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Abstract

The Mexico City Metropolitan Area (MCMA) is one of the largest and most populated urban 

environments in the world and experiences high air pollution levels. To develop models that 

estimate pollutant concentrations at fine spatiotemporal scales and provide improved air pollution 

exposure assessments for health studies in Mexico City. We developed finer spatiotemporal land 

use regression (LUR) models for PM2.5, PM10, O3, NO2, CO and SO2 using mixed effect models 

with the Least Absolute Shrinkage and Selection Operator (LASSO). Hourly traffic density was 

included as a temporal variable besides meteorological and holiday variables. Models of hourly, 

daily, monthly, 6-monthly and annual averages were developed and evaluated using traditional 

and novel indices. The developed spatiotemporal LUR models yielded predicted concentrations 

with good spatial and temporal agreements with measured pollutant levels except for the hourly 

PM2.5, PM10 and SO2. Most of the LUR models met performance goals based on the standardized 
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indices. LUR models with temporal scales greater than one hour were successfully developed 

using mixed effect models with LASSO and showed superior model performance compared to 

earlier LUR models, especially for time scales of a day or longer. The newly developed LUR 

models will be further refined with ongoing Mexico City air pollution sampling campaigns to 

improve personal exposure assessments.
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1. Introduction

The Mexico City Metropolitan Area (MCMA) is one of the largest and most populated 

urban environments in the world and experiences high air pollution levels (Molina et 

al., 2010). A large body of published studies link air pollution exposure in the MCMA 

to various adverse health outcomes, including inflammation and/or DNA damage (Alfaro-

Moreno et al., 2002; Osornio-Vargas et al., 2003), respiratory diseases including asthma 

(Rojas-Martinez et al., 2007), cardiovascular disease (Shields et al., 2013), suppression of 

innate antibacterial immunity (Rivas-Santiago et al., 2015) and overall mortality (Bell et 

al., 2008; O’Neill et al., 2004). Most of these health studies have relied on ambient air 

pollution data from fixed monitoring stations to estimate exposure. A major disadvantage of 

this methodological approach is that it may not capture spatial variability in exposure due to 

local sources, urban topography and local meteorological variables (Jerrett et al., 2005).

Several other methods, such as geostatistical methods and land use regression (LUR), have 

therefore been proposed to model and account for the within-city spatial distribution of 

air pollution concentrations in health studies (Brauer et al., 2003; Hoek et al., 2008; Rivera-

González et al., 2015; Ryan and LeMasters, 2007). On one hand, geostatistical methods, 

including inverse distance weighting and ordinary Kriging, have been evaluated as exposure 

assessment methods in the MCMA (Rivera-González et al., 2015), but these methods cannot 

deal with local emissions (Jerrett et al., 2005). On the other hand, LUR analyses have not 

been used widely for air pollution research in the MCMA. Currently available LUR methods 

developed for the MCMA air pollution study have identified limitations associating with 
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data availability and extrapolation from seasonal variables to annual simulations (Just et al., 

2015; Sangrador et al., 2008).

The current effort to improve LUR models in the MCMA with fine spatial and temporal 

exposure analysis methods was made to advance an ongoing study of the relationship 

between ambient air pollution exposure and human host immune cell functions among 

participants in a Mexico City-based study known as ‘MexAir’. Based on data from our 

lab (Rivas-Santiago et al., 2015; Sarkar et al., 2012), we hypothesize that exposure to poor 

air quality in the MCMA may increase susceptibility to infection with Mycobacterium 
tuberculosis (M.tb) and risk of reactivation tuberculosis (TB).

In order to develop a LUR model with fine spatial and temporal scale, two key variables 

need to be considered. First, traffic data have been identified as an important predictor to 

improve spatial variability (Beelen et al., 2013; Hoek et al., 2001). However, there are no 

publicly obtainable traffic data in most cities (Hoek et al., 2008). Indeed, traffic information 

were not included in the previous MCMA LUR study due to the data availability (Just et 

al., 2015). Second, meteorological variables might improve the performance of LUR models 

with short temporal resolution (Ainslie et al., 2008; Just et al., 2015; Liu et al., 2015). 

However, most LUR models performed to date outside of the MCMA, have focused on 

long-term air pollutant exposures, and assessments of annual, seasonal and monthly averages 

of PM2.5 (Henderson et al., 2007; Johnson et al., 2013), PM10 (Hart et al., 2009; Liu et al., 

2015), NO2 (Arain et al., 2007; Beelen et al., 2013; Dons et al., 2014; Hart et al., 2009; 

Henderson et al., 2007; Johnson et al., 2013; Liu et al., 2015; Wang et al., 2013; Wheeler 

et al., 2008), and SO2 (Wheeler et al., 2008). A limited number of earlier LUR models that 

predicted shorter-term pollutant levels used temporal calibration approaches (e.g., dummy 

variables) (Dons et al., 2013; Johnson et al., 2013) but did not consider time-varying 

meteorological covariates that are useful in the optimization and refinement of LUR models 

(Ainslie et al., 2008; Liu et al., 2015).

The aim of the current study was to introduce ‘hourly meteorological variables’ and an 

‘hourly traffic density variable’ into the LUR model to allow modeling of air quality on a 

finer temporal resolution scale and integrate the temporal variations found throughout the 

three major weather seasons in the MCMA: wet, cold-dry, warm-dry (de Foy et al., 2006; 

Manzano-León et al., 2016).

2. Material and Methods

2.1. Study Areas and Polygonal Regions

The MCMA includes the states of Mexico and Hidalgo, and the Federal District (Distrito 

Federal). The current study area (Region I, II, III, and IV) covered a central part of the 

MCMA with a total area of 4,238 km2 (Figure 1). LUR models were developed to cover 

the whole MCMA study area with different time scales, and then evaluated using whole 

and separate air quality monitoring data based on polygonal regions. Thiessen polygons 

were generated using the locations of the 28 automatic air quality monitoring stations of 

the Red Automática de Monitoreo Atmosférico (RAMA) in the MCMA. Thiessen polygons 

were then combined into four regions based on air quality distribution, pollutant emission 
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sources and urban population density. The four regions are defined as: Region I (central 

MCMA region with large population density; the MexAir study municipalities Iztapalapa 

and Iztacalco are included in this zone), Region II (north western MCMA region with 

medium population density and high air pollution levels), Region III (north eastern MCMA 

region with medium air pollution levels) and IV (southern MCMA region with highest O3 

levels and low levels of other air pollutants).

2.2 Data Collection

Data sets for regression analyses are described in the Supplementary Material (Table S1). 

In brief, ambient air pollution data from 2011 to 2014 was downloaded from the RAMA 

(SIMAT, 2018). The air quality monitoring stations operate beta-attenuation monitors, UV 

photometric ambient ozone analyzers, chemiluminescence NO-NO2-NOx analyzers, UV 

Fluorescence Sulfur Dioxide analyzers, and Infrared CO analyzers to measure particulate 

matter (PM2.5, PM10), O3, NO2, SO2, and CO, respectively. Outliers (i.e., any pollutant 

values lower than 5% and higher than 95%) were not excluded in our study as the pollutant 

data sets had been cleaned and verified by the Mexican government and were therefore 

considered accurate.

Hourly meteorological data for the same time period was obtained from the meteorology and 

solar radiation monitoring network (Red de Meteorología y Radiación Solar; REDMET) and 

the atmospheric deposition monitoring network (Red de Depósito Atmosférico, REDDA), 

which is operated by the Mexican Ministry of Environment (Secretaría del Medio Ambiente 

y Recursos Naturales; SEMARNAT) (SIMAT, 2018). Data from a total of 28 RAMA 

stations, 21 REDMET stations and 16 REDDA stations covering the entire Federal District 

area and part of Hidalgo and Mexico states are included in the current LUR study (Table S2 

and S3).

Traffic density data in past LUR models were either considered as a long-term variable 

or were not available at all (Hoek et al., 2008; Just et al., 2015). This study included 

crowd-sourcing traffic data (i.e., Google traffic) that cover the entire MCMA with hourly 

temporal variation to improve the LUR model. Hourly traffic density was manually coded 

from the Google traffic website (Google, 2009), which shows historical data as ‘typical 

traffic’ for seven days of a week and day times from 5:00 a.m. to 11:00 p.m.. The Google 

typical traffic map covers the entire MCMA with clear spatial and temporal traffic patterns 

(Figure S1).

Briefly, the Google traffic road map for the MCMA was duplicated using the ArcMap 10.2 

software, and then color codes (green, orange, red and dark red for fast to slow traffic speed) 

from the Google typical traffic were manually recorded as a number code (0–5 scale for 

no color to dark red) for identical roads. We assumed that slower traffic (red or dark red) 

would result in a greater car density on a road and that this would lead to the emission of 

larger quantities of air pollutants in a given time period. As Google does not provide ‘typical 

traffic’ information for the time interval between midnight and 4:00 a.m., traffic density data 

for this time interval was defined as the average of the 11:00 p.m. and 5:00 a.m. values from 

each respective day. Then, coded ‘typical traffic’ density was applied to all days.
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Road maps and the Mexican census basic area level population data (Área geoestadística 

básica; AGEB; an area where approximately 1,500 individual reside) were obtained from 

the National Institute of Statistics and Geography (Instituto Nacional de Estadística y 

Geografía; INEGI) in Mexico (INEGI, 2018). A land use map and a digital elevation model 

(DEM) were downloaded from the United States Geological Survey (USGS, 2016). In 

addition, residential, industrial and commercial urban land use information was obtained 

from the OpenStreetMap (OpenStreetMap contributors, 2015). Point values of annual 

pollutant emission loads (ton/year) for PM2.5, PM10, NO2, SO2, and CO were obtained from 

SEMARNAT (SIMAT, 2018). Point emission data were divided by the distance between 

each emission point and monitoring station because pollutant concentrations were inversely 

correlated with the distance from their sources. Estimated inverse distance weighted 

emission loads (ton/year/km) were used in all LUR model developments to incorporate 

the impact of point sources on the Mexico City air quality. We simply incorporated the 

annual emissions data uniformly into the hourly and monthly assessments, recognizing that 

this assumes constant emissions across the time period from these sources.

2.3. Development of LUR Models for the MCMA

LUR models were developed for six ambient air pollutants: PM2.5, PM10, O3, NO2, 

SO2, and CO. In these models, dependent variables were log-transformed hourly air 

pollutant concentrations. Independent variables were hourly meteorological data, hourly 

traffic density, road length, land use, emission inventory and population-related data (Table 

S4) within different radiuses of circular buffers (500 m - 5 km) around the RAMA sampling 

stations. Large buffers might not represent the diverse spatial distribution of air pollutants 

emitted by traffic related sources such as particulate matter and NOx (Hoek et al., 2008). 

We therefore excluded traffic related independent variables for small buffers (< 500 m) in 

all final LUR models because the small buffers included similar road lengths and traffic 

densities due to the complex road network and traffic patterns of the MCMA and failed 

to include sources form the emission inventories and different land uses. Therefore, buffer 

sizes greater than 500 m were selected to (1) include multiple emission sources from the 

emission inventory and all roads covered by Google traffic data and (2) to represent the 

breadth of land use classes (residential, industrial, commercial and green space). Data points 

without observed pollutant concentrations were excluded from the final dataset. Hourly 

meteorological data from nearest weather stations were used to fill in the missing values.

The best subsets of the mixed-effect models were selected using the least absolute shrinkage 

and selection operator (LASSO) method, which is intended to improve the prediction 

accuracy and interpretability of model (Tibshirani, 1996). Independent variables were fixed 

at a shrinkage parameter (λ), which represents one standard deviation of a minimum mean 

square error. Linear mixed-effect models with LASSO corresponding to each time of the 

days throughout a year were developed using the following equation (Eq. 1):

P = β0 + αP ⋅ jℎ + β1V 1 + β2V 2 + ⋯ + βnV n + ε

(1)

Son et al. Page 5

Sci Total Environ. Author manuscript; available in PMC 2024 February 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where P  denotes the log-transformed hourly pollutant concentration; ϐ0 is the intercept; 

ϐ1 − ϐn denote the regression coefficient for the independent variables; V 1 − V n are 

independent variables; and αp ⋅ jℎ are the random intercepts on hours (h) in jth day (j = 

366, h = 24) for a pollutant P . Analysis was conducted in R 3.2.1 (R Core Team, 2015) 

using the lmmlasso package (Schelldorfer et al., 2011). For comparison purposes, the linear 

mixed-effect (LME) method (lme4 package in R) was applied to the same hourly PM2.5 

data set used for the LASSO method. The final subset of the LME model for hourly 

PM2.5 concentrations was selected by the internal optimization function of lme4 package 

to obtain maximum likelihood (Bates et al., 2014). In addition, daily, monthly, 6-month 

and annual LUR models were generated by averaging dependent and temporal independent 

variables to evaluate the impact of temporal scale on independent variable selection and 

model performance.

2.4. Evaluation of the LUR Models

The performances of the final LUR models in predicting actual measured air pollution levels 

were evaluated using coefficients of determinants (R2), Nash-Sutcliffe efficiency (NSE), root 

mean square error (RMSE), RMSE-observations standard deviation ratio (RSR), and mean 

fractional error (MFE). R2 and RMSE are the most popular measures of goodness-of-fit 

and error index but may be over-sensitive to extreme values (Moriasi et al., 2007). NSE, 

RSR and MFE are standardized indices that are not biased by outliers and used by U.S. 

EPA to evaluate model performances (EPA, 2007). NSE measures how well the simulated 

and observed data fits identity line (i.e., x=y line) (Nash and Sutcliffe, 1970). NSE ranges 

from negative infinity to 1 and NSE values of 1 reflect optimal performance. The RSR 

standardizes the RMSE using standard deviations of observed data and indicates unbiased 

error indices (Moriasi et al., 2007). The optimal value of the RSR is 0 representing zero 

residual variations or RMSE. The MFE indicates a normalized error without biases (Boylan 

and Russell, 2006). An MFE value of 0 represents no difference between observed and 

simulated value. Equations for the NSE, RSR and MFE are presented in Supplementary 

Material.

Spatial validation was performed for the entire study area using a K-fold cross validation 

(CV) with the LASSO method. First, a monitoring station was excluded from the total 

number of sampling sites (K) to generate training data sets with K-1 sites. Monitoring sites 

are K=14, 20, 28, 27, 27 and 26 for PM2.5, PM10, O3, NO2, SO2 and CO monitoring 

stations, respectively (Table S3). The final LUR models were fitted to the training data 

sets. Fitted models predicted pollutant concentrations at the excluded sites (test set). Model 

performance was subsequently calculated using predicted and observed concentrations of 

the test data and averaged R2 was reported as a result of the cross validation. LUR and 

validation statistics could not be calculated for each polygonal region due to the limited 

number of monitoring stations.
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3. RESULTS

3.1. Air Quality of the MCMA

Table 1 shows summary statistics of meteorological variables and air pollutant 

concentrations in the MCMA between 2011 and 2014. Annual average PM2.5, PM10, O3, 

NO2, SO2 and CO concentrations during the study period (2011–2014) were 24.5 μg/m3, 

45.3 μg/m3, 28.3 ppb, 26.3 ppb, 5.56 ppb and 0.80 ppm, respectively. The ambient air 

quality of the MCMA showed clear temporal patterns. PM2.5, PM10 and O3 concentrations 

were higher in the warm-dry seasons whereas NO2, CO and SO2 concentrations were higher 

in the cold-dry seasons. Lower air pollutant concentrations were observed during the wet 

seasons.

Air pollutant concentrations in the MCMA also showed special patterns (Table S5). Region I 

showed the highest PM2.5, PM10, NO2 and CO concentrations because this region is located 

in the middle of MCMA which has the most population, traffic, and industries. The highest 

SO2 concentration (7.25 ppb) was observed in the northern part of the MCMA (region II) 

due to the highest number of SO2 emission sources. Whereas, the highest O3 concentration 

(33.7 ppb) was observed in the southern part (region IV).

3.2. Development of the LUR Models

The developed LUR model equations for the hourly time scale are presented in Table 2 and 

daily, monthly, 6-month and annual time scales are presented in detail in the Supplementary 

Material (Table S6). Meteorological variables, including temperature, humidity and wind 

speed, and the hourly traffic density variable, were selected as covariates in models for all 

six air pollutants of interest and five temporal scales. Hourly PM10 and NO2 decrease 

by 1.00 μg/m3 and 0.98 ppb for every increase of 1 °C in temperature. Hourly O3 

concentrations would be changed by 1.03 ppb and −0.99 ppb for every increase of 1 

°C in temperature and 1% in humidity, respectively. One level increases of hourly traffic 

density within 5 km radius are expected to increase by 1.21 μg/m3, 1.11 μg/m3 and 1.14 

ppb for hourly PM2.5, PM10 and NO2, respectively. Increased air pollutant concentrations 

were observed on holidays and weekends in both observed data and LUR model results. 

For instance, 1.13 μg/m3 higher PM2.5 concentrations would be expected on holidays or 

weekend days than on other days.

3.3. Evaluation of the LUR Model Development Method

Hourly PM2.5 model performances using LASSO and LME were compared to evaluate the 

LUR model development method (Figure 2). In general, LASSO method shows better model 

performance than LME method. R2 and NSE of hourly PM2.5 model using LASSO were 

0.364 and 0.335, respectively, and LME method were 0.350 and 0.038, respectively. Error 

indices of hourly PM2.5 model using LME were 15.84, 0.981, and 0.496 for RMSE, RSR, 

and MFE, respectively, and LASSO method were 13.27, 0.816, and 0.414 for RMSE, RSR, 

and MFE, respectively.
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3.4. Performance of the LUR Models

The LUR model performances were evaluated by comparing the predicted air pollutant 

concentrations with observed concentrations obtained from the monitoring network in the 

MCMA (Table 2 and Table S7). LUR models using longer temporal scales showed better 

performances than those using shorter temporal scales. For instance, the NSE of hourly 

PM2.5 model was 0.320, while the NSE of the monthly average of the PM2.5 models was 

increased to 0.765. The error indices, i.e., RMSE, RSR and MFE, were inversely correlated 

with the temporal scale. The RSR and MFE of the hourly PM2.5 model was 0.825 and 

0.413, respectively, whereas RSR and MFE of the monthly average PM2.5 model were 0.378 

and 0.056, respectively. Furthermore, spatial variabilities of developed LUR models were 

acceptable and validated by differences between cross validation results and the hourly LUR 

model R2 values of less than 10% (Table S7).

Hourly and monthly averages of the LUR model performances were evaluated in each 

polygonal geographical region within the MCMA (Table 2). Hourly LUR models in region 

IV usually showed lower R2 values than other polygonal regions. Higher RMSEs were 

observed in regions with higher ambient pollutant concentrations; e.g., the highest RMSE 

for the hourly NO2 model was observed in region I where NO2 concentrations were higher 

than in other regions, whereas RSR and MFE of NO2 observed in region IV were higher 

than in other regions.

The simulated average diurnal and monthly LUR model results for the six air pollutants 

studied here correlated well with the observed trends (Figures S2 and S3). Except 

O3, all air pollutants displayed highest concentrations in the morning (around 10 a.m.) 

while the highest O3 concentrations were noted around 3:00 p.m. (Figure S2). Air 

pollutant concentrations during the months of December and May (cold-dry and warm-dry 

weather seasons) were higher than during June and November (wet weather season). O3 

concentrations were high in May while PM2.5, PM10, NO2, SO2 and CO concentrations 

were high in the December-January period (Figure S3).

Figure 3 shows the spatial distributions of simulated average ambient air pollution data at 7 

a.m. (30×30 m grid cells), which is the time showing the highest air pollutant concentrations 

except for O3. Our developed LUR models well represented the spatial distributions of 

six air pollutants. The simulated air quality map shows particulate matter, NO2, and CO 

concentrations are the highest in the middle of the MCMA (Region I) and are well correlated 

with the observed air quality (Table S5). The north-western part and the middle of the 

MCMA (Region II) show higher SO2 concentration than other regions. In addition, the 

predicted O3 concentration is the highest in the south-western part of the MCMA (Region 

IV) as observed from the RAMA.

4. DISCUSSION

This paper contributes to the existing literature by demonstrating a LUR approach to air 

pollution exposure estimation in the MCMA which incorporates a range of predictors 

and uses a novel combination of temporal variables (i.e., hourly meteorological variable 
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and hourly traffic density) and statistical techniques for model fitting and performance 

assessment.

The LASSO method improved the performance of the traditional LUR method. To develop 

improved spatiotemporal LUR models for the MCMA, we employed the LASSO method 

which is a variation of linear regression and maximizes overall model efficiency under weak 

or negligible assumptions (e.g., linearity, constant variance and normality) (Lockhart et al., 

2014). In contrast, most previously developed LUR models used the standard linear least 

squares method (Hoek et al., 2008), for which it is recommended that the investigator apply 

diagnostic tests to monitor for violations of any assumptions (Jerrett et al., 2005).

The developed LUR model equations interpreted temporal air pollution levels and emission 

processes satisfactorily. The meteorological variables which are included in all of our hourly 

LUR models represent seasonal and temporal variation of air pollutants. The temperature 

variable showed a positive relationship with O3, as expected, since increased temperature, 

UV radiation, and source pollutants (e.g., VOC, NOx and CO) can generate higher levels of 

O3 (Singh et al., 2009). Our model results also correlated well with high O3 concentrations 

in the warm-dry season (Figure S3). In addition, the significant influence of the elevation 

variable in our hourly O3 model reflects the relationship between radiation and O3 formation 

because elevation increase was known to provide more UV radiation (Blumthaler et al., 

1997). Indeed, the addition of a UV radiation variable, which was not available for this 

analysis, might further improve the O3 model performance.

The increased relative humidity and precipitation variables that decreased the air 

pollutant simulation and our model results correlate well with the observed air pollutant 

concentrations in the wet season (Figure S3). Strong air flows from the Gulf of Mexico that 

increase humidity and precipitation in the MCMA, are known to enhance the mixing and 

removal of air pollutants in the region (Molina et al., 2010). In fact, precipitation may be a 

factor that contributes to the scavenging of particulate matter and hydrophilic air pollutants 

(Marley et al., 2009).

Next, among the air pollutant emission related variables, traffic density variables were the 

most influential variables in most of our hourly LUR models except the hourly O3 model. 

This coincides with the observation that anthropogenic emissions are major sources of 

particulate matter and NOx in the MCMA (Molina et al., 2010). On-road mobile emissions 

dominate the total anthropogenic emission in size, followed by point emissions such as 

industrial production processes. Indeed, in our models, the traffic density variable was the 

most significant variable to predict diurnal air pollution trend (Figure S2). While traffic 

density data has been a significant predictor variable in many LUR models developed in 

European countries and Canada (Beelen et al., 2013; Brauer et al., 2003; Briggs et al., 2000), 

most of these available data were derived from long-term average traffic counts or were not 

obtainable at all (Hoek et al., 2008; Just et al., 2015). The current study, in contrast, obtained 

hourly traffic density data from the Google ‘typical traffic’ website, which is based on 

crowd-sourcing data (Google, 2009). Hourly traffic density explained 2%−10% of temporal 

air quality variability in the MCMA. The Google ‘typical traffic’ provides hourly traffic data 

that cover 61 out of 256 countries worldwide. A difficulty associated with the use of the 
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Google ‘typical traffic’ data for the purpose of the development of LUR models, such as the 

current one for the MCMA, is that data need to be coded manually.

The holiday variable was found to be another important covariate in the current study that 

explained temporal variations of air pollution concentrations in the MCMA. Current LUR 

models showed that air pollutant concentrations were increased on holidays and weekends 

except for O3. Activity patterns during holidays and weekends are different from that 

on weekdays. Traffic-related pollutant emission rates may, for example, decrease during 

holidays and weekends when many residents leave the MCMA (Velasco et al., 2005). In 

contrast, peaks of PM2.5 concentrations in Mexico City can occur during New Year and 

Christmas days as a result of fireworks, outdoor cooking or other, unusual, pollution events 

(Just et al., 2015).

Developed hourly LUR models showed ranges of model performances in different regions 

of the MCMA (Table 3). Large industrial complexes located in Region II might decrease 

hourly NO2, SO2, and CO model performances. Even though mobile emissions are the 

major source of air pollutants, industrial emissions are estimated to contribute 10–50% of 

the total air pollutant emissions in the MCMA (Molina et al., 2010). For example, the Tula 

industrial complex located northwest of the MCMA consists of the second largest refinery 

and the fifth largest thermoelectric power plant in Mexico and largely impacts the SO2 and 

NO2 levels of the MCMA Region II (Rivera et al., 2011). While the operation of these 

facilities could affect air pollution concentrations in Region II, short-term emission patterns 

could not be included in our LUR models due to the lack of data availability. For the same 

reason, our hourly models could not explain satisfactorily the air pollution concentrations for 

Region IV. Indeed, the Popocatépetl volcano located on the edge of Region IV might emit 

substantial amounts of air pollutants into the MCMA but the temporal emission pattern of 

the volcano is not well known or predictable. The dispersion of these point emission sources 

in the MCMA are largely depending on wind speed, wind direction, and boundary layer 

height. Thus, detailed emission patterns from local pollution sources coupled with wind field 

data need to be accessed to improve current LUR models.

LUR models with longer timescales showed better model performances because peak 

observations in the shorter temporal scale data were temporally aggregated (Table S7). 

For instance, gases and particles emitted from biomass and garbage burning have been 

shown to contribute significantly to observed air pollution levels in the MCMA (Christian 

et al., 2010). Shorter timescale models could not reflect such episodic emission events, 

while longer temporal scale models could decrease relative errors by aggregating these peak 

events. Therefore, the study of local emission sources and dispersion events can be expected 

to help improve short-term LUR models.

Despite the fact that direct comparisons between LUR models may not be adequate because 

of differences in their methodology and data, the performances of our daily LUR models 

are comparable with or better than that of previous studies developed in different regions of 

world. The daily NO2 LUR model in this study shows a R2 value of 0.72 while previous 

studies reported R2 values ranging from 0.43 to 0.82 for NO2 LUR models (Ainslie et al., 

2008; Arain et al., 2007; Johnson et al., 2013; Liu et al., 2015). Reported daily LUR model 
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performances (R2) for PM2.5 were 0.88 and for PM10 were 0.47 and 0.89 (Johnson et al., 

2013; Liu et al., 2015), respectively. Our daily PM2.5 and PM10 LUR models showed R2 

values of 0.51 and 0.58, respectively. Previously reported LUR model performances (R2) for 

monthly averages were 0.17 for PM2.5, 0.49 for PM10, and 0.51 for NO2, and for annual 

averages were 0.73 for PM2.5, 0.58 for PM10, and 0.97 for NO2 (Beelen et al., 2013; Dons 

et al., 2013; Dons et al., 2014; Hart et al., 2009; Hoek et al., 2008; Liu et al., 2015; Wang 

et al., 2013; Wheeler et al., 2008). The monthly average, 6-month average and annual LUR 

models presented here show similar or higher R2 values compared with those previously 

reported (Table S7), although previous studies used large number of saturation monitoring 

stations. Methodology, data source and, land use may attribute the difference in LUR model 

performances.

Even though most studies report R2 and RMSE to show model performance, we suggest 

that standardized model evaluation techniques, i.e., NSE, RSR and MFE, should be used to 

present LUR model performances. In the current study, differences between R2 and NSE 

in hourly LUR models were due to the impact of extreme values and/or worse fitting on 

the identity line compared to longer time scales (Table S7). In past studies, the RMSE was 

the most popular error index used to evaluate LUR models (Hoek et al., 2008; Jerrett et 

al., 2005); however, direct comparisons of RMSE values may thus be less meaningful than 

standardized error indices for LUR models that employ different spatiotemporal scales (e.g., 

in the current study the NO2 models in region I and region IV, or the LUR models in the 

wet and the warm-dry seasons). Interestingly, to date there are no clear model performance 

criteria defined for R2 and RMSE, but NSE, RSR and MFE criteria have been defined as 

NSE ≥ 0.5, RSR ≤ 0.7 and MFE ≤ 0.5 (Boylan and Russell, 2006; Moriasi et al., 2007) and 

accepted by U.S. EPA (EPA, 2007). Therefore, standardized evaluation indices can indicate 

how well LUR model results simulate observed air quality data without the bias of using 

pre-defined criteria. Our developed LUR model results are within these model performance 

goals except hourly models for PM2.5, PM10 and SO2 (Table S7).

LUR models employing different time scales can explore multiple health outcomes with 

outcome-relevant time frames to best reflect acute or chronic adverse health outcomes. For 

instance, asthma exacerbations and dysrhythmias are inherently measured on shorter time 

scales and models which can predict short-term air pollution exposures are important to 

study such acute and sub-chronic health outcomes. Longer time scale models are necessary 

to investigate for example chronic pulmonary diseases or immunological alterations that 

may facilitate respiratory infections such as with M.tb. However, for both acute and 

chronic health outcome studies, smaller time scales appear to improve the reliability of 

epidemiological studies by reducing within-subject variations and/or by identifying critical 

windows of exposure (Nethery et al., 2008). Sbihi et al. (2015), for example, found positive 

correlations between postnatal air pollution exposure and increased risk for atopy using bi-

weekly adjusted LUR models. In addition, shorter timescale models will help to understand 

local air pollution exposures. Short temporal scale model results provide better information 

on emission sources (e.g., mobile, point, or areal emission) and toxic hot-spots in addition 

to critical windows. Therefore, developed short timescale models may, in the future, be used 

both to assess the impact of air pollution exposures on health and inform local air pollution 

regulation.
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The current study has limitations and points to the need for further research. First, buffer 

sizes of traffic-related independent variables used in this study ranged from 500 m to 5 

km and were thus larger than in previous studies in Canada and European countries that 

employed mobile sampling strategies (Hoek et al., 2008). Large buffer sizes may impair the 

ability of the current model to accurately predict air pollutant exposures as the impact of 

traffic-related pollutant sources declines at distances from major urban roads and freeways, 

beyond 100 m and 500 m, respectively (Hoek et al., 2008). The impact of finer buffer size 

on LUR model performances will be accessed using the on-going MexAir indoor/outdoor 

sampling data. Atmospheric boundary layer (ABL) heights may further improve spatial and 

temporal variations of air pollution. Low ABL heights may trap air pollution in the southern 

part of the MCMA during the cold weather periods, because the MCMA is located at 2,240 

m altitude and its basin is surrounded by three high mountain ridges (de Foy et al., 2006). 

It is possible that the introduction of dispersion conditions could improve the simulation of 

spatiotemporal distributions of air pollution concentrations in the MCMA.

5. CONCLUSIONS

We developed LUR models with different temporal scales for the MCMA using mixed 

effect models with the LASSO method. This approach improved air pollution exposure 

predictions and made them less dependent on assumptions inherent to the least squares 

method. The current model employed hourly meteorological variables and hourly traffic 

density information from Google ‘typical traffic’ and satisfactorily reflects differences 

in temporal and spatial air pollution trends in the MCMA. Our approach to utilizing 

the LASSO method with hourly meteorological and crowd-sourcing traffic data can be 

generalized to any LUR study and may improve air pollution exposure assessments. In the 

context of the MexAir study, near road and indoor air pollution sampling data from on-going 

sampling campaigns are expected to improve the performance of the presented LUR models 

as exposure assessment tools in the MCMA.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Air pollution exposures in Mexico City result in adverse health outcomes

• Land use regression models for six air pollutants were developed

• Hourly meteorology and traffic data facilitated finer timescale simulation

• A new regression method improved model performance
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Figure 1. 
The study area and polygonal regions
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Figure 2. 
Hourly PM2.5 model performances for the least absolute shrinkage and selection operator 

(LASSO, black dot) and the linear mixed effect (LME, gray dot) method. Red and blue lines 

indicate the trend lines for the LASSO and LME method, respectively
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Figure 3. 
Spatial distribution of simulated average air pollutant concentrations at 7 a.m.
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Table 1.

Summary statistics of meteorological and ambient air quality data in the MCMA (2011–2014)

Parameter

Average Percentile (%)

Weta CDb WDc Annual Min 5 25 50 75 95 Max

Temperature (°C) 17.2 14.8 18.6 16.7 −3.40 8.80 13.4 16.3 20.3 25.3 34.4

Humidity (%) 63.2 49.2 39.7 52.6 0.00 15.0 35.0 53.0 71.0 89.0 100

Precipitation (mm) 4.35 0.00 0.59 1.97 0.00 0.00 0.00 0.00 0.00 7.21 178

Wind speed (m/s) 2.13 1.87 2.10 2.04 0.00 0.60 1.20 1.80 2.60 4.30 12.1

PM2.5 (μg/m3) 19.4 27.6 31.0 24.5 1.00 5.00 13.0 21.0 32.0 54.0 275

PM10 (μg/m3) 35.3 55.8 63.7 45.3 1.00 10.0 26.0 42.0 63.0 110 1269

O3 (ppb) 26.0 23.2 37.9 28.3 1.00 1.00 6.00 20.0 43.0 82.0 185

NO2 (ppb) 21.8 31.4 27.4 26.3 1.00 7.00 10.0 24.0 35.0 54.0 200

SO2 (ppb) 4.02 7.35 5.29 5.56 1.00 1.00 2.00 3.00 5.00 19.0 348

CO (ppm) 0.66 0.93 0.81 0.80 0.10 0.20 0.40 0.60 1.00 2.00 8.80

a
Wet season: June-October;

b
CD (Cold-dry season): November-February;

c
WD (Warm-dry season): March-May
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Table 2.

Developed land use regression model equations using LASSO for hourly temporal scale

Pollutant LUR model

PM2.5 lnPM2.5 = (2.85848+αPM2.5 ⋅ jℎ − 0.00193H − 0.00180P + 0.00075Pn − 0.17832W S + 0.19261TD5 − 0.9109C0.5

+0.03909G3 − 0.13227W 3 + 0.02396PS2 + 0.00096PT2 + 0.12319A
PM10 lnPM10 = (4.08058+αPM10 ⋅ jℎ − 0.00305T − 0.00952H − 0.00090P + 0.00089Pn − 0.06379W S + 0.10773TD5

+0.78041B2 + 0.00507C5 − 0.00838F5 − 1.65643G1 + 1.02608Ui0.5 + 0.03040PS1 + 0.09850A
O3 lnO3 = −1.71620 + αO3 ⋅ jℎ + 0.02500T − 0.01071H + 0.00055Pn + 0.13083W S − 0.08140TD5 + 1.87073DEM3

+0.22970B3 + 0.00998C5 + 0.05883Uc4 − 0.02474A
NO2 lnNO2 = (3.09564 + αNO2 ⋅ jℎ − 0.01725T − 0.00235H − 0.00005P + 0.00020Pn − 0.20188W S + 0.13479TD5

−0.86578B2 − 0.04917C0.5 + 0.00012F3 − 0.23549Ur0.5 + 0.09066Ui4 + 0.00878PS3

+0.00076PT4 + 0.09524A
SO2 lnSO2 = (1.18634 + αSO2 ⋅ jℎ − 0.01841T − 0.00481H − 0.00163P − 0.0753W S + 0.07821TD5 + 0.00112R2

−0.21697B4 − 0.01528F2 + 0.1886Ur3 + 0.50678Ui0.5 + 1.58474Uc1 − 0.06407W 4 − 0.00475PT1

+0.00681PS4 + 0.04577A
CO lnCO = ( − 0.20303+αCO . jℎ − 0.00706T + 0.00129H − 0.00022P + 0.00074Pn − 0.20417W S + 0.18125TD5

−0.20671DEM0.5 + 0.01685Rt0.5 − 0.36037B4 − 0.40972C0.5 + 0.06913Ui5 + 0.17456Uc4

+0.00721PT1 + 0.00800PS0.5 + 0.08831A

Sci Total Environ. Author manuscript; available in PMC 2024 February 26.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Son et al. Page 22

Table 3.

Hourly LUR model performance in different polygonal regions of the MCMA

Pollutant Region

Hourly time scale Monthly time scale

R2 NSE RMSE RSR MFE R2 NSE RMSE RSR MFE

PM2.5 All 0.364 0.320 13.32 0.825 0.413 0.765 0.764 3.266 0.486 0.097

I 0.379 0.306 14.31 0.833 0.411 0.778 0.775 3.235 0.475 0.090

II 0.368 0.336 12.94 0.815 0.391 0.651 0.620 3.765 0.617 0.103

III 0.381 0.343 12.35 0.810 0.398 0.801 0.795 2.800 0.453 0.100

IV 0.259 0.242 12.22 0.871 0.447 0.711 0.708 3.019 0.541 0.099

PM10 All 0.381 0.350 27.23 0.807 0.397 0.381 0.350 27.23 0.807 0.397

I 0.368 0.339 22.60 0.813 0.347 0.695 0.599 8.559 0.633 0.140

II 0.414 0.371 27.24 0.793 0.432 0.887 0.869 6.745 0.362 0.089

III 0.413 0.355 26.55 0.803 0.381 0.826 0.782 8.880 0.466 0.145

IV 0.306 0.285 23.61 0.845 0.419 0.843 0.777 5.955 0.473 0.110

O3 All 0.653 0.610 16.77 0.625 0.488 0.719 0.718 3.952 0.532 0.110

I 0.727 0.691 15.32 0.556 0.510 0.730 0.717 3.612 0.532 0.110

II 0.727 0.699 13.73 0.549 0.482 0.632 0.570 3.856 0.655 0.111

III 0.652 0.489 17.76 0.715 0.477 0.761 0.758 3.257 0.492 0.092

IV 0.682 0.168 27.70 0.912 0.530 0.776 0.489 5.873 0.715 0.145

NO2 All 0.512 0.502 10.68 0.706 0.324 0.820 0.818 3.343 0.427 0.103

I 0.459 0.427 12.60 0.757 0.283 0.714 0.660 3.849 0.583 0.088

II 0.422 0.393 10.94 0.779 0.339 0.768 0.747 3.264 0.503 0.115

III 0.589 0.558 7.906 0.665 0.337 0.779 0.771 3.184 0.478 0.149

IV 0.302 0.159 11.79 0.917 0.388 0.859 0.794 2.353 0.454 0.081

SO2 All 0.130 0.059 10.19 0.970 0.562 0.620 0.611 1.719 0.624 0.229

I 0.165 0.063 9.990 0.968 0.544 0.637 0.608 1.625 0.626 0.189

II 0.072 −0.011 13.90 1.005 0.629 0.441 −0.295 3.088 1.138 0.379

III 0.112 0.061 8.979 0.969 0.528 0.576 0.575 1.487 0.652 0.231

IV 0.083 0.042 7.182 0.979 0.573 0.508 0.499 1.359 0.708 0.207

CO All 0.530 0.497 0.426 0.709 0.379 0.593 0.588 0.167 0.642 0.168

I 0.531 0.484 0.478 0.719 0.343 0.559 0.535 0.148 0.682 0.129

II 0.528 0.409 0.492 0.769 0.408 0.440 0.388 0.164 0.782 0.156

III 0.528 0.489 0.317 0.715 0.436 0.498 0.474 0.162 0.725 0.220

IV 0.305 0.254 0.288 0.864 0.388 0.233 −0.355 0.157 1.164 0.216

R2 = coefficient of determination, NSE = Nash-Sutcliffe efficiency, RMSE = root mean square error, RSR = RMSE-observations standard 
deviation ratio, and MFE = mean fractional error; performance criteria are NSE ≥ 0.5, RSR ≤ 0.7 and MFE ≤ 0.5
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