this pattern are chromosomes 4, 9, 10, 16 and 19. Chromosomes 4 and

9 generally have low levels of re-arrangements and a decreased frequency of translocations.

Conversely, chromosomes 10 and 16 have increased levels of translocations while chromo-

some 19 has a higher level of deletions. These data show that genome wide re-arrangements

are not uniform on every chromosome, suggesting that re-arrangements on certain chromo-

somes are selected because they drive EC cellular transformation and immortalization.

Gene expression changes in endometrial cancers

We also analyzed gene expression changes in endometrial samples. However, this analysis was

somewhat restricted because gene expression was only available for TCGA samples and

reported as a Z-score (please see Materials and methods). We identified a few genes with a ten-

dency to be overexpressed (S2 Table, S2 Fig). Of note is the CLDN18 claudin gene which

showed a generally high level of over-expression. High CLDN18 expression was recently

reported in certain cervical adenocarcinomas [34]. Here, we show that it is generally over-

expressed in all endometrial cancers, which agrees with previous conclusions [34] that it could

serve as a molecular marker for ECs.

CLDN18 over-expression has been observed in several other tumors [35, 36], primarily gas-

tric [37]. Two CLDN18 isoforms have been identified [38]. Claudiximab (also known as zolbe-

tuximab) is an anti-CLDN18 antibody specific for isoform CLDN18.2 (isoform 2) [39]. The

antibody is effective in promoting antibody- and complement-dependent cytotoxicity as

reported in recent phase II clinical studies [39, 40]. CLDN18 isoform 2 CAR T-cell immuno-

therapy is another promising therapy for gastric cancers and also in clinical studies [41]. The

finding that CLDN18 is also over-expressed in endometrial cancers highlight the importance

of this gene and should be considered for similar targeted therapeutics.

Genes and pathways affected by endometrial cancer driver mutations

Several previous publications have identified signature mutations in the endometrium (both

normal and tumor) [11, 12, 17, 42–56]. Our goal here was to understand the significance of

each mutation and to classify them as either driver or passenger (e.g., how likely are they to

cause cellular transformation or immortalization). These driver mutations affect certain key

pathways involved in cell proliferation, migration, and survival (Fig 5). We ran all mutations

reported on COSMIC through two artificial intelligence algorithms: CHASM, which classifies

mutations as either driver or passenger, and VEST4, which classifies mutations as pathogenic

[20, 32]. We queried 3213 patients and identified driver mutations in 66 genes that occurred

with higher frequency (at least 100 patients had the mutation) (Fig 2A, S1E Table). These

mutations affect a variety of cellular pathways (Fig 2B, S1F Table) but DNA damage repair and

checkpoint pathways were the most represented (S3 Fig, S3 Table).

Of the 66 genes identified, only 8 genes have a high level of driver mutations (30% or higher

of total analyzed samples) (Fig 2A, S4 Table). Over 77% of residues mutated in five of these

genes (PTEN, PIK3CA, CTNNB1, TP53 and KRAS) were characterized as driver and over

30% of mutated residues in three other genes (PPP2R1A, FGFR2, BCOR) were also character-

ized as driverSeveral others show a lower percentage of driver mutations (Fig 2C, S4 Table).

Note that most of the EC mutated genes were not identified to harbor driver or pathogenic

mutations indicating that they probably do not significantly contribute to cellular

transformation.

We next mapped all driver mutations on domain diagrams of the genes and indicated how

many times each mutation was reported (Fig 3). A comprehensive literature search was also
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Fig 2. Genes and pathways affected by endometrial cancer mutations. A. Highly mutated genes detected in endometrial cancer patients. Shown

are only those genes that are mutated in at least 100 patients out of 3213 (66 genes). For each of the 66 genes, we computed their occurrence in

endometrial cancers compared with occurrence in all other cancers (expressed as percent). Red stars represent those genes with highest frequency

of driver mutations. Complete data in S2 and S4 Tables. B. Biological processes affected by most frequent mutations in endometrial cancers. Only

those processes with a string score above 0.1 are shown. C. Percent driver and passenger mutations for genes in A as determined by the CHASM

algorithm.

https://doi.org/10.1371/journal.pone.0299114.g002
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Fig 3. Driver mutations and copy number variations of most significantly altered genes. A. Domain diagrams of genes with location of

driver mutations shown. Only driver mutations identified from CHASM are mapped onto these diagrams and the high frequency ones are

indicated in red. The number of incidences of a certain mutation is shown in parentheses. All gene maps were made based on previous

reports: PPP2R1A [58, 85–88], FGFR2 [73, 89], PTEN [90–94], PIK3CA [95, 96], CTNNB1 [68, 70, 97, 98], TP53 [99, 100], and BCOR [101].

B. Copy number variations of most significantly altered genes. Each dot represents one sample where high copy number was detected.

https://doi.org/10.1371/journal.pone.0299114.g003
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performed for each driver mutation to determine if these mutations have been previously

identified and studied. In several cases, driver mutations identified from this study have been

previously validated, which supports the ability of CHASM to correctly make predictions. A

summary of previously published mutations is presented in S5 Table.

Copy number variations and gene fusions

We also investigated copy number variations in the key driver genes (PTEN, PIK3CA,

CTNNB1, TP53, PP2R1A, FGFR2, BCOR, KRAS, CLDN18)(Fig 3B). Not unexpectedly, we

found that oncogenes (e.g. PIK3CA, KRAS) are characterized by high copy number in certain

patients whereas tumor suppressor genes are generally low copy number. We also identified

five patients with high copy numbers of the CLDN18 gene (three with 5 copies and two with 9

copies). This suggests that the high expression profiles for CLDN18 in certain patients may be

due to allele duplication. COSMIC also reported one recurrent gene fusion, JAZF1-SUZ12,

which has been previously identified and characterized [57].

Effect of driver mutations on protein structure

Protein structural analysis was performed for all identified driver mutations that had not been

previously studied in a similar way. Four mutations in PPP2R1A (P179R, R183W, S256F, and

S256Y) had already been identified and analyzed in detail [58]. Two mutations in FGFR2,

(N550K and N550H) were mapped onto a partial crystal structure [59]. Six mutations in

PIK3CA were previously studied: R88Q [60], E545K and H1074R [61], and M1043I, M1043T,

and M1043V [62]. Six mutations from PTEN (R130G, R130L, R130Q, R173H, and R173C)

were computationally modeled and analyzed in detail [63]. Once the previously published

driver mutations were removed, the 45 mutations that remained were modeled computation-

ally using PyMOL with wild-type protein structures obtained from the Protein Data Bank [24–

27, 64–66] or AlphaFold [65]. To study how these 45 mutations affect protein structure, a

three-pronged approach was used in which side-chain tertiary interactions were analyzed, pro-

tein stability was predicted, and electrostatic surface potentials were calculated (S6 Table).

Polar contacts with the side chain of the WT and mutant residues were analyzed using

PyMOL for all driver mutations. Mutations that reduced the number of polar contacts in com-

parison to WT were identified. There were 8 mutations out of 45 that reduced polar interac-

tions (hydrogen bonds, dipole-dipole, and salt bridges) relative to WT (S4 Fig).

All mutations were also analyzed using CUPSAT to determine if they would affect protein

stability, as determined by a ΔΔG value [30]. The ΔΔG is the difference in the ΔG of unfolding

for the mutant protein and the WT protein, in which a negative value indicates destabilization

of the protein structure, and a positive value indicates stabilization. The 10 mutations with the

largest negative ΔΔG values, representing the most destabilizing mutations, and the 10 with

the largest positive ΔΔG values, representing the most stabilizing mutations, were selected

(Table 1). The protein that displayed the most mutations within this list of 20 was the

CTNNB1 protein with 11 mutations (Table 1, S6 Table). CTNNB1 encodes the beta-catenin

protein involved in the Wnt-signaling pathway with pleiotropic functions including cell prolif-

eration and migration [67, 68]. Protein stability is regulated by GSK3-beta phosphorylation of

several N-terminal residues (S33, S37, T41) which targets CTNNB1 for degradation (Fig 5)

[69, 70]. CK1 also phosphorylates CTNNB1 at S45 and this posttranslational mark is also

required for degradation. Not unexpectedly, mutations at these phosphorylated residues affect

stability of the protein. Two other highly mutated residues in the N-terminus of the protein

are D32 and G34 [71, 72]. Both residues are also required for CTNNB1 ubiquitination and

mutations increase protein stability [72]. Remarkably, D32 and G34 decrease ubiquitination
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and degradation without affecting the phosphorylation status of S33, S37 and T41 [71]. Our

analysis shows that the D32 and G34 mutations also affect general protein stability which may

alter the function of the protein.

FGFR2 is a receptor tyrosine kinase with pleiotropic functions including cell proliferation

(Fig 5)[73]. The most destabilizing mutation was S252W, with a ΔΔG value of -12.66 kcal/mol.

This is likely due to the significant change that takes place when mutating serine, which is a

small polar residue, to tryptophan, a bulky aromatic hydrophobic residue. The S252 residue

promotes ligand affinity and specificity [74]. The two most frequent mutations identified in

endometrial cancers are FGFR2 S252W and N550K, which are both activating mutations [75,

76]. Our analysis shows that the S252W mutation also decreases protein stability.

The most stabilizing mutation was the TP53 R273C mutation with a ΔΔG of +17.86 kcal/

mol. Mutation of R273 also displays oncogenic phenotypes [77] with various variants showing

different oncogenic potential. Among all variants, the R273C mutation weakens DNA interac-

tions and significantly affects TP53 function [78]. Our analysis shows that this change has a

stabilizing effect on the TP53 protein, which may suggest that even in a heterozygous configu-

ration, non-functional TP53 proteins with longer half-lives may outcompete functional ones.

Interestingly, every TP53 driver mutation was identified as a stabilizing with a positive ΔΔG

value. Every mutation of TP53 was also found to be in the top 20 mutations selected for their

significance. Given that TP53 forms a tetrameric complex, stable non-functional alleles may

outcompete functional alleles to form poorly functional complexes. No mutations within the

PIK3CA protein nor the PPP2R1A were identified within either top 10 stabilizing or destabi-

lizing mutations in Table 1.

Finally, electrostatic surface potential calculations were performed for the 12 mutations

located on the exterior of the protein that were predicted to affect the pKa or surface area

based on the chemical properties of the amino acid side chains (S5 Fig). Mutations that were

lectrostatically mapped were visually analyzed for observation of any color changes, which

would indicate alterations in the local pKa, and for observation of any change in shape or size

of the protein surface, which would indicate surface area alterations. The electrostatic change

that occurred most often was the neutralization of a basic WT amino acid. This change is

observationally recognized by a change from a blue electrostatic surface coloration into a

Table 1. Top 10 stabilizing or destabilizing mutations predicted to affect protein stability via CUPSAT organized by gene.

Gene/Protein Mutation Predicted ΔΔG (kcal/mol) Predicted Effect

FGFR2 S252W -12.66 Destabilizing

PTEN C136R -3.93 Destabilizing

PIK3CA Y1021H -1.66 Destabilizing

CTNNB1 D32N 4.38 Stabilizing

CTNNB1 D32H -4.68 Destabilizing

CTNNB1 D32Y -2.69 Destabilizing

CTNNB1 G34V 1.4 Stabilizing

CTNNB1 G34E -8.24 Destabilizing

TP53 R248G 1.71 Stabilizing

TP53 R248Q 2.3 Stabilizing

TP53 R248W 4.65 Stabilizing

TP53 R273L 5.41 Stabilizing

TP53 R273C 17.86 Stabilizing

TP53 R273H 3.2 Stabilizing

https://doi.org/10.1371/journal.pone.0299114.t001
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white surface coloration. This neutralization of a basic environment occurred in 4 of the 12

total mutations. From the 12 mutations that were mapped, 5 mutations were selected that

showed the most significant changes in surface coloration and/or by their alteration of WT

surface area following mutation (Fig 4). The top 5 electrostatically altering mutations were

scattered across PPP2R1A, PTEN, PIK3CA, and CTNNB1 proteins.

Fig 4. Top five driver mutations that alter protein electrostatic surface potential. Surface rendering of the protein

structure is shown with basic or positive surface potential colored blue, acidic or negative colored red, and neutral

colored white. The WT or mutant residue location is identified by a black or white circle. A. PPP2R1A WT R183

residue compared to B. PPP2R1A mutant Q183 residue. C. PTEN WT R130 residue with a tartrate molecule shown in

yellow sticks compared to D. PTEN mutant P130 residue. E. PIK3CA WT E545 residue compared to F. PIK3CA

mutant A545 residue. G. CTNNB1 WT D32 residue compared to H. CTNNB1 mutant H32 residue. I. CTNNB1 WT

G34 residue compared to J. CTNNB1 mutant E34 residue.

https://doi.org/10.1371/journal.pone.0299114.g004
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Using all the protein structure analysis data compiled, it was possible to identify which

driver mutations can be classified as significantly affecting protein structure. This was per-

formed by looking for overlapping mutations from the 8 mutations that reduced polar interac-

tions, the top 10 stabilizing and top 10 destabilizing mutations with the largest change in ΔΔG

value, and the 12 mutations that changed the electrostatic surface potential. Using this down-

selection the total list of 45 studied driver mutations was narrowed down to 10 mutations

(Table 2). All 10 of these mutations affected the electrostatic surface potential of the protein.

Six of these 10 mutations reduced polar tertiary structure interactions as compared to WT.

Seven of these 10 mutations were also identified in the either 20 mutations predicted to signifi-

cantly affect protein stability (stabilizing or destabilizing) via CUPSAT.

Conclusion

Here, we analyzed genetic alterations in ECS. We employed gold standard artificial intelligence

algorithms to characterize driver and passenger mutations. Our data agrees with previous find-

ings, but we identified certain novel key mutation signatures in ECs that are distinct from

other cancers. Of the 45 driver mutations analyzed using protein computational modeling, 10

mutations were identified as significantly effecting protein structure: FGFR2 (S252W), PTEN

(R130P), PIK3CA (E545A, E545G), CTNNB1 (D32H, G34E, S37Y), and TP53 (R273H,

R273C, R273L). Interestingly, the multiple mutations that were deemed significant in PIK3CA

and TP53 were located at the same place in the primary sequence in each respective gene. The

FGFR2 S252W mutation has been previously studied biochemically and shown to impact

ligand binding and specificity [74]. The R130 residue in PTEN is located within the active site

pocket and mutation of this residue has been implicated in various diseases and cancers [63,

79, 80]. Mutation of the PIK3CA E535 residue, specifically E535A, has been identified a pre-

dictive marker in breast cancer [81]. The S37 residue in CTNNB1 is a phosphorylation site and

mutations have been found in colon cancers and melanoma [82, 83]. Finally, TP53 R273 vari-

ants generally show a loss of wild-type protein function [84].

The major molecular pathways affected by driver mutations in endometrial cancers are

summarized in Fig 5. All pathways that were identified affect cellular proliferation and trans-

formation. Mutations in CTNNB1 prevent its degradation and leads to formation of a stable

transcriptional complex and activation of cMYC and Cyclin D1. The PIK3CA signal trans-

duction pathway is one of the major pathways activated in endometrial cancers. PIK3CA can

receive signals from both FGFR2 and EGFR, which results in activation of proliferation and

cell cycle genes. In addition to activating mutations in FGFR2, EGFR and PIK3CA, loss of

function mutations in the two phosphatases, PTEN and PP2A, leads to constitutive

Table 2. Mutations identified to significantly affect protein structure.

Protein Mutation Observed Electrostatic Change Reduces Polar Interactions? Predicted ΔΔG (kcal/mol)

FGFR2 S252W Neutral to Neutral No -12.66

PTEN R130P Basic to Less Basic Yes -0.46

PIK3CA E545A Acidic to Neutral Yes -0.49

PIK3CA E545G Acidic to Neutral Yes -0.69

CTNNB1 D32H Acidic to Neutral No -4.68

CTNNB1 G34E Neutral to Acidic No -8.24

TP53 R273H Basic to Neutral Yes 3.2

TP53 R273C Basic to Neutral Yes 17.86

TP53 R273L Basic to Less Basic Yes 5.41

https://doi.org/10.1371/journal.pone.0299114.t002
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activation of this oncogenic pathway. Both FGFR2 and EGFR are key receptors that signal

through PIK3CA as well as JAK-STAT and the MAPK pathways, respectively. Mutations in

the BCOR transcriptional repressor activates pluripotency and cell fate genes. Loss of TP53

function has been well documented and is not unexpected because this gene is mutated in

over 40% of cancers. An interesting finding is the over-expression of CLDN18 which has

been demonstrated to activate metastasis and proliferation for other cancers but not endo-

metrial cancers.

While many of the mutations investigated in this study have been previously published,

our analysis sheds light on how these critical mutations impact protein structure. In addition,

this study demonstrates that CHASM, which uses artificial intelligence, correctly predicts

many driver mutations that have been experimentally validated. The data presented here

could be used to refine ECs molecular signatures. These recurrent mutations and genomic

alterations could be used as molecular markers for diagnosis and staging of ECs. Addition-

ally, a comprehensive classification of driver mutations can aid in development of molecular

therapies to target those genes and pathways that are key in EC cellular transformation and

immortalization.
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