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Abstract

INTRODUCTION: Although large-scale genome-wide association studies (GWAS)

have been conducted on AD, few have been conducted on continuous measures of

memory performance andmemory decline.

METHODS: We conducted a cross-ancestry GWAS on memory performance (in

27,633 participants) and memory decline (in 22,365 participants; 129,201 observa-

tions) by leveraging harmonized cognitive data from four aging cohorts.

RESULTS:We found high heritability for two ancestry backgrounds. Further, we found

a novel ancestry locus for memory decline on chromosome 4 (rs6848524) and three

loci in the non-Hispanic Black ancestry group for memory performance on chro-

mosomes 2 (rs111471504), 7 (rs4142249), and 15 (rs74381744). In our gene-level

analysis, we found novel genes for memory decline on chromosomes 1 (SLC25A44),

11 (BSX), and 15 (DPP8). Memory performance and memory decline shared genetic

architecture with AD-related traits, neuropsychiatric traits, and autoimmune traits.

DISCUSSION: We discovered several novel loci, genes, and genetic correlations

associated with late-life memory performance and decline.

KEYWORDS

Alzheimer’s disease, genetics, GWAS, memory

Highlights

∙ Late-life memory has high heritability that is similar across ancestries.

∙ Wediscovered four novel variants associated with late-life memory.

∙ We identified four novel genes associated with late-life memory.

∙ Late-life memory shares genetic architecture with psychiatric/autoimmune traits.

1 BACKGROUND

Over the last several years, multiple genome-wide association stud-

ies (GWAS) have explored the genetic characteristics of late onset

Alzheimer’s disease (AD) dementia,1–4 and converging evidence

demonstrates that it is a highly heritable (≈60% to 80%) polygenic

disease.5–7 While clinical AD diagnosis has been the focus of most AD-

related GWAS, memory performance has received less attention even

though it is a strong endophenotype for AD. Memory performance

is a particularly interesting cognitive trait to investigate because it is

a robust clinical feature of AD and is often one of the first signs of

cognitive impairment to clinically manifest. Memory is also a highly

heritable trait8,9 that appears to have a genetic architecture linked to

AD, with a recent study on verbal short-term memory and learning in

healthy adults identifying several AD-relevant loci (eg, apolipoprotein

E [APOE]/APOC1/TOMM40, CDH18)8 and another study suggesting

a role of cytoskeleton dynamics in episodic memory maintenance.10

Therefore, disentangling the genetic architecture of memory perfor-

mance over the course of normal aging and AD may provide insight

into the molecular pathways that contribute to differential risk and

resilience to AD.

A major challenge in performing large-scale genomic analysis of

memory performance is that many studies use disparate measures to

quantify memory abilities, making integration and meta-analysis chal-

lenging. Recently, the Phenotype Harmonization Consortium (PHC)

was established within the Alzheimer’s Disease Sequencing Project

(ADSP) to provide robust harmonization of phenotypes including

cognition across the studies of ADSP, including a recent flagship

mailto:timothy.j.hohman@vumc.org
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RESEARCH INCONTEXT

1. Systematic review:WeusedPubMedandGoogle Scholar

to review literature that had reported genome-wide

associations studies (GWAS) on memory perfor-

mance and decline. Although prior research has

suggested that memory is a highly heritable trait, a

large-scale, cross-ancestry GWAS has yet to be

conducted in older adults.

2. Interpretation: We demonstrated that memory perfor-

mance and decline are both highly heritable traits across

ancestries and these traits are highly associated with

AD. We identified several novel variants and genes that

associated withmemory performance and decline.

3. Future directions: Our study emphasizes the importance

of incorporating different ancestries into large-scale

GWAS of continuous measures of memory performance

anddecline. Future studies that continue to increase sam-

ple sizewill facilitate the discovery of potential treatment

targets.

publication demonstrating a robust latent variable modeling approach

to cross-cohort harmonization that provided the foundation for the

present analysis.11 In the present study,we included harmonizedmem-

ory performance measures from multiple cohorts (Adult Changes in

Thought [ACT], Alzheimer’s Disease Neuroimaging Initiative [ADNI],

National Alzheimer’s Coordinating Center [NACC], Religious Orders

Study/RushMemoryandAgingProject/MinorityAgingResearchStudy

[ROS/MAP/MARS]) to perform the largest longitudinal GWAS to date

on memory performance and memory decline in aging adults with and

without cognitive impairment. This cross-ancestry GWAS on mem-

ory performance (n = 27,633) and memory decline (n = 22,365)

included self-identified non-Hispanic White (NHW, n = 24,216) and

non-Hispanic Black (NHB, n = 3417) individuals to provide a compre-

hensive picture of the genetic architecture of memory performance

in late life. Our analyses include narrow-sense heritability estimates,

common variant associations, gene- and pathway-level analyses, and

genetic correlation analyses. We hypothesized that the genetic archi-

tecture of memory performance would partially reflect the genetic

architecture of AD, while also highlighting novel loci that contribute to

normal aging and AD.

2 METHODS

2.1 Participants

The present study leveraged multiple cognitive aging cohorts from the

ADSP, including the ACT, ADNI, NACC, and ROS/MAP/MARS cohorts.

ACT began in Seattle in 1994 and has since then amassed a cohort

of 4960 cognitively unimpaired individuals.12 ADNI (https://adni.loni.

usc.edu) began in 2003 as a public-private partnership, led by Prin-

cipal Investigator, Michael W. Weiner, MD. The primary goal of the

ADNI cohort is to test whether serial magnetic resonance imaging

(MRI), positron emission tomography (PET), other biological markers,

and clinical and neuropsychological assessment can be combined to

measure the progression of mild cognitive impairment and early AD.13

Since 2003, the ADNI cohort has progressed through four different

phases (ADNI 1, ADNI-GO, ADNI 2, and ADNI 3), all of which are

included in the present study. ADNI recruits cognitively unimpaired,

mild cognitive impairment, and AD dementia participants. A full list

of ADNI investigators can be found in Appendix 1. The NACC cohort

began in 1999 and is comprised of dozens of Alzheimer’s Disease

ResearchCenters that collectmultimodal ADdata.14 The overall inten-

tion of the NACC cohort is to collate a large database of standardized

clinical/neuropathological data.15–18 The ROS is an ongoing longitudi-

nal studywhich started in 1994with the goal of building a large clinical-

pathologic cohort of aging and AD.19 Recruitment for ROS includes

65+ year-old Catholic nuns, priests, and brothers from more than 40

groups throughout the United States.19 TheMAP began in 1997 and is

anongoing longitudinal study that enrolls and follows cognitively unim-

paired participants.20 TheMARSbegan in 2004 and enrolls and follows

65+ year-old African American participants who are cognitively unim-

paired at study entry. The ROS/MAP/MARS cohorts are all actively col-

lecting longitudinal data. Across all cohorts, written informed consent

was provided by participants and research was conducted in accor-

dance with approved Institutional Review Board protocols. Secondary

analysis of these data was approved by the Vanderbilt UniversityMed-

ical School Institutional Review Board. Table 1 provides an overview of

the ACT, ADNI, NACC, and ROS/MAP/MARS cohorts.

2.2 Cognitive harmonization

Neuropsychological datawere collected independently for each cohort

and subsequently harmonized. We have published methods for our

cognitive data harmonization.11 This harmonization process involved

experts assigning test item-level data into memory, executive function,

language, visuospatial, or “none of” domains. Investigators ensured

identical scoring of anchor items across studies and a confirmatory fac-

tor analysis was conducted to choose the best single factor or bi-factor

model. Anchor itemswere items identifiedashavingbeenadministered

and scored precisely the same way in two or more cohorts. All items

had freely estimated parameters, with anchor items forced to have the

same parameters across studies. We used these co-calibrated param-

eters for anchor and study-specific items to generate cognitive scores

that were on the same scale across cohorts and across waves within

each cohort.11 Although harmonized cognitive scoreswere created for

the memory, executive function, language, and visuospatial domains,

the present study focused on memory. Full details on the items used in

the memory co-calibration analysis can be found in the Supplemental

Materials (Tables S1-S5).

Two memory outcomes were included in this study: baseline mem-

ory performance and memory decline. For the baseline memory

performance analysis, we considered the memory score from the

first cognitive visit for each participant available in the dataset. For

https://adni.loni.usc.edu
https://adni.loni.usc.edu
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TABLE 1 Participant characteristics by cohort and ancestry.

non-HispanicWhite (NHW) non-Hispanic Black (NHB)

Measure ACT ADNI NACC

ROS/MAP/

MARS ACT ADNI NACC

ROS/MAP/

MARS

Number of participants 3585 1363 17,159 2109 102 50 2742 523

Number of sessions 18,337 7217 68,628 19,888 481 254 10,374 4022

Number of visits 6.79 (3.00) 7.29 (3.30) 6.37 (3.58) 12.91 (5.77) 6.29 (2.86) 7.12 (3.13) 6.22 (3.58) 10.07 (4.23)

Follow-up time (years) 7.33 (4.94) 3.06 (2.72) 4.06 (2.92) 6.87 (5.02) 7.05 (4.76) 3.21 (2.89) 4.15 (2.98) 5.80 (4.02)

Baseline age (years) 74.34 (6.50) 74.33 (6.61) 73.97 (8.22) 78.78 (7.43) 73.39 (5.58) 72.07 (5.80) 73.27 (7.80) 72.99 (6.40)

Education (years) 15.02 (3.21) 16.06 (2.78) 15.93 (2.84) 16.36 (3.53) 13.38 (3.66) 15.08 (3.26) 14.33 (3.14) 14.90 (3.53)

APOE ε4 (% positive) 26.16 44.16 40.81 24.99 33 46 46.41 35.95

Baseline diagnosis (%

CU/MCI/AD)

100/0/0 38.5/47.3/14.2 50.6/26.3/23.1 70.8/23.9/5.3 100/0/0 46.0/40.0/14.0 54.3/26.1/19.6 71.6/26.7/1.7

Note: Values denoted asmean (standard deviation) or frequency.

Abbreviations:ACT,AdultChanges inThought;AD,Alzheimer’s disease;ADNI,Alzheimer’sDiseaseNeuroimaging Initiative;APOE, apolipoproteinE;CU, cog-
nitively unimpaired; MAP, Memory and Aging Project; MARS, Minority Aging Research Study; MCI, mild cognitive impairment; NACC, national Alzheimer’s

coordinating center; ROS, religious orders study.

the memory decline analysis, we conducted a linear mixed-effects

regression to calculate a longitudinal trajectory for each participant.

Importantly, participantswere only included in the linearmixed-effects

regression analysis if they had at least two cognitive visits. Mem-

ory slopes (ie, memory decline) were calculated with a null linear

mixed-effects regression model, letting slope and intercept vary for

each participant. These baseline memory performance and memory

decline scores were then used as endophenotypes for all GWAS and

post-GWAS analyses.

2.3 Genetic data quality control and imputation

Raw genetic data were collected with a variety of genotyping arrays

across—andwithin—cohorts. ForACT, genetic datawere collectedwith

two arrays (Illumina Human660W-Quad Array and Infinium Global

Screening Array-24 BeadChip). For ADNI, genetic data were collected

with four different arrays (Illumina Human610-Quad BeadChip, Illu-

minaHumanOmniExpressBeadChip, IlluminaOmni2.5M, and Illumnia

Global Screening Array v2). NACC is a consortium of 37+ Alzheimer’s

Disease Research Centers (ADRCs), and several different arrays were

used to collect genetic data—acquisition of all genetic data is out-

lined on the NACCwebsite (https://naccdata.org/nacc-collaborations/

partnerships). The ROS/MAP/MARS cohort data were collected with

three different arrays (Global Screening Array-24 v3.0 BeadChip,

Affymetrix GeneChip 6.0, Illumina HumanOmniExpress). Identical and

robust quality control and imputation pipelines were performed for

each chip/cohort.21 First, variants which had a low genotype rate

(<95%), low minor allele frequency (MAF; <1%), or were outside of

Hardy-Weinberg equilibrium (p < 1 × 10−6) were removed. Partici-

pants were excluded if the reported and genotypic sex differed, or

there was poor genotyping efficiency (missing >1% of variants), or

cryptic relatedness was present (PIHAT > 0.25). Imputation was per-

formed on the University of Michigan Imputation Server using the

TOPMed reference panel (hg38)22 with SHAPEIT phasing.

Following imputation, datasets were filtered to exclude variants

with low imputation quality (R2 < 0.8), duplicated/multi-allelic vari-

ants, and MAF < 1%. Within each self-identified racial group (NHW

and NHB), principal component analysis was conducted and genetic

ancestry outliers were excluded.

2.4 Statistical analyses

2.4.1 Single nucleotide polymorphism-heritability
tests

We conducted ancestry-aware single nucleotide polymorphism (SNP)-

heritability tests using the Genome-Wide Complex Trait Analy-

sis (GCTA) pipeline.23 For the NHW and NHB meta-analyses of

memory performance and decline, we used the restricted maxi-

mum likelihood with the genetic relatedness matrices tool to calcu-

late heritability estimates. We then used an equation, z = (h2NHW −

h2NHB)∕
√
(h2SENHW

;+h2SENHB
), to determine if heritability estimates dif-

fered by ancestry,24 and the p-value was extracted from the normal

distribution.

2.4.2 Genome-wide association testing and
meta-analysis

Memory performance and decline GWAS were conducted in each

cohort and ancestry group (ie, NHW or NHB) separately using PLINK

(Version 1.9, https://www.cog-genomics.org/plink/1.9).25 Covariates

included age, sex, and the first five genetic ancestry principal com-

ponents. Significance was set a priori to p = 5 × 10−8 and we also

evaluated suggestive loci which approach significance at p = 1 × 10−5.

NHWandNHBmemoryperformanceandmemorydeclineGWASwere

followed with an ancestry-specific fixed effects meta-analysis using

https://naccdata.org/nacc-collaborations/partnerships
https://naccdata.org/nacc-collaborations/partnerships
https://www.cog-genomics.org/plink/1.9
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GWAMA,26 and variants were filtered to only include those present

in at least three of the four cohorts. Following ancestry-specific meta-

analyses, a cross-ancestry fixed effects meta-analysis was performed

across NHW and NHB GWAS for baseline memory performance and

decline, and variantswere filtered to only include those present in both

ancestry groups. Importantly, GWAS were only included in ancestry-

specificmeta-analyses if at least 50participantswere present in cohort

specific GWAS. For this reason, ADNI was not included in the NHB

memory declinemeta-analysis or any subsequent analyses.

2.4.3 Expression quantitative trait locus analyses

Variants reaching genome-wide significance—and suggestive

variants approaching significance—were mapped to genes and

functionally annotated using several databases, including GTEx

(https://gtexportal.org),27,28 eQTLGen Consortium (whole blood;

https://www.eqtlgen.org),29 Brain xQTLServe (http://mostafavilab

.stat.ubc.ca/xqtl/),30 BrainSeq (dorsolateral prefrontal cortex and

hippocampus [DLPFC]; http://eqtl.brainseq.org),31 and MetaBrain

(https://www.metabrain.nl).32 The expression quantitative trait locus

(eQTL) significance threshold was set a priori at p < 0.05, and eQTL

significance was determined by listed p-values in each respective

database.

2.4.4 Gene- and pathway-level analysis

Gene- and pathway-level analyses were conducted using the Multi-

marker Analysis of GenoMic Annotation (MAGMA v1.09)33 software

on each ancestry-specific meta-analysis and the cross-ancestry meta-

analysis for bothmemory performance andmemory decline. All results

were corrected for multiple comparisons using the false discovery rate

(FDR) procedure (p< 0.05).

2.4.5 Genetic correlation analysis

The NHW within-ancestry meta-analysis results for memory perfor-

mance and decline were used to perform genetic correlation analysis

with the GWAS of 65 other complex traits using the Genetic Covari-

ance Analyzer (GNOVA) program.34 For example, one complex trait

included cognitive performance from a prior meta-analysis of the

COGENT and UK Biobank cohorts.35 Genetic correlations analy-

sis results were corrected for multiple comparisons using the FDR

approach. We focused solely on the NHW within-ancestry meta-

analysis given that all prior complex traits focused onNHWancestry.

2.4.6 Sensitivity analyses

Sensitivity analyses included stratifications based on clinical diagnosis

at baseline, in which analyses were subset to cognitively unimpaired

participants only and cognitively impaired participants only (ie, mild

cognitive impairment or AD dementia diagnosis). Additionally, all anal-

yseswere repeatedafter removingparticipantswith anyof anumberof

17 comorbidities (eg, frontotemporal dementia, depression—see Table

S6 for a full description). Detailed results fromourmain analysis and all

sensitivity analyses can be found in the Supplemental Tables.

2.4.7 Replication analyses

All variant- and gene-level associations that reached genome-wide sig-

nificance were replicated using publicly available data from FinnGen

(https://r8.finngen.fi/). The FinnGen study is focused on establishing

genotype-phenotype correlations in the Finnish population, and the

current database includes data from 342,499 individuals. Several out-

comes in the FinnGen database were evaluated, including “Alzheimer’s

disease,wide definition,” “Alzheimer’s disease (Late onset),” “Alzheimer

disease,” “Dementia in Alzheimer disease,” “Alzheimer’s disease (Early

onset),” “Alzheimer’s disease (undefined),” and “Alzheimer’s disease

(Atypical or mixed).” Full details on the derivation and sample

size of these phenotypes can be found at https://r8.risteys.finngen.

fi/phenocode. Moreover, we extracted reported SNPs from prior

memory-specific GWAS from the Cohorts for Heart and Aging

Research in GEnomic Genomic Epidemiology (CHARGE),8,36 UK

Biobank (UKBB),37 and Cognitive Genomics Consoirtum (COGENT)38

cohorts.

2.5 Data availability

All phenotype and genetic data used in this analysis are available on

NIAGADS (https://dss.niagads.org/). Other phenotype data available

through theADSP-PHCmaybebrowsedonadata curation tool housed

at Vanderbilt (https://vmacdata.org/adsp-phc). All summary statistics

are also available onNIAGADS. The results published here are inwhole

or in part based on data obtained from the Accelerating Medicines

Partnerships - Alzheimer’s Disease Target Discovery and Preclinical

Validation Project (AMP-AD) ADKnowledgePortal.

3 RESULTS

3.1 Heritability estimates

Significant heritability was found in both the NHW and NHB meta-

analyses for memory performance and decline. For the NHW, we

observed statistically significant heritability for baseline memory per-

formance (h2 = 0.151–0.181) andmemory decline (h2 = 0.123–0.159).

Similar estimates were observed in NHB participants for both base-

line memory performance (h2 = 0.194–0.398) and memory decline

(h2 = 0.051–0.295). No differences between NHW and NHB in heri-

tability were observed. Heritability for all main analyses and stratified

analyses can be found in Table S7.

https://gtexportal.org
https://www.eqtlgen.org
http://mostafavilab.stat.ubc.ca/xqtl/
http://mostafavilab.stat.ubc.ca/xqtl/
http://eqtl.brainseq.org
https://www.metabrain.nl
https://r8.finngen.fi/
https://r8.risteys.finngen.fi/phenocode
https://r8.risteys.finngen.fi/phenocode
https://dss.niagads.org/
https://vmacdata.org/adsp-phc
https://adknowledgeportal.org/
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(A) Manhattan Plot of Cross Ancestry Meta-Analysis of Memory Performance

(B) LocusZoom of rs6733839 (C) Forest Plot for rs6733839
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F IGURE 1 Baselinememory performance GWAS results. (A)Manhattan plot of the results from the GWAS onmemory performance, in which
genome-wide significance (5.0× 10−8) and suggestive significance (1.0× 10−5) aremarked by cyan and teal lines, respectively. (B) LocusZoom plot
for the top locus (rs6733839) outside of the APOE region, in which colors highlight the locus disequilibrium. (C) A forest plot for rs6733839, which
shows the direction andmagnitude of effect for all NHWandNHB datasets. The summary estimate for the NHW, NHB, and cross-ancestry
meta-analyses are also presented. ACT, Adult Changes in Thought; ADNI, Alzheimer’s Disease Neuroimaging Initiative; APOE, apolipoprotein E; CI,
confidence interval; GWAS, genome-wide association studies; NACC, National Alzheimer’s Coordinating Center; NHB, non-Hispanic Black; NHW,
non-HispanicWhite; ROSMAPMARS, Religious Orders Study /Memory and Aging Project /Minority Aging Research Study.

3.2 Single-variant associations

Results of the cross-ancestry GWAS of baseline memory performance

are presented in Figure 1. As expected, there was a strong genome-

wide signal at the APOE locus on chromosome 19 (Figure 1A)—(index

SNP rs10119, MAF = 0.351; β = −0.137 ± 0.007, p = 5.22 × 10−99).

While there were no genome-wide significant signals outside of chro-

mosome 19 for baseline memory in our main analysis, there were

several regions approaching significance in previous AD-associated

regions, including those on chromosomes 1 (rs7537669, CR1) and 2

(rs6733839, BIN1 Figure 1B,C).

Similarly, results from the cross-ancestry GWAS of memory decline

are presented in Figure 2. We again observed a strong signal at the

APOE locus (index SNP rs10119, MAF = 0.348; β = −0.016 ± 0.001,

p = 6.87 × 10−104; Figure 2A) and also observed two additional

genome-wide signals, including in chromosome 1 near CR1 (index SNP

rs4562624, MAF = 0.178; β = −0.005 ± 0.001, p = 2.94 × 10−8)

and chromosome 2 near BIN1 (index SNP rs6733839, MAF = 0.402;

β = −0.005 ± 0.001, p = 2.21 × 10−11). For both variants, results were

consistent across NHWandNHB participants (Figure 2B,C).

Sensitivity analyses are presented in Table S8. Association near the

known AD-loci APOE, BIN1, and CR1 were largely similar in sensitivity

analyses. We also observed a novel genome-wide signal on chromo-

some 4 when removing participants with comorbid conditions (index

SNP rs6848524, MAF = 0.034; β = −0.011 ± 0.002, p = 1.95 × 10−8),

and two novel associations in the NHB impaired analysis on
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(A) Manhattan Plot of Cross Ancestry Meta-Analysis of Memory Decline
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F IGURE 2 Memory decline GWAS results. (A)Manhattan plot of the results from the GWAS onmemory decline, in which genome-wide
significance (5.0× 10−8) and suggestive significance (1.0× 10−5) aremarked by cyan and teal lines, respectively. (B) LocusZoom plot for the top
locus (rs6733839) outside of the APOE region, in which colors highlight the locus disequilibrium. (C) A forest plot for rs6733839, which shows the
direction andmagnitude of effect for all NHWandNHB datasets. The summary estimate for the NHW, NHB, and cross-ancestry meta-analyses
are also presented. ACT, Adult Changes in Thought; ADNI, Alzheimer’s Disease Neuroimaging Initiative; APOE, apolipoprotein E; CI, confidence
interval; GWAS, genome-wide association studies; NACC, National Alzheimer’s Coordinating Center; NHB, non-Hispanic Black; NHW,
non-HispanicWhite; ROSMAPMARS, Religious Orders Study /Memory and Aging Project /Minority Aging Research Study.

chromosome 7 (index SNP rs4142249, MAF = 0.106;

β = −0.289 ± 0.051, p = 1.97 × 10−8) and chromosome 15 (index

SNP rs74381744, MAF= 0.014; β=−0.963± 0.170, p= 1.38 × 10−8)

at baseline, and chromosome 1 in longitudinal analysis (index SNP

rs116675675, MAF = 0.012; β = −0.096 ± 0.017, p = 3.37 × 10−8).

However, none of these novel signals replicated in the FinnGen

database when looking at AD phenotypes (p > 0.08). Further, these

novel signals did not replicate in prior GWAS ofmemory.

3.3 Single-variant gene mapping and replication

We evaluated eQTL evidence for the known AD loci in our primary

analysis including rs7537669 (chromosome 1), rs6733839 (chromo-

some 2), and rs10119 (chromosome 19) for baseline memory per-

formance, and rs4562624 (chromosome 1) for longitudinal decline.

We found that rs7537669 was an eQTL for CD46 in 18 differ-

ent tissues and was also an eQTL for CR1 and CD46 in the cor-

tex. We found that rs6733839 was an eQTL for BIN1 in artery-

aorta tissue and was replicated for AD in the FinnGen database

(p = 3.5 × 10−10). The rs4562624 variant is an eQTL for CR1

and CR2 in the cortex (eg, DLPFC) and replicated in the FinnGen

database (p= 7.4 × 10−6). Neither of these variants replicated in prior

GWAS of memory. The rs10119 variant was an eQTL for NECTIN2 in

whole blood in addition to TOMM40 in several tissues—it also repli-

cated for AD in the FinnGen database (p = 1.10 × 10−204) and in

a prior CHARGE cohort analysis of cognitive function (p = 5.67 ×

10−9).
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We then characterized the functional evidence for novel vari-

ants that reached genome-wide significance in sensitivity analyses.

We found that the intronic variant rs116675675 within CEP350

was an eQTL for CEP350 in whole blood. No eQTLs were found

for rs111471504 (located in an intron in SLC8A1) or for rs6848524

(located upstream of BEND4). The rs4142249 variant was an eQTL for

HERPUD2 in whole blood, tibial artery, and skin, and was additionally

an eQTL for SEPTIN7-AS1 in tibial nerve. Additionally, we found that

rs4142249was an eQTL forHERPUD2 in cortex and SEPTIN7 in DLPFC

and hippocampus. The rs74381744 variant is an eQTL for ATP10A in

whole blood.

3.4 AD risk loci associations

We curated a list of 94 SNPs previously associated with AD from

multiple GWAS,1–4,39 and evaluated their association with memory

performance and decline. Table 2 summarizes the ten most significant

associations in the cross-ancestry GWAS and provides the summary

statistics for the respective NHW and NHBmeta-analyses; full results

are reported in Table S9. Interestingly, only three AD risk variants

exhibited genome-wide (p< 5× 10−8) significance or a level approach-

ing significance (p < 1 × 10−5) with baseline memory performance,

including rs429358 (APOE, p = 2.03 × 10−33), rs6733839 (BIN1,

p = 3.96 × 10−7), and rs4844610 (CR1, p = 8.43 × 10−6). Further,

the rs7920721 (ECHDC3) locus demonstrated significance in theNHW

(p = 4.55 × 10−6) meta-analysis but was not significant in the NHB

meta-analysis (p = 0.614). Similar results were observed for the lon-

gitudinal memory decline GWAS, in which four variants exhibited

or approached genome-wide significance, including rs429358 (APOE,

p = 3.20 × 10−59), rs6733839 (BIN1, p = 2.21 × 10−11), rs4844610

(CR1, 7.14 × 10−8), and rs9473117 (CD2AP, p = 1.03 × 10−6). In

the NHW analyses, we found that the rs7920721 locus (ECHDC3,

p= 5.83× 10−6) approached significance.

3.5 Gene-level and pathway results

Genetic architecture of baseline memory performance and memory

decline was also investigated at the gene and pathway level. For

baseline memory performance, several genes exhibited significance

after correction for multiple comparisons, including nine genes in the

APOE region of chromosome 19 (eg, APOE, TOMM40), which was

consistent across all sensitivity analyses. For the pathway level anal-

ysis, one biological process was significantly enriched for memory

performance (calcium ion dependent exocytosis; β = 1.26 ± 0.27,

p-corrected = 0.03), but was not significant in any sensitivity anal-

yses. After removing participants with comorbidities, we found that

1-alkyl-2 acetylglycerophosphocholine esterase activity was enriched

formemory performance (β=1.44±0.32, p-corrected=0.04), butwas

not significant in any other analysis.

Gene- and pathway-level analysis was also conducted for mem-

ory decline, and we found that—like the memory performance

analysis—there was high involvement in the APOE region of chromo-

some 19 which was consistent across all sensitivity analyses. Addi-

tionally, we found significant genes in chromosomes 1 (SLC25A44,

p-corrected = 0.012), 6 (CD2AP, p-corrected = 0.010), 11 (BSX,

p-corrected = 0.022), 15 (DPP8, p-corrected = 0.038), and 16

(ITGAX, p-corrected = 0.024). After removing participants with

comorbidities, the p-values were again significant for SLC25A44

(p-corrected = 0.020), CD2AP (p-corrected = 0.021), and BSX (p-

corrected = 0.022). Moreover, we found significance in the CR1L gene

(p-corrected = 0.022). We found several variants within these genes

that replicated for the 7 AD phenotypes evaluated in the FinnGen

database—6 replicated for SLC25A44 (all p < 0.007), 6 for CD2AP (all

p < 0.001), 6 for BSX (all p < 0.004), 7 for DPP8 (all p < 0.001), 7 for

ITGAX (all p < 0.001), and 5 for CR1L (all p < 0.003). For the pathway

level analysis, no pathways were enriched for memory decline in the

main analysis; however, after removing participantswith comorbidities

there were two significant pathways, including one related to low-

density lipoprotein assembly (p-corrected = 0.03) and one related to

presynapticmembranebinding (p-corrected=0.03). In theNHWmeta-

analysis, the low-density lipoprotein assembly pathwaywas significant

in the analysis with and without participants with comorbidities, while

the presynaptic membrane binding pathway was only significant in

the analysis including participants with comorbidities. All gene-level

results are shown in Table S10 and pathway-level results are shown in

Table S11.

3.6 Genetic correlation

Genetic correlation analysis was performed to determine the extent

of shared genetic architecture between memory and other complex

traits (n = 65). Results from this analysis for memory performance

are shown in Figure 3 and presented in Table S12. We found that

baseline memory was associated with cognitive performance (genetic

correlation = 0.47, p-corrected = 5.55 × 10−24), educational attain-

ment (genetic correlation= 0.44, p-corrected= 5.61 × 10−22), and AD

(genetic correlation=−0.66, p-corrected= 4.60 × 10−16), all of which

remained significant when removing the APOE region (see Table S13).

Genetic correlation analysis was also conducted on memory

decline—results are presented in Figure 3 and Table S12. We found

comparable correlations with cognitive performance (genetic corre-

lation = 0.26, p-corrected = 2.46 × 10−4), educational attainment

(genetic correlation = 0.21, p-corrected = 2.46 × 10−4), and AD

(genetic correlation = −0.95, p-corrected = 6.27 × 10−20), all of

which remained significant when removing the APOE region (see

Table S13). Other notable genetic correlations included multiple neu-

ropsychiatric traits such as schizophrenia and bipolar disorder and

autoimmune traits such as multiple sclerosis, and in all cases genetic

risk for worse outcomes was associated with faster memory decline.

In contrast, genetic risk for inflammatory conditions (eg, asthma)

demonstrated counter-intuitive correlations in which higher genetic

risk was associated with a slower rate of cognitive decline (ie, better

memory).
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F IGURE 3 Genome-wide genetic correlation results. Genetic correlation betweenmemory performance (A) andmemory decline (B) with 65
complex traits. Error bars represent 95% confident intervals. ADHD, attention deficit hyperactivity disorder; ALS, amyotrophic lateral sclerosis;
ASD, autism spectrum disorders; BMI, bodymass index; FTD, frontotemporal dementia; HLD, high-density lipoprotein; IBD, inflammatory bowel
disease; ICV, intracranial volume; LDL, low-density lipoprotein; MDD, major depressive disorder; MS, multiple sclerosis; SDNN, standard deviation
of the NN interval (ie, interval between two heart beats).

4 DISCUSSION

This study leveraged a cross-ancestry GWAS on memory perfor-

mance (n = 27,633) and decline (n = 22,365; nobs = 129,201) in

older adults. We found that both traits are heritable across ances-

tral groups and that the genetic architecture of memory is strongly

influenced by AD. Our top associations came from well-established

AD loci. We observed a novel cross-ancestry locus on chromosome

4 (rs6848524), and three novel NHB-specific loci on chromosomes 2

(rs111471504), 7 (rs4142249), and 15 (rs74381744). The gene-level

analysis identified novel signals on chromosomes 1 (SLC25A44), 11

(BSX), and 15 (DPP8)— these displayed some regional evidence of AD

relevance in our replication cohort. Finally, genetic correlation analysis

demonstrated strong associations with cognitive performance, edu-

cational attainment, and AD, in addition to several neuropsychiatric

and autoimmune traits. These results deepen our understanding

of the genetic architecture of late-life memory performance and

decline and highlight the value of detailed cognitive harmonization

to expand genomic analyses to larger and more representative

samples.

4.1 Heritability of memory in late life

We observed stable heritability estimates for memory ranging from

17% to 35%, which are similar to previous estimates from the Health

and Retirement Study (HRS) and the CHARGE consortiums,8 although

twin studies suggest higher estimates ranging from 30% to 80%.40

When we deconvolved the heritability estimates by disease stage and

race, we did not see evidence of differences in heritability. Given

the differences in the environmental contributors to cognitive decline

across socially constructed racial/ethnic groups, and different environ-

mental contributors across the AD continuum, it will be important to

deconvolve genetic contribution to cognitive decline with larger sizes.

4.2 Novel genetic drivers of memory

Our gene-level analysis identified several novel loci including

SLC25A44, BSX, and DPP8. Solute Carrier Family 25 Member 44

(SLC25A44) has not been previously identified in AD GWAS; however,

it has demonstrated involvement in cerebral small vessel disease and
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hypertension.41,42 RNA-seq analysis of post mortem AD brains found

that this genewas significantly expressed in several brain regions and is

associated with Braak staging (https://agora.adknowledgeportal.org).

The brain specific homeobox (BSX) gene is involved in double stranded

DNA binding activity, is expressed in the pineal gland, and has been

shown to have a role in circadian rhythm.43 The DPP8 (ie, serine

dipeptidase 8) gene is involved in T-cell activation and induces a form

of cell death called pyroptosis in monocytes/macrophages.44 It is also

expressed in several regions in post mortemAD brains.

We identified several variants that had not been reported pre-

viously, though none showed supporting evidence of an association

with AD in FinnGen. Among the novel loci, we had eQTL evidence

implicating CEP350 on chromosome 1, three genes in the chr7 locus

(HERPUD2, SEPTIN7, SEPTIN7-AS1), and ATP10A on chromosome 15.

The CEP350 gene is involved in microtubule organization, is expressed

in the brain, and is upregulated in AD in the AMP-AD cohorts in several

brain regions. Evidence suggests that the minor allele is associated

with lower expression of CEP350 and a faster rate of cognitive decline.

Interestingly, CEP350 protein expression in blood is implicated as a

potential biomarker of memory performance in several neuropsychi-

atric traits.45 However, the relationship between blood expression

and brain expression, as well as the connection between transcript

abundance and protein function, remains unclear. Even so, our findings

add to the evidence that CEP350 is an exciting potential biomarker for

memory decline. Among the genes implicated on chromosome 7, the

SEPTIN7 gene stands out as particularly intriguing as the minor allele

is linked to elevated levels of SEPTIN7 in the prefrontal cortex, and it

experiences downregulation at the transcript and protein level in AD

brain prefrontal cortex. This gene also codes a protein that is localized

to the centromere and is critical for microtubule function. In AD,

SEPTIN7 has been implicated in p25 regulation and dendritic spine for-

mation and morphology, particularly during memory formation.46(p7)

Finally, we had eQTL evidence implicating ATP10A—an aminophos-

pholipid transporting ATPase involved in Angelman syndrome.ATP10A

acts as a flippase and was also reported to be downregulated in

endothelial cells in the AD brain along with a floppase ABCB1.47 Our

work,48 along with that of others,49 has implicated other P4-ATPases

in cognitive susceptibility and AD, and numerous ABC cassette genes

are floppases that have been implicated in AD, highlighting the

potential importance of these phospholipid translocase proteins.

4.3 Genetic drivers of AD strongly contribute to
memory decline in late life

Several strong associations with prior AD loci (ie, APOE, BIN1, CR1,

ECHDC3, CD2AP) were found. As expected, the APOE region demon-

strated a particularly strong association, and this was present across

all sensitivity analyses. For BIN1, we found a strongly suggestive signal

in our main memory performance GWAS and a genome-wide signal in

our memory decline GWAS. BIN1 also exhibited strong signals in sev-

eral of our NHW sensitivity analyses, particularly in analyses among

participants with mild cognitive impairment and/or AD. For CR1, we

found a signal approaching significance for memory performance and

a genome-wide signal for memory decline. This signal remained when

excluding participants with comorbidities. For ECHDC3, there was a

signal approaching significance in the memory decline GWAS. Finally,

we found a signal approaching significance for CD2AP in the memory

decline GWAS. The CD2AP gene was also significant in the gene-level

analysis but was only significant in the memory decline analysis with

and without the inclusion of participants with comorbidities. Previous

evidence has also suggested that the FASTKD2 gene has a protective

effect onmemory and hippocampal volume in carriers.50 Although sig-

nificant associations were not detected in our primary analyses, we

did find evidence for nominal protection of memory performance and

memory decline in our cross-ancestry impaired sensitivity analyses (all

p < 0.04). Together, our results highlight strong associations between

several known AD loci and late-life memory performance.

4.4 Novel genetic correlations with memory

We observed an association between memory and AD genetic archi-

tecture in addition to educational attainment and cognitive perfor-

mance. Additionally, we found correlations with several neuropsy-

chiatric traits, including schizophrenia and bipolar disorder, whereby

worse memory performance and more rapid memory decline were

associated with higher risk of these traits. These findings support the

hypothesis that biological pathways are shared across neuropsychi-

atric traits.51 Prior GWAS studies have indicated a genetic correlation

between short-term working memory and schizophrenia, but not with

bipolar disorder or AD.1,8

Our analysis identified several genetic correlations between mem-

ory and autoimmune traits. For memory performance, we found that

genetic architecture was positively associated with an increased risk

for celiac disease and primary sclerosing cholangitis, but negatively

associated an increased risk formultiple sclerosis. Formemory decline,

we found that genetic architecture was positively associated with

an increased risk for asthma, ulcerative colitis, and vitamin D levels,

but negatively associated with an increased risk for irritable bowel

syndrome. While these results support the notion that inflammatory

pathwaysplay a role in cognitivedecline,52,53 thedirectionality of these

correlations are counter-intuitive. For example, our results suggest

that individuals who are predisposed to memory decline have less risk

for asthma, which conflicts with prior evidence demonstrating that AD

genetic architecture is positively associated with asthma diagnosis.1

4.5 Strengths and limitations

The most significant novelty of the present study is that it is the

largest GWAS on memory performance and decline to date including

cognitively unimpaired participants. To accomplish this feat, memory

scores were harmonized across four well-established cohorts of aging.

Importantly, our sample encompassed all phases of the AD clinical

spectrum (cognitively unimpaired, mild cognitive impairment, AD). An

https://agora.adknowledgeportal.org
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additional strength of this study is that we incorporated NHW and

NHBmeta-analyses into a cross-ancestry analysis. This study, however,

has some limitations. Specifically, although this is the largest longitudi-

nal memory GWAS to date, our sample included many highly educated

participants; thus, we did not include an education covariate in our

analysis. Future studies using data from heterogeneous educational

backgrounds should consider the inclusion of an education covariate

given its strong associationwith longitudinal cognitive decline.We also

used a slope calculation for cognitive decline as opposed to alternative

longitudinal methods; thus, the ability to generalize our results may be

limited. Additionally, our GWAS considered a single cognitive domain,

and the assessment of other cognitive domains is critical to our under-

standing of cognitive decline in AD. Another limitation of this study

is that we considered self-reported race/ethnicity to be synonymous

with ancestry. Newer tools which consider population structure at the

SNP level will allow for robust admixed GWAS. While we were well-

powered to detect small variant effects in theNHWanalyses (f2≈0.003

across all MAFs), we were only powered to detect borderline small

effects in the NHB analyses (f2≈0.03 across all MAFs). Finally, we uti-

lized the FinnGen study database in addition to four prior GWAS of

memory performance as replication cohorts. Given that the FinnGen

study is comprised solely of individuals from Finland, this homogene-

ity restricts the generalizability of our findings. Hence, it is imperative

for future research to replicate our results usingmore diverse cohorts,

ensuring broader applicability and robustness of our results. Ongoing

efforts to harmonize cognitive andgenetic data acrossmultiple cohorts

will assist in addressing this statistical limitation and will allow for the

assessment of rare variants.

5 CONCLUSIONS

The present study conducted the largest memory performance and

memory decline GWAS to date leveraging several well-established

cohorts of aging. We found that these GWAS are similar to AD GWAS,

demonstrating that memory performance and decline are suitable

endophenotypes for AD. Incorporating larger sample sizes into GWAS

of memory may allow for the discovery of candidate genes for the

treatment of AD.
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