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Obesity, a chronic low-grade inflammatory disease represented by multifactorial metabolic dysfunctions, is a significant global
health threat for adults and children. The once-held belief that type 1 diabetes is a disease of people who are lean no longer holds.
The mounting epidemiological data now establishes the connection between type 1 diabetes and the subsequent development of
obesity, or vice versa. Beyond the consequences of the influx of an obesogenic environment, type 1 diabetes-specific
biopsychosocial burden further exacerbates obesity. In the course of obesity management discussions, recurring challenges
surfaced. The interplay between weight gain and escalating insulin dependence creates a vicious cycle from which patients
struggle to break free. In the absence of weight management guidelines and regulatory approval for this population, healthcare
professionals must navigate the delicate balance between benefits and risks. The gravity of this circumstance highlights the
importance of bringing these topics to the forefront. In this Review, we discuss the changing trends and the biopsychosocial
aspects of the intersection between type 1 diabetes and obesity. We highlight the evidence supporting the therapeutic means (i.e.,
exercise therapy, nutritional therapy, adjunct pharmacotherapy, and bariatric surgery) and directions for establishing a more robust
and safer evidence-based approach.
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INTRODUCTION
The global prevalence of obesity has nearly tripled since 1975 with
an estimated five million deaths in 2019, driven by comorbidities
such as diabetes [1, 2]. Since 1980, there has been a fourfold surge
in diabetes, contributing to a major cause of premature mortality
[3]. In the USA, type 1 diabetes (T1D) represents about 5.6% of all
cases of diabetes in adults [4]. Historically characterised as a
phenotype prevalent among individuals who are lean, T1D has
now been found to be influenced by factors beyond the
autoimmune process [5–7]. The prevalence of T1D is projected
to increase globally from 3.7 million in 2021 to ~13.5–17.4 million
in 2040 [8]. The accelerated impairment of pancreatic β-cells due
to obesity becomes evident amid the rapid socioeconomic and
nutrition transition. In the context of type 2 diabetes (T2D), a
transformative shift is unfolding in clinical care practices, primarily
focused on the realisation of double-digit weight loss as a
revolutionary step to address both T2D and obesity effectively [9].
However, the lack of guideline recommendations and challenges
for obesity management while achieving optimal glycaemic
control in patients with T1D, undermine advancements. Therefore,
this Review paper aims to discuss the global burden of obesity in
T1D, to provide clarity on the drivers of obesity in T1D, and to
discuss the existing evidence-based knowledge of obesity
management strategies in T1D.

SEARCH STRATEGIES
References for this Review were retrieved by searching PubMed
(MEDLINE) using the search terms: “obesity”, “physical activity”,
“exercise”, “nutrition”, “diet”, “obesity pharmacotherapy”, “GLP-1
receptor agonist”, “SGLT2 inhibitor”, and “bariatric surgery” in
combination with “type 1 diabetes”. We included references from
identified articles up to June 2023, supplemented by a manual
search for relevant articles.

MULTINATIONAL PATTERNS OF OBESITY WITH TYPE 1
DIABETES
The link between childhood/youth obesity and an increased T1D
incidence is ascertained [10, 11]. Higher BMI percentiles are
positively associated with incident T1D among adolescents (16 to
19 years), with approximately 25% greater risk observed for each
incremental standard deviation (SD) in BMI [11]. Validated with a
T1D genome-wide association study (GWAS), a Mendelian
randomisation study corroborated a causal role for higher
childhood body size on T1D risk with an odds ratio (OR) of 1.9
(95% confidence interval CI: 1.2 to 3.1) [12]. Interestingly, the study
predicted a ~ 22% reduction in T1D cases if children with severe
obesity reduced their body weight by ~10%, proposing a
theoretical existence of a critical window to mitigate T1D [12].
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In youth with diagnosed T1D, large-scale registries from the
SEARCH (USA-based), Type 1 Diabetes Exchange (USA-based),
Diabetes Patienten Verlaufsdokumentation (European-based), and
SWEET registry (global) have estimated the prevalence of
overweight and obesity to range between 15.3% and 36.0%
[13–16]. SWEET registry provided insights into the evolution of
diabetes care practices among young people (<25 years old)
across 22 centres from Europe, India, and Canada for 10 years [17].
The study revealed a significant improvement in the BMI-standard
deviation score (SDS) from 0.6 (2008 to 2010) to 0.4 (2016 to 2018)
[17]. In contrast, the DCCT study (n= 507, aged 8–16 years)
demonstrated a relatively stable prevalence trend of overweight/
obesity from 1999 (~27%) to 2009 (~31%), despite the increasing
implementation of intensive insulin therapy (~52 to ~97%) [18].
Additionally, a study in the UK (n= 1318, aged 2–15 years) found
no linear association between T1D and BMI [19]. Considering the
BMI discrepancy in the paediatric context, it is essential to assess
predictors for personalised risk-factor-specific intervention strat-
egy [20]. Sociodemographic profiles, glycaemic control, diabetes
treatment, mental health, and cardiovascular risk factors have
been identified to alter the obesity trajectories [20]. Using
advanced dual-energy x-ray absorptiometry, a body composition
meta-analysis of 24 studies found that children with T1D had a
greater fat mass (kg) (mean difference MD: 1.2, 95%CI: 0.3−2.1, %
difference: 9.3) and body fat % (MD: 2.3, 95%CI: 0.3−4.4, %
difference: 9.0) than typical developing children [21]. Future
comparative studies should assess the applicability of different
obesity measurements in phenotyping obesity in T1D to ensure
reliable epidemiological data.
Between 1986 and 2007, obesity prevalence among adults (>18

years of age) increased from 3.4% to 22.7%, outpacing the general

population and was not due to age-related changes [22]. A USA-
based study analysed National Health Interview Survey data from
2016 to 2021 and found that the prevalence of overweight and
obesity among adults with T1D was ~34% and ~28%, respectively
[23]. Similar proportions of overweight and obesity were seen in
people without diabetes (~36% and ~28%, respectively) [23].
Parallelly, these comparable findings to the general population
were mirrored in studies from Europe (Belgium, Sweden, and
Austria), Korea, and Mexico [24–28]. This, however, should not
obscure the concerning trend since obesity was once a seldom-
seen phenomenon in this population.

THE DISTINCTIVE BIOPSYCHOSOCIAL FACTORS
CONTRIBUTING TO INCREASED OBESITY IN TYPE 1 DIABETES
The obesogenic landscape, characterised by an influx of energy-
dense food and a prevailing inclination towards sedentary
behaviours, is widely recognised as a driving force of the obesity
surge [29]. It has also been extensively highlighted that obesity is
linked to genetic, political (industry influences, suboptimal
regulation), socioeconomic (e.g., disparities, food insecurity) and
cultural (e.g., stigma, lack of support) factors [29]. Variables
contributing to obesity in T1D are summarised in Fig. 1. The
unique challenges faced by people with T1D, as detailed in the
following paragraphs, have not received sufficient attention.
First, there remains an inadequate comprehension of obesity in

the pathogenesis of T1D, which may impede effective prevention
and treatment strategies. The development of T1D follows
distinctive pathways, distinguished by the interplay of the
autoimmune process and the extrinsic stressors on insulin
demand [5, 6]. Our understanding of this connection largely

Fig. 1 A summary of variables contributing to obesity in T1D.
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hinges on the ‘accelerator hypothesis’ proposed in 2001, which
postulated a shared pathogenesis of insulin resistance underlying
the emergence of both T1D and T2D during childhood [5]. This
theory continues to be argued against and affirmed in the past
two decades. A Polish retrospective study (n= 559, aged <14
years) challenged the idea that increasing obesity rates explain the
rising incidence of T1D, as it did not observe a corresponding
increase in BMI among diagnosed children over time [30].
However, another study in Poland found that high BMI at T1D
onset accelerated β-cell depletion and elevated inflammatory
cytokines, irrespective of C-peptide level [31]. In preclinical
research, a high-fat diet-induced mouse model of non-immune
diabetes demonstrated that diabetes can occur via β-cell fragility
[32]. This fragility can lead to the occurrence of glucotoxicity and
lipotoxicity within the islets, contributing to the pathophysiology
of the disease [5, 32].
Multi-omics data have expanded our views on overlapping

molecular signatures. Through metabolomic investigations, it has
been elucidated that intersecting metabolite pathways exist
between T1D and T2D, evidenced by the upregulation of
branched-chain and aromatic amino acids, glutamine cycle,
glycolysis, and triglyceride metabolism [33]. Fat mass and
obesity-associated (FTO) gene is implicated in predicting obesity
in T1D, suggesting its potential role in genetic testing [7]. Among
non-autoimmune T1D (type 1b) patients, a GWAS study identified
thirteen novel loci, with nine linked to obesity [34]. Alpha-1,2-
glucosyltransferase (ALG10), calneuron 1 (CALN1), EPH receptor B4
(EPHB4), nuclear factor IB (NFIB), and thioredoxin (TXN) were
among the genes that represented these loci [34]. It will be
interesting to examine different cohorts for potential conver-
gences in autoimmune (i.e., type 1a) diabetes. A meta-analysis of
21 studies indicated that first-degree relatives with diabetes or
obesity were predisposed to a higher risk of childhood-onset T1D.
Compared to normal maternal weight, maternal with obesity
increased the risk of childhood-onset T1D with a relative risk (RR)
of 1.3 [35]. Notably, concerning diabetic status, the effect of
maternal T1D (RR= 4.5) on childhood-onset T1D risk was the
greatest, followed by gestational diabetes mellitus (RR= 1.7) [35].
Interestingly, paternal with T1D carried a 1.5-fold higher risk of
transmitting T1D to children compared to maternal influence [35].
This disparity of parental influence warrants further understand-
ing, particularly in the genetic role of human leukocyte antigen
and insulin resistance. An analysis of the TEENDIAB cohort
(n= 610) found that offspring with maternal T1D led to two-fold
higher odds of abdominal obesity in children than in mothers
without diabetes [36]. Metabolomics profile, however, could not
explain the causal link [36]. Nevertheless, a dual association was
identified where maternal T1D correlated with higher obesity risk
in children, and vice versa [35, 36]. Overall, it is clear that there
exists a relationship between T1D and obesity/T2D; whether the
metabolic dysfunction is a consequence of autoimmunity or vice
versa requires unravelling. Bridging the gap between omics
associations and their functional relevance can propel our
mechanistic understanding of the accelerator hypothesis.
Second, treating obesity is complicated by intensive insulin

therapy, the standard of care for T1D, which paradoxically causes
weight gain, creating a challenging dilemma for achieving weight
management goals [37]. Such a phenomenon involves a dynamic
interplay between exogenous insulin-related physiological
changes (such as an imbalance between peripheral and hepatic
insulin distribution, and calorie conservation) and psychological
adaptation to avoid hypoglycaemia [6, 22, 38]. Hypoglycaemic fear
is an additional hurdle for people living with T1D to exercise,
leading to a significant proportion of adults with T1D not fulfilling
the recommended levels [39]. The same worry prompts excessive
carbohydrate-centric consumption. The findings from a long-
itudinal analysis (n= 600) showed that participants with T1D
demonstrated a higher mean ultra-processed food intake of

7.6 servings/day (vs. 6.6 in the control group; p < 0.01) at baseline
and of 5.6 servings/day (vs. 4.6 in the control group; p < 0.01) at
14-year follow-up [40]. Additionally, insufficient nutritional coun-
selling on healthy eating practices makes compliance challenging
[41]. Compared to peers, adolescents with T1D had higher rates of
disordered eating behaviour and eating disorders than peers [42].
Long-term commitment and ongoing distress towards hypogly-
caemia may lead to struggles in maintaining a healthy relationship
with food. Consequently, the development of obesity leads to
insulin resistance, which necessitates greater amounts of insulin.
This creates a challenging situation, as the escalated insulin doses
can further worsen weight gain [6].
Third, health disparities in T1D lead to a wide variation in

disability-adjusted life years (DALY), with unaddressed gaps [43].
Social patterning of T1D can impact obesity or vice versa through
differential vulnerability and differential exposure [44, 45]. A
Swedish study (n= 16,365, age ≤22) revealed that a higher BMI
acts as a mediator, linking lower maternal education to an
elevated risk of developing T1D [46]. The finding concurs with the
differential vulnerability explanation for social disparities, where
unawareness can leave children more prone to unhealthy
influences and augmented psychosocial stress. Other differential
vulnerabilities include females, low household income, and lack of
access to insulin therapies and diabetes technology [14, 43].
Without consistent treatment access, this may potentially accel-
erate β-cell apoptosis and diabetes progression. The impact of
differential exposures, such as excessive carbohydrate consump-
tion and low physical activity, on obesity in individuals with T1D
has also been extensively examined [39, 40]. However, these
existing studies have predominantly focused on evaluating these
factors individually, which may restrict explanatory capacity in
identifying the upstream differential exposures of obesity in T1D.
As such, the integration of different components of risk factors
(i.e., metabolic, behavioural, sociodemographic) in clinical and
epidemiological research is warranted. Therefore, improved clarity
on health disparities leading to obesity in T1D is essential for
informed resource allocation and prioritisation.
T1D itself induces β-cell inflammation [7, 47]. Obesity further

triggers a series of physiological events, including lipotoxicity,
glucotoxicity, mitochondrial dysfunction, adipose tissue dysfunc-
tion, endocrine alteration, and gut microbiome imbalance,
establishing a chronic low-grade inflammatory state [7, 47].
Consequently, this dual burden of T1D and obesity leads to
systemic complications, such as cardiovascular diseases (CVD),
cancers, and metabolic syndromes related to insulin resistance
[6, 48]. Recognising the profound biopsychosocial impacts, calling
for action on obesity care is critical at present.

TREATMENTS FOR OBESITY IN PATIENTS WITH TYPE 1
DIABETES
Exercise therapy
Exercise is a crucial pillar for weight loss, but a heavier preparatory
load, especially in T1D, often exhausts this effort. A comprehensive
overview of exercise in T1D has previously been reviewed [49, 50].
Simply classifying exercise efforts into aerobic, anaerobic, or mixed
aerobic/anaerobic may not reflect the nuanced interplay of the
energy system [49, 50]. To bypass repetition, we discuss exercise
modalities focusing mainly on endurance, explosive, resistance,
and high-intensity intermittent (HIIT) exercises.
Endurance exercise (e.g., running or cycling) intensity can be

characterised by metabolic equivalents (METs), which are unit
measurements to quantify energy used during exercise, with one
MET equivalent to oxygen consumed at rest (~3.5mL of oxygen per
kilogram of body mass per minute) [51]. Three groupings have been
classified: light (1.5–2.9 METs), moderate (3.0−5.9 METs) or vigorous
(>6 METs) [50]. Light-to-moderate intensity increases post-exercise
hypoglycaemia risk, while >45min of moderate-to-vigorous
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intensity increases nocturnal hypoglycaemia risk [50]. Achieving a
pre-exercise glucose recommended range of 145mg/dL through
carbohydrate feed is a more optimal approach than reducing insulin
dose reduction [50]. On the other hand, explosive exercise (e.g.,
sprinting) is anaerobic-based and promotes hyperglycaemia [50]. Its
integration into pre- and post-endurance exercises can counter-
balance hypoglycaemia risk [50].
Resistance exercise (e.g., weightlifting) slightly raises glycaemia,

especially in the morning, but this effect diminishes with heavier
loads and less repetition [49, 50]. Given its inherent exercise mode
to reduce glucose fluctuation, performing resistance exercise
before endurance exercise may mitigate hypoglycaemia risk
[49, 50]. A systematic review meta-analysis of 14 randomised
controlled trials (RCT) involving 509 youth with T1D evidenced
that a combination of aerobic and resistance exercise yielded a
more optimal health outcome regarding glycaemic level, insulin
dose and cardiorespiratory fitness [52]. Similarly, HIIT (e.g., intense
exercise followed by 10 seconds to 5minutes of recovery) subtly
influences the glycaemic level [50]. Nocturnal hypoglycaemia may
occur when HIIT is performed late noon or insulin correction for
post-exercise hyperglycaemia [50]. Caution should be exercised
during HIIT as symptoms mimicking hypoglycaemia can occur
despite being hyperglycaemic [50]. An advisable starting point for
glucose concentration in resistance exercise and HIIT is approxi-
mately 90 mg/dL [50].
Exercise prescription requires careful consideration of many

factors, including pre- and post-exercise glucose target concen-
tration, lifestyle (work, stress, sleep patterns), medical history, and
exercise type, length, and level. [53] A consensus statement has
put forth strategies for exercise-related glucose excursions
through insulin and carbohydrate adjustment. [49] Breakthroughs
in insulin pumps, continuous glucose monitoring, and sensor-
automated insulin devices help control glycaemic levels around
most forms of exercise and hold the most optimistic hope in
exercise safety. [54]

Nutritional therapy
The dietary importance detailed by the American Diabetes
Association for active doctor-patient collaboration underscores
the significance of medical nutrition therapy (MNT) [55]. MNT
emphasis in T1D receiving multiple daily injections or insulin
pump therapy for carbohydrate counting resulted in a decrease of
HbA1c of 1.0% to 1.9% after six months and maintained at 6.9%
for 6.5 years [56]. MNT effectiveness can be sustained with
education on an individualised calculation of insulin-to-
carbohydrate ratios and accountability cultivation to encourage
adherence [57].
There is, however, no ideal nutrition prescription for MNT. In

adults with T1D, the Nutrition Practice Guideline concluded an
insignificant contribution of macronutrient composition and
energy intake [56]. No discernible impacts on HbA1c and
cardiovascular risk factors were observed across varying carbohy-
drate (~39% to 57% energy) and fats (~27% to 40% energy)
amounts [56]. However, lower dietary carbohydrates may attenu-
ate blood glucose fluctuation, reducing the error rate for insulin
administration [56]. Notwithstanding the mixed result on HbA1c,
consuming 21 to 25 g/day (adult female) and 30 to 38 g/day (adult
male) of fibres for overall metabolic health is recommended [56].
Additionally, the beneficial effects of replacing caloric sweeteners
with nutritive or non-nutritive sweeteners require further elucida-
tion [56]. Modifications to decrease the saturated to unsaturated
fats ratio showed little influence on glycaemic levels, despite a
favourable lipid profile [56].
A systematic review was conducted to highlight the MNT

effectiveness among adolescents with T1D [58]. The findings
aligned with the MNT evidence in adults reporting mixed
glycaemic levels and negligible correlation with BMI [58]. Never-
theless, MNT should still be implemented and viewed within a

holistic overall lifestyle intervention, combined with physical
activity [56, 58]. On examination of dietary intake of patients with
T1D, lower overall energy intake was observed with sufficient
protein intake [59]. However, diets tend to fall short in aspects of
fat, carbohydrate, fibre, and micronutrients [59].
The adoption of dietary patterns is increasingly favoured as a

means to maintain sustainable nutritional composition. In a one-
year real-life experience, a eucaloric, very low-carbohydrate diet
(carbohydrate <50 g/day) significantly improved glycaemic levels
and severe hypoglycaemia (30.3% to 0% after diet initiation), with
no instances of diabetic ketoacidosis (DKA) [60]. The adoption of a
low carbohydrate regimen mandates a concomitant reduction in
insulin dose [60]. As such, hypoglycaemia risk can be mitigated,
and the inherent low carbohydrate composition serves as a
mechanistic safeguard from hyperglycaemia [60]. Caution should
be exercised in interpreting the results due to the limited sample
size (n= 33) and only highly motivated individuals included [60].
Another 3-month pilot RCT study of adults aged 19−30 years with
T1D (n= 38) assessed the effects of a low carbohydrate diet
(<14% calories), Look AHEAD diet (<30% calories from fat and
<10% fat from saturated fat) and Mediterranean diet on weight
and glycaemic outcomes [61]. The findings indicated that there
were no superior co-weight and glucose benefits with caloric
restriction, suggesting the key determinant of effectiveness may
be patient preference and adherence [61]. Nevertheless, the safety
of each diet needs to be evaluated. The impending extension
report (third to ninth months) on re-randomisation conducted
during COVID-19 period may entail the outcome of a more
tailored diet plan, and further inform the implications of
telemedicine in dietary interventions.

Adjunct pharmacotherapy
Adjuncts to insulin can address unmet needs of reducing weight
and complications among patients with T1D and obesity.
Pramlintide, a synthetic analogue of human amylin, currently
represents the sole approved adjuvant therapy for T1D in the USA
[62]. Its co-administration with insulin has improved long-term
glycaemic control and weight loss [63]. New amylin analogues are
currently in the pipelines. The findings from a phase 2 clinical trial
evaluating the efficacy of XP-3924, a novel fixed-ratio co-
formulation of pramlintide and regular insulin, have reported
substantial glycaemic variability improvements, potentially sub-
stituting regular insulin in the forthcoming time [64].
Glucagon-like peptide-1 receptor agonists (GLP1-RA) and

sodium-glucose cotransporter-2 (SGLT2) inhibitors have mounted
preferences because of their beneficial effects on glycaemic
control, weight loss, and overall cardiometabolic parameters
[65, 66]. Adjunct GLP1-RA and SGLT2 inhibitors consistently
presented with reduced mean effects on body weight and HbA1c
[6]. An overview of ongoing, recruiting, and upcoming trials of
adjunct pharmacotherapies with potential for obesity manage-
ment is summarised in Table 1.

Glucagon-like peptide-1 receptor agonists
Efficacy: Adjunct GLP1-RA suppresses glucagon release and
delays gastric emptying, to counterbalance weight gain through
a reduction in prandial insulin dosing [67]. In a pooled analysis of
2609 patients across eight RCTs, adjunct liraglutide reduced body
weight by 4.0 kg (95%CI: −4.5 to −3.4) compared to placebo [68].
According to a post hoc analysis of ADJUNCT ONE and ADJUNCT
TWO trials, the greatest placebo-adjusted HbA1c (−0.3% and
−0.4%), body weight (−5.0 kg and −4.8 kg), and daily insulin dose
(~−12% and ~−10%) were observed after 26 weeks with adjunct
liraglutide 1.8 mg [69]. While the reductions in HbA1c, body
weight, and daily insulin dosage in patients treated with
liraglutide (0.6 mg, 1.2 mg, 1.8 mg) were unaffected by baseline
HbA1c, BMI, and insulin regimen subgroups, the authors pointed
out that residual β-cell function might be of greater relevance in
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this context [69]. This idea had previously been translated in the
context of T2D – a 3-year phase 3 SCALE study [70]. This RCT,
involving a cohort of 2254 patients with overweight or obesity and
pre-T2D, showed that once-daily subcutaneous liraglutide 3.0 mg
led to a higher odd of >15% weight reduction (OR 4.0; 95%CI
2.6−6.3) [70]. Remarkably, by week 160, the regression from
prediabetes to normoglycaemia was 65.8% in the liraglutide
group (vs. 36.3% in the placebo group) [70]. A parallel investiga-
tion on GLP1-RA early obesity-related mechanistic rewiring may
pave the way for a more optimised therapeutic prospect in T1D.
Investigating the potential to mitigate or reverse early β-cell
impairments, simultaneously provides an opportunity to revisit the
accelerator hypothesis.
A secondary outcome analysis of the Lira pump trial (n= 44)

reported that liraglutide 1.8 mg lowered fat mass [71]. Concer-
ningly, it was accompanied by a reduction in lean mass (−2.5 kg
vs. 0 kg in the placebo group; p < 0.001) [71]. This finding should
be interpreted with caution as there was no emphasis on dietary
guidance provided in the study [71]. Additional studies are
needed to gain insights into the mediating role of adjunct low-
caloric diet. Thrice daily adjunct short-acting and weekly
subcutaneous extended-release exenatide resulted in weight
reduction, but the results for achieving HbA1c so far have been
unsatisfactory [72, 73].

Safety and tolerability: The pooled analysis of RCTs investigating
the effects of GLP1-RA on T1D revealed a higher incidence of
gastrointestinal disorders in the liraglutide group with an OR of 3.0
[68]. There were no significant differences between the liraglutide
group and placebo group concerning DKA, hypoglycaemia and
severe hypoglycaemia [68]. In a phase 3 ADJUNCT-ONE trial, it was
observed that there was a dose-dependent increase in hypergly-
caemia with ketosis ranging from 0.6 mg to 1.8 mg [74]. This
increase corresponded to a dose-dependent increase in nausea
and an increase in the reduction of insulin dose [74]. Conversely,
the generally well-tolerated nature of liraglutide 3.0 mg observed
in the pre-T2D SCALE trial [70] lends support to its potential safety
in the early phase of T1D, particularly in cases where residual β-cell
function remains. The higher prevalence of T1D in the paediatric
group raises concerns regarding efficacy and tolerability. Addi-
tionally, the cost-effectiveness of this approach should also be
weighed against lifestyle modifications.

Effectiveness in real-world studies: A real-world study of adjunct
liraglutide (n= 11) conducted a decade ago reported a reduced
daily insulin dose (−19.2%), HbA1c (−0.4%), and body weight
(−3.0 kg) after 10 weeks [75]. More recently, a 52-week study
(n= 76) yielded comparable results for daily insulin dose and
HbA1c but indicated a more substantial reduction in body weight
(−5.1 kg) [76]. In another study, combining both GLP1-RA and
SGLT2 inhibitor resulted in the greatest percentage of weight loss
(9.0%) compared to a single prescription, after 12 months [77].
This combination improved HbA1c, total cholesterol, and LDL-
cholesterol while remaining safe from DKA and hypoglycaemia
[77]. Notably, the implementation of a structured risk prevention
programme and sick-day guidance were applied to all enroled
patients, [77] highlighting the importance of investing in patient
education and the provision of adaptable care.

Sodium-glucose cotransporter-2 inhibitors
Efficacy: Sotagliflozin, a dual SGLT1 and SGLT2 inhibitor, was
investigated in the Tandem phase 3 clinical trials [78, 79]. A post
hoc analysis of Tandem 1 and 2 trials (mean age 43.6; SD: 13.5)
examined the efficacy and safety of sotagliflozin in T1D after a
6-week insulin optimisation period [80]. Both the sotagliflozin
200mg and 400 mg groups exhibited weight reduction, with
placebo-adjusted decrease of 3.2% and 4.2% respectively, after
52 weeks [80]. 22.7% and 30.7% in the sotagliflozin 200 mg andTa
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400mg groups lost >5% body weight. [80] The DEXA scan showed
that the reduction in fat mass was primarily responsible for the
change, as a result of calorie loss, a decrease in insulin dose and
ketogenesis [80]. Similar results of weight loss while achieving
HbA1c goals were reported in a 12-week trial with younger adults
(18−30 years old) [81]. The heightened emphasis on cardiovas-
cular data has driven an expansion of cardiovascular outcome
trials in the scope of T2D [82]. However, such data remained
unanswered in T1D. A modelling study of Tandem 1 to 3 trials
demonstrated a significant decrease in CVD and kidney failure risk
scores, estimated at 6.5% and 5.0% respectively, at week 24 [83].
Prospective RCT, especially in people at high risk of cardiovascular
and/or kidney disease, is needed to understand benefit-to-risk
ratio regarding the impact of intentional weight loss on
cardiorenal outcomes.
Dapagliflozin, the first-in-class SGLT2 inhibitor, was the subject

of several trials, however, no conclusive advice on the optimal
dose can be drawn [84]. A network meta-analysis of 13 RCTs
(n= 10,701) highlighted that treatment with dapagliflozin 5 mg
and 10mg decreased body weight from the baseline at MD:
−3.2% (95%CI: −3.5 to −2.9%) and MD: −4.2% (95%CI: −4.6 to
−3.9%) [84]. Maximum HbA1c efficacy of dapagliflozin was
estimated to be −6.2% at week 9, irrespective of dapagliflozin
doses. After that, a rebound effect was observed, with lower
efficacy if the drug continued for 6 to 12 months [85].
Nonetheless, it has been modelled that the achievement of
sustained weight loss with dapagliflozin necessitates at least
42 weeks in T1D [86]. This highlights the significance of persistent
adherence to weight loss goals. A DEPICT post-hoc analysis
assessing renal function revealed significant changes in urinary
albumin-to-creatinine ratio compared to placebo after 52 weeks of
treatment [87]. Dapagliflozin 5 mg showed a reduction of 13.3%,
while dapagliflozin 10 mg exhibited a more pronounced decrease
of 31.1% [87]. Preclinical T1D research showed that dapagliflozin
can rewire atherosclerotic properties and attenuate cardiac
inflammation and fibrosis [88]. The critical next phase involves
translating these cardiorenal-protective findings into adequately
powered trials with prespecified endpoints.
Empagliflozin is another SGLT2 inhibitor which has been

approved for T2D, however, its indication is limited in T1D given
the paucity of trials. Based on the EASE clinical trials, a meta-
analysis found a dose-dependent mean difference in weight loss
for adjunct empagliflozin 2.5 mg (−1.5 kg), 10 mg (−2.8 kg) and
25mg (−3.1 kg) [89]. In the EMPA-KIDNEY trial, which aimed to
assess the effects of empagliflozin on renal protection, reported
substantial reductions (28%) in the progression of kidney disease
and cardiovascular mortality, compared to placebo [90]. A notable
aspect of this trial is its inclusion of participants diagnosed with
T2D and T1D, demonstrating efficacy irrespective of diabetes
status [90]. Despite the minor proportion of only 1.0% (n= 68)
patients with T1D included in this RCT, this should encourage
attention to trials with similar endpoints in dedicated T1D [90].
Another timely approach is optimising its use with automatic
insulin delivery. A randomised crossover trial of 24 adults found
that high-dose empagliflozin (25 mg) add-on to closed-loop
automated insulin delivery and sensor-augmented pump therapy
significantly increased the time spent in the glucose target range
(7.2% and 11.4%, respectively) after four weeks, compared to
placebo [91]. Similarly, at lower empagliflozin doses of 2.5 mg and
5mg with a closed-loop system, a 14-day RCT showed an 11 to 13
percentage point increase time in range compared to placebo
[92]. These collective data represent a promising avenue of
complementing obesity management for better glycaemic control
and early risk recognition.

Safety and tolerability: DKA, a life-threatening complication, has
been longstanding with far-reaching consequences on mortality
and economic implications in T1D [93]. The introduction of SGLT2

inhibitors has brought about heightened apprehensions surround-
ing the increased risk of DKA, which can occur even in the absence
of pronounced hyperglycaemia [94]. Consistent across landmark
clinical trials, for every 100 patients with T1D treated with SGLT2
inhibitors, an estimated four incidences of DKA were predicted to
occur annually [94]. The distribution of DKA risk In the population
is not uniform, with four independent determinants accounting
for the variation: BMI of more than 27 kg/m2, an estimated glucose
disposal rate of less than 8.3 mg/kg/min, suggestive of insulin
resistance, an increased total insulin dose reduction-to-baseline
insulin sensitivity ratio, and dehydration [95].
By synthesising data from 15 RCTs, a meta-analysis concluded

that there were no significant differences in terms of hypogly-
caemia, severe hypoglycaemia, and urinary tract infections [96].
However, when compared to the placebo group, a significant
association was observed between the duration of SGLT2 inhibitor
treatment and a heightened risk of genital tract infection, with
rates of 4.1 at 24 to 26 weeks and 4.4 at 52 weeks [96].

Effectiveness in real-world studies: Multinational real-world
SGLT2 inhibitors evidence is beginning to take shape. In Spain
and Belgium, adults (n= 199) with T1D showed significant
reductions in HbA1c (−0.5%), weight (−2.9 kg), and daily insulin
(−8.5%) after 52 weeks of SGLT2 inhibitors [97]. In a similar period,
a single institution in the US observed significant reductions in
HbA1c (−0.6%), weight (−1.7 kg), and daily insulin (−0.02%) in 39
prescribed patients [76]. Nationwide observational studies in Saudi
Arabia, Japan, Germany, Austria, and Switzerland have all
demonstrated similar outcomes about SGLT2 inhibitors’ potential
in clinical practice [98–100]. Real-world data has yielded valuable
insights into effective strategies for DKA mitigation. It is a
reasonable prediction that DKA occurrence (10.8%−12.8%)
[76, 100] is more frequent in uncontrolled clinical environments
compared to clinical trials. With appropriate patient selection and
intense surveillance (e.g., education on risks, prevention, and
home ketone monitoring), DKA occurrence reduces from 0% to
3.5% [97, 98]. Nevertheless, a cautious approach remains
imperative when integrating into routine clinical care. In chronic
kidney disease, prescription of SGLT2 inhibitors is not recom-
mended for patients with very low glomerular filtration rate [101].
We envision a mirrored risk-stratification strategy in T1D.

Bariatric surgery
Effectiveness. Bariatric surgery has emerged as a viable treatment
option for obesity in adults with T2D and a BMI > 35 kg/m2 [102].
Regarding T1D, a systematic review and meta-analysis of
30 studies (n= 706) with a mean age of 40.0 years and a mean
BMI of 40.9 kg/m2 showed excess weight loss reduced by 74.6%
(60.0−90.5%) after six months [103]. Contrarily, a long-term study
showed weight regain from a nadir BMI of 27.5 kg/m2 to 30.1 kg/
m2 after 3.5 years [104]. Additionally, the amount of insulin
needed per day decreased from a mean of 92.3 IU/day pre-
operatively to a mean of 35.8 IU/day post-operatively [103]. This is
possibly due to an improvement in increased hepatic insulin
sensitivity, and β-cell function and mass preservation [105].
Nevertheless, a long-term sustained decrease in insulin dose
may still be challenging to quantify and is likely to be complicated
by extrinsic influences, such as compliance with follow-up and
lifestyle choices. Furthermore, glycaemic control following bar-
iatric surgery fell short of the desired outcome considerably
[103, 105]. In light of the recognised shortfalls, it is apparent that
an improved clinical stratification is required to determine the
optimal timing of bariatric surgery and accurately diagnose T1D
from latent autoimmune diabetes in adults [106].
Commonly performed surgical procedures include Roux-en-Y

Gastric Bypass (RYGB) and sleeve gastrectomy [103]. RYGB is
favoured owing to the quick passage of digestive contents to the
distal ileum, while bypassing the proximal small intestine, thereby
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boosting the release of incretin hormones (i.e., GLP1) [103, 107].
Hypertension, dyslipidemia, obstructive sleep apnoea, and micro-
albuminuria improved with reductions of 42.8, 25.0, 66.0, and
25.0%, respectively [108]. HDL-cholesterol increased by 13.5 mg/
dl, whereas systolic blood pressure, diastolic blood pressure, LDL-
cholesterol, and triglyceride improved by 10.1 mmHg, 6.2 mmHg,
9.5 mg/dl, and 11.0 mg/dl, respectively [109].

Safety and tolerability. With average perioperative mortality
below 0.3%, bariatric surgery is deemed safe but not without risk
[106]. Several common short-term problems, such as marginal
ulcers, incisional hernias, oesophageal dysmotility, prolonged
nausea, and nutritional deficits, were experienced by a range of
4.0%−25.0% of patients with T1D who underwent bariatric
surgery [103, 110, 111]. The risks for hypoglycaemia and DKA
episodes are major concerns, with each risk increasing by up to
28.6% [112] and 25.0% [113] respectively. The predisposing factors
for DKA include surgical stress, suboptimal care, sudden halt or
non-compliance with insulin therapy, infection, and electrolyte
imbalance [106, 113]. These potentially fatal consequences
highlight the importance of a multidisciplinary team in post-
operative diabetes care, particularly in careful adjustment of
insulin doses and consistent monitoring of blood glucose levels
[103, 106].

FUTURE DIRECTIONS FOR OBESITY MANAGEMENT IN TYPE 1
DIABETES
Recent years have seen significant progress in prioritising weight
loss management in patients with T1D and obesity, with few
important considerations to further advance this field.
First, the growing gaps in life expectancy between patients with

T1D and the general population [43] translate into a clear and
pressing message for policymakers and regulators. Given concerns
over safety and tolerability, anti-obesity pharmacotherapies for
T1D remain classified as off-label. Recent real-world data on these
off-label pharmacotherapies complement the benefits of RCT,
offering a retrospective lens to assess the pharmacological
effectiveness. The convergence of real-world studies with RCT
findings lends credibility to external validity. In terms of safety
control, appropriate preventive measures have been demon-
strated to mitigate the incidence of DKA and hypoglycaemic
episodes in 12 months (Table 2) [74, 76–79, 97, 98, 114–116]. This
strategic amalgamation of both data present promising prospects
in strengthening the rationale for drug approval and label
expansion. Recognising T2D and obesity as two closely inter-
twined chronic diseases, Lingvay et al. advocated for the
implementation of an approval pathway that transcends a
simplistic binary approach [9]. At the current juncture, given the
time-critical nature of β-cell apoptosis in T1D, there is a pressing
need for transparency in the approval decision-making process,
with patients positioned at the core of the discourse. Considering
the life-threatening DKA episodes, it is equally important to ensure
pharmaceutical caution superseding acceleration. A consensus
from Danne et al. presented important implications for DKA
management in patients with T1D treated with SGLT2 inhibitors
[117]. These recommendations provide the fundamental frame-
work for stringent risk stratification within guidelines, contributing
to responsive and adaptable pharmaceutical prescriptions.
Second, the untapped potential within medical management

warrants renewed attention on optimisation. To achieve and
sustain glycaemic equilibrium, it is imperative to evaluate the
potential efficacy of complementary interventions. Dietary and
physical activity counselling was provided to patients in the
DEPICT trials [118, 119]; nonetheless, the level of implementation
of these interventions was uncertain. Thus, the status as
adjunctive lifestyle measures cannot be definitely established.
An existing limitation, particularly evident in studies evaluating

lifestyle interventions, pertains to the smaller subset of patients,
which may compromise the generalisability of the findings and
biases. To conduct adequately powered studies, collaborative
efforts must transcend geographical and disciplinary boundaries,
facilitating comprehensive informed prescription guidelines.
Currently, the multinational evidence on the efficacy of adjunct
pharmacotherapies is primarily derived from high-income coun-
tries, hence highlighting a gap in data representation from low-
and middle-income countries.
Third, to drive progress in the landscape of medical weight

management, it is essential to place importance on understanding
the patient’s perspective. In contemporary discussions on anti-
obesity medication, the measure of breakthrough often revolves
around the percentage of weight loss achieved [120]. A 5% weight
loss is considered a responsive outcome, a 5 to 10% reduction is
associated with comorbidities prevention, while a >15% reduction
can improve cardiovascular outcomes [120]. Among patients with
T1D, achieving a weight reduction milestone may confer further
enhancements in glycaemic stability, insulin dose requirement,
and potentially even the recovery of β-cell function. Poor medical
adherence is a concern for sustainable and safe management.
Some reasons may include forgetfulness, fear of adverse effects,
and suboptimal communication with providers. In structured
interviews, patients with T1D highlighted their perception of real-
world benefits from GLP1-RA and SGLT2 inhibitors, though the
associated risk exceeded that observed in RCTs [121]. Further
qualitative research is needed to identify barriers faced to devise
effective safety optimisation interventions.
Fourth, action plans on T1D-obesity treatment goals for

clinicians need to be clarified. The value of a weight-centric
framework in tackling adiposity-related diabetes, and glucose-
centric for addressing β-cell dysfunction have been highlighted
[9]. However, the coexistence of β-cell dysfunction and obesity will
necessitate a novel, integrated framework that combines weight-
centric and glucose-centric approaches. Having identified strate-
gies to address individual treatment challenges (Fig. 2),
[49, 117, 122, 123] a tantalizing opportunity arises to forge novel
pathways in the harmonisation of treatment strategies. The
subsequent step is to recognise the potential synergy between
the benefits of each treatment and their ability to offset the risks
of the other approach. The competence of clinicians in monitoring
DKA management constitutes a critical evaluation. A national
cohort in Qatar (n= 602 in T1D; n= 1011 in T2D) reported a lower
admission to the intensive care unit (26.6.% vs. 38.0%), shorter
hospital stays (2 days vs. 5 days), and lower inpatient mortality in
T1D (1.0% vs. 7.4%) compared to T2D [124]. Correspondingly,
another nationwide study in Japan (n= 10,442 in T1D; n= 13,835
in T2D) showed a lower in-hospital mortality in T1D (0.9% vs. 4.3%
in T2D) [125]. The collective results reflect the clinicians’
proficiency in care, but the introduction of obesity management
in T1D can complicate matters. In light of this, it should fall within
the purview of trained professionals (i.e., endocrinologists and
obesity physicians) to prescribe obesity management and closely
monitor the patients. Furthermore, the trusted status of multi-
disciplinary experts as messengers highlights the critical need for
curricular strategies that uphold the desired effectiveness of
structured patient education.
Finally, attention to healthcare inequality should intensify. The

evolving technological innovations and limited availability of off-
label medications are progressively tilting towards a first-world-
centric resolution. Unequal access to resources will result in
disparities in glycaemic control, exacerbating obesity-related
complications among socioeconomically deprived groups. Effec-
tive governance mechanisms with aligned goals are essential
steps in harnessing these options to benefit the health of all
individuals equitably. While the latest guidelines recommend
SGLT2 inhibitors and GLP1-RA for adults with T2D and established
CVD, [126, 127] an analysis of out-of-pocket costs in the USA found
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that, compared to the lowest quartile, individuals with the highest
quartile of out-of-pocket costs were ~13% and ~20% less inclined
to start GLP1-RA or SGLT2 inhibitor intervention, respectively
[128]. High prescription cost and constrained reimbursement
mechanisms impede widespread adoption. In T1D, these chal-
lenges are further exacerbated due to the lack of formal
endorsement and approval of GLP1-RA and SGLT2 inhibitor
interventions. Therefore, key societies must unify their position,
addressing both present and future facets of adjunct T1D-obesity
interventions. A common ground will facilitate the establishment
of novel clinical care pathways and subsequent health economic
evaluation.

CONCLUSIONS
Obesity in T1D has been underrated as an emerging threat until
recently. Breaking the perpetuating cycle of weight gain and
increased insulin dose requirement is now a high calling. The
recent work of translating clinical trials into real-world results
brought upon important rationales for approval discussion and
consensus-driven guidelines. Obesity management in T1D has to
be underpinned by a shift in focus to a glucose-weight-centric
approach with an optimal combination of adjunct interventions
for an enhanced benefit-to-risk ratio. Structured education
combined with individualised dosing adjustments constitutes
the cornerstone for sustaining dual weight and glycaemic targets.
On a systemic level, an aligned multistakeholder initiative is
needed to ensure the true value of the global action plan on this
T1D-obesity burden.
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