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Abstract
Background  Multiple sclerosis patients would benefit from machine learning algorithms that integrates clinical, imaging 
and multimodal biomarkers to define the risk of disease activity.
Methods  We have analysed a prospective multi-centric cohort of 322 MS patients and 98 healthy controls from four MS 
centres, collecting disability scales at baseline and 2 years later. Imaging data included brain MRI and optical coherence 
tomography, and omics included genotyping, cytomics and phosphoproteomic data from peripheral blood mononuclear cells. 
Predictors of clinical outcomes were searched using Random Forest algorithms. Assessment of the algorithm performance 
was conducted in an independent prospective cohort of 271 MS patients from a single centre.
Results  We found algorithms for predicting confirmed disability accumulation for the different scales, no evidence of disease 
activity (NEDA), onset of immunotherapy and the escalation from low- to high-efficacy therapy with intermediate to high-
accuracy. This accuracy was achieved for most of the predictors using clinical data alone or in combination with imaging 
data. Still, in some cases, the addition of omics data slightly increased algorithm performance. Accuracies were comparable 
in both cohorts.
Conclusion  Combining clinical, imaging and omics data with machine learning helps identify MS patients at risk of dis-
ability worsening.
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Introduction

Developing personalised health care for people with multiple 
sclerosis (MS) is hindered by our limited understanding of 
the biological processes underlying the disease, by the lack 
of validated prognostic or predictive biomarkers and by the 
clinical heterogeneity between patients [1–4]. At present, 
clinical decisions are taken based on outcomes identified in 

natural history cohort studies and randomised clinical tri-
als, such as the disease subtype (relapsing vs. progressive 
course); age (above ~ 45 years old); the time to reach dis-
ability milestones like the expanded disability status scale 
(EDSS) 4.0 or 6.0; the Evidence of Disease Activity (EDA) 
[5]; lesion activity (presence of gadolinium-enhancing 
lesions) and lesion load (presence of new or enlarging T2 
lesions and T2 lesion volume) [6]. Indeed, retinal atrophy 
monitored by optical coherence tomography (OCT) is able 
to predict the risk of disability worsening [7, 8]. Moreo-
ver, the use of disease-modifying drugs (DMDs) and, spe-
cifically, high-efficacy therapies, is also associated with a 
more severe disease course, not the least because they are 
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currently restricted to patients with evidence of a highly 
active disease [9].

Amongst the biomarkers associated with MS, some have 
been shown to have a reliable predictive value of a more 
severe disease course, such as the presence of oligoclonal 
IgM bands [10, 11], the levels of neurofilaments light [12, 
13] or chitinase-3 [14] in the cerebrospinal fluid (CSF) and 
serum. Although many omic-based biomarkers have been 
proposed, none has been validated to the level of becom-
ing useful at the individual patient level [2]. Nevertheless, 
most of these approaches were based on group analysis, 
which limits their application to individual patients when 
personalised risk assessment is desired. Accordingly, defin-
ing the prognosis of individual patients with MS remains a 
significant unmet need when considering the application of 
personalised medicine [3, 15].

In this study, we set out to search for algorithms that strat-
ify MS patients based on a differential risk of disease sever-
ity. As such, we combined clinical data with that obtained 
from neuroimaging and different omics techniques (genom-
ics, cytomics and proteomics) to identify predictors of dis-
ease severity [13, 16, 17]. We took advantage of the machine 
learning tools that tolerate unbalance and overfitting such as 
random forest algorithms to search in a stepwise manner for 
the combinations of clinical, imaging and omics variables 
which identify predictors that are accurate when predicting 
each clinical outcome [18–22].

Materials and methods

Ethical statement

The Sys4MS project was approved by the Institutional 
Review Boards at each participating institution: Hospital 
Clinic of the University of Barcelona, IRCCS Ospedale Poli-
clinico San Martino IRCCS, Oslo University Hospital, and 
Charité—Universitätsmedizin Berlin University. The Barce-
lona MS cohort study was approved by the Ethical Commit-
tee for Clinical Research of the Hospital Clinic Barcelona. 
Patients were invited to participate by their neurologists, 
and they provided signed informed consent prior to their 
enrolment in the study. De-identified data were collected in 
a REDCap database at the Barcelona centre. All methods 
were performed in accordance with the relevant guidelines 
and regulations.

Patients

The Sys4MS cohort [13, 23] was composed of 322 consecu-
tive MS patients according to 2010 McDonald criteria [24] 
and 98 healthy controls (HC) at the four academic centres: 
Hospital Clinic, University of Barcelona, Spain (n = 93); 

Ospedale Policlinico San Martino, Genova, Italy (n = 110); 
Charité University, Berlin, Germany (n = 96); and the Oslo 
University Hospital, Oslo, Norway (n = 121). The inclu-
sion criteria were being diagnosed with MS based on 2010 
criteria, not having had a relapse in the previous 3 months 
and patients were required to be stable on the same DMD 
treatment over the preceding 6 months. RRMS patients were 
required to have < 10-year disease duration, whereas PMS 
patients were required to have EDSS 2.0–7.0. The exclusion 
criteria were use of corticosteroids in the last 30 days, a 
relapse in the previous 3 months, inability to perform brain 
MRI, chronic diseases (AIDS, hepatitis B or C, insulin-
dependent diabetes, cardiovascular, renal, respiratory or liver 
insufficiency), pregnancy, breastfeeding or plans to conceive 
during the course of the study (women only) and partici-
pation in any other clinical therapeutic study at or within 
30 days of screening visit. We collected clinical informa-
tion [demographics, relapses, disability scales and use of 
disease-modifying drugs (DMD)], imaging data (brain MRI 
and OCT), and blood samples at the same visit. Patients 
were followed up for 2 years, and the same clinical, dis-
ability scales and imaging data (brain MRI and OCT) were 
collected at the 2-year follow-up visit.

The second cohort was recruited at the Hospital Clinic 
of Barcelona without overlap with the patients participating 
in the Sys4MS cohort. The cohort was composed of 271 
patients with RRMS or SPMS according to 2010 McDonald 
criteria [24] and 54 HC without previous or present history 
of neurological or psychiatric condition. Patients were pro-
spectively recruited at the MS Unit of the Hospital Clinic of 
Barcelona, as described recently [25].

Clinical variables

Each patient was assessed on the following disability scales: 
Expanded Disability Status Scale (EDSS); timed 25 feet 
walking test (T25WT), 9-hole peg test (9HPT), Symbol 
Digit Modality Test (SDMT), 2.5% low contrast visual acu-
ity (SL25), and high contrast vision (HCVA, using best cor-
rected acuity, EDTRS charts and logMar transformation) 
using the conditions indicated in the OCT section. Disabil-
ity scales were obtained 3 months after any new relapses 
or use of corticosteroids during the follow-up. We calcu-
lated the MS Severity Score (MSSS) and the age-related 
MS Severity Score (ARMSS) as described elsewhere [26]. 
No Evidence of Disease activity (NEDA) was defined as no 
evidence of clinical relapses, new or enlarging T2 lesions 
and not changes on EDSS [27]. We collected the informa-
tion regarding the patients’ DMD use, categorised as low-
efficacy therapy: interferon-beta, glatiramer acetate and 
teriflunomide); mid- to high-efficacy therapy: fingolimod, 
dimethyl-fumarate, natalizumab; or other monoclonals like 
alemtuzumab, rituximab, daclizumab and ocrelizumab [28]. 
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EDSS and the other clinical scales were confirmed at the end 
of follow-up based on the results of the 6-month previous 
clinical visit to define Confirmed Disability Accumulation 
(CDA). EDSS-based CDA was defined as an increase of 
one point on the EDSS (for EDSS at baseline between 0 and 
5.5) or 0.5 points for patients with EDSS at baseline ≥ 5.5 
confirmed at 6 months. For 9HPT, T25WT and SL25, CDA 
was defined as a 20% change in each score, whereas it was 
four points for the SDMT confirmed at 6 months [29].

Imaging

MRI studies were performed on a 3 T scanner at each centre 
as described before [17], using a standard operating proce-
dure (SOP) to optimise the volumetric analysis. We used 
the three-dimensional (3D) structural T1-weighted voxel 
magnetization-prepared rapid gradient echo (T1-MPRAGE) 
protocol (voxel size: 0.9 × 0.9 × 0.9 mm3), with 3D T2-fluid-
attenuated inversion recovery (T2-FLAIR) images using 
the same voxel size to quantify changes in brain volume. 
Briefly, T2-FLAIR images were registered to T1-MPRAGE 
scans by a trained technician to ease the manual segmen-
tation of the lesions. Subsequently, lesion in-painting of 
T1-MPRAGE scans allowed the volume of the whole brain, 
grey matter and thalamus to be quantified using SIENAX. 
In addition, we used post-gadolinium T1 axial images (voxel 
size: 0.7 × 0.6 × 3.0 mm3) to quantify gadolinium-enhancing 
lesions (Gad +). Presence of contrast-enhancing lesions, T2 
lesion volume, new or enlarging T2 lesions and volumetric 
analysis were done at the Berlin centre and by the same oper-
ator and were estimated using the lesion in-filled MPRAGE 
images by FSL SIENAX [30].

Retinal OCT scans were performed in eye-tracking mode 
by trained technicians under standard ambient light condi-
tions (lighting level of 80–100-foot candles) and without 
pupillary dilatation, using the same Spectralis device in 
three centres or a Nidek RS-3000 in Oslo centre. Correction 
for spherical errors was adjusted prior to each measurement, 
and the technicians performing OCT scans were blind to the 
patient’s clinical history. The peri-papillary Retinal Nerve 
Fibre Layer thickness (pRNFL, μm) was measured with a 
12-degree diameter ring scan automatically centred on the 
optic nerve head (100 ART, 1536 A scans per B scan). The 
macular scan protocol involved a 20 × 20-degree horizon-
tal raster scan centred on the fovea, including 25 B scans 
(ART ≥ 9, 512 A scans per B scan). A single grader at Berlin 
centre at the reading centre in Berlin performed intra-retinal 
layer segmentation using Orion software® (Voxeleron Inc, 
Berkeley, US) to quantify the macular ganglion cell plus 
inner plexiform layer (GCIPL) and the macular inner nuclear 
layer thicknesses (μm) in the 6 mm ring area as previously 
described [31]. All OCT scans fulfilled OSCAR-IB crite-
ria [32] and APOSTEL guidelines [33]. Eyes with severe 

myopia, optic neuropathies or retina diseases were excluded 
for analysis. We included only eyes without previous optic 
neuritis (in case both eyes have no previous optic neuritis, 
the mean of both eyes was used). Scans with an insufficient 
signal-to-noise ratio, or when the retinal thickness algorithm 
failed were repeated, or the data were ultimately excluded.

Genotyping

Genotyping of the samples was performed by Finland Insti-
tute of Molecular Medicine Genomics (University of Hel-
sinki, Finland) for the Sys4MS cohort and at the University 
of California, San Francisco for the Barcelona cohort, using 
the Illumina HumanOmniExpress-24 v1.2 array (713,599 
genotypes from 396 samples). Single-nucleotide poly-
morphisms (SNPs) imputation was conducted against the 
1000-genomes reference (quality of imputation r2 > 0.5; 
6,817,000 genotypes for 396 samples), which allowed us 
to extract MS-associated SNPs [152 out of 200 known 
non-HLA MS-associated SNPs available and 17 out of 31 
known MS-associated HLA alleles available (HLA*IMP 
programme)] as described elsewhere [34]. The MS Genetic 
Burden Score (MSGB) is used as cumulative genetic risk 
estimations for MS patients. The MSGB for the HLA and 
non-HLA alleles and their combination were calculated as 
described previously [35]. Briefly, the MSGB is computed 
based on a weighted scoring algorithm using one SNP per 
MS-associated genomic region as found by trend-test asso-
ciation (meta-) analysis. This statistic is an extension of 
the log additive model, termed “Clinical Genetic Score”, 
with weights given to each SNP based on its effect size as 
reported in the literature. The MSGB is obtained by sum-
ming the number of independently associated MS risk alleles 
weighted by their beta coefficients, obtained from a large 
GWAS meta-analysis, at 177 (of 200) non-MHC (major 
histocompatibility complex) loci and 18 (of 32) MHC vari-
ants, which includes the HLA-DRB1*15:01-tagging single-
nucleotide polymorphism (SNP) rs3135388 [36–40].

Cytomics

Cytomics was performed on fresh peripheral blood 
mononuclear cells (PBMCs) using 17 antibodies that 
covered 11 subpopulations of T, B and NK cells as 
described in detail elsewhere [23]. The following cell 
populations were studied: Effector cells: Th1 clas-
sic: CD3 + CD4 + CxCR3 + CCR6-CD161−; Th17: 
CD3 + CD4 + CxCR3 + CCR6-CD161 + CCR4 +; Th 1/17: 
CD3 + CD4 + CCR6-CD161 + CxCR3highCCR4low; 
Regulatory T cells: CD3 + CD4 +: T reg CD25 + CD127-, 
T naive CD45RA + CD25low; CD3 + CD8 +: T reg 
CD28− and T naive CD28-CD45RA +; B cells: B 
memory: CD19 + CD14-CD24 + CD38−; B mature: 
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CD19 + CD14-CD24 + CD38low; B regulatory: 
CD19 + CD24highCD38high and NK cells: Effector: CD3-
CD14-CD56dim: Regulatory: CD3-CD-CD56bright (reg).

Phosphoproteomics

The phosphorylation levels of 25 kinases participating in 
pathways associated with MS [41] (AKT1, AKTS1, CREB1, 
GSK3AB, HSPB1, IKBA, JUN, KS6B1, LCK, MK12, 
MK03/01, MK09, MP2K1, NRF2, P53, PGFRB, PTN11, 
RS6, SRC, STAT1, STAT3, STAT5, STAT6, TF65, WNK1) 
were assessed by xMAP assays in PBMCs and quantified as 
previously described [42].

Machine learning analysis

The search for predictors of clinical outcomes (see the list of 
outcomes on supplementary file) was performed through a 
machine learning analysis using Python and the Scikit Learn 
library (scikit-learn.org). The analysis included 100 features: 
clinical, demographics, disability scales, DMD use, MRI, 
OCT, MSGB, cytomics and phosphoproteomics (supple-
mentary file). Initially, we calculated the Pearson correla-
tion matrix for the different groups of variables (clinical, 
MRI, OCT, MSGB, cytomics and phosphoproteomics) to 
select the most informative features based on showing cor-
relation >|0.6| to exclude co-linear variables. In this way, 
multidimensionality was balanced between the number of 
features and the number of samples, maintaining a ratio of 
1:5 [43]. Besides, we explore further reducing dimension-
ality using principal component analysis on the features 
selected. The search of classifiers was done using Random 
Forest algorithms, considering they are better in handling 
unbalanced data, high dimensionality, multi-collinear fea-
tures and have a lower risk of overfitting, which is a common 
problem in biomedical datasets [44], when studying complex 
disorders such as MS [20]. For a classification of the clinical 
endpoints, we calculated the entropy, defined as the measure 
of impurity, following the formula:

where pj is the probability of class j.
During training, several random forest parameters were 

automatically optimised based on the: (1) number of esti-
mators (number of trees in a random forest): the best value 
among 10 equally spaced values between number_features/4 
and number_features/2; (2) maximum depth (levels in the 
tree); (3) minimum number of samples required to split a 
node; and (4) minimum number of samples needed for each 
leaf node: the best value amongst [19, 44].

Entropy =

∑

j

pj log2 pj

We conducted a feature selection process using the 
feature importance algorithm [44] for selecting the most 
informative variables and, in this way, increase accuracy, 
reduce overfitting and reduce training time. Feature impor-
tance was calculated as the decrease in node impurity (Gini 
index) weighted by the probability of reaching that node as 
defined in the following formula

where fi is the frequency of label i at a node, and C is the 
number of unique labels.

The node probability was calculated by the number of 
samples that reach the node, divided by the total number of 
samples; therefore, the higher the value, the more critical 
the feature.

Unbalanced data were addressed by applying cost-sensi-
tive learning, wherein classes were automatically weighted 
inversely proportional to how frequently they appear in the 
data [43]. Missing data were addressed as follows: (1) by 
removing features with more than 20% of missing data when 
studying the effect of features different from the previous 
ones; (2) by eliminating observations (patients) with miss-
ing data in features with more than 20% of missing data, 
when studying the effect of these features; and (3) for the 
remaining missing data, we build a regression model using 
the random forest for each variable with tenfold cross-val-
idation with all data, and we used a random grid to search 
for hyper-parametrization. Regarding the dynamic program-
ming problem of “curse of dimensionality”, we applied the 
rule that there should be at least five training examples for 
each dimension in the representation (the minimum for each 
category should be at least 5 cases). For these classification 
problems, we calculated balanced recall (sensitivity), preci-
sion (positive predictive value), and F1 (harmonic mean of 
recall and precision) measures. The area under the receiver 
operating curve (AUC) was calculated for the predictors 
with accuracy above 70%.

Results

The Sys4MS cohort

We recruited 322 consecutive MS patients (age 
41 ± 10  years, 71% female), of which 271 (82%) had 
Relapsing–Remitting MS (RRMS), and 57 (18%) had 
Progressive MS (PMS; 28 had SPMS and 29 had PPMS), 
as well as 98 healthy controls matched by sex and age 
with the RRMS group (Table  1). The patients had a 
mean disease duration of 10 years, a median EDSS of 2.0 
(range 0–8), and mean MSSS of 3.6. Regarding the use of 

C
∑

i=1

fi
(

1 − fi
)
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therapies at baseline, 70% of patients were being treated 
with DMDs, 44% with low-efficacy therapies and 26% 
with high-efficacy therapies. Clinical and imaging (MRI 

and OCT) characteristics of the subjects at baseline are 
summarised in Table 1 and supplementary file S1.

Table 1   The Sys4MS cohort: clinical and imaging variables at baseline

Disability scales are shown as the mean (standard deviation or range), except for the EDSS which is displayed as the median (range) and gender 
which is shown as the n and percentage
NA, not available
a Other DMD baseline: alemtuzumab: 9, rituximab: 7, ocrelizumab: 1, daclizumab: 2
b Other DMD year 2: alemtuzumab: 13, rituximab: 11, ocrelizumab: 16, cladribine: 3

MS baseline MS 2-year FU HC
n = 322 n = 278 n = 98

Age 41 (10) 45 (9.8) 36.98 (11.4)
Female 229 (71%) 194 (70%) 63 (70%)
Age at disease onset (years) 31 (9) 31 (9) –
Disease duration (years) 10 (8) 12.9 (8.16) –
Subtype
 RRMS 271 228
 SPMS 28 25 –
 PPMS 29 25

EDSS 2.0 (0–8.0) 2.0 (0–8.0) –
MSSS 3.6 (2.2) 3.25 (2.35) –
ARMS 3.9 (2.1) 3.56 (2.26) –
T25WT (sec) 6.93 (6.6) 5.67 (4.97) –
9HPT (sec) 21.2 (6.5) 21.9 (5.92) –
SDMT (# symbols) 53.8 (13.5) 53.5 (13.3) –
SL25 (# letters) 29.1 (13.4) 26.7 (13.5) –
HCVA (LogMAR) 0.03 (0.36) -0.11 (0.44) –
DMD
 Untreated 91 72 –
 Interferon beta 43 19 –
 Glatiramer acetate 39 24 –
 Teriflunomide 28 21 –
 Fingolimod 38 33 –
 Dimethyl-Fumarate 35 37 –
 Natalizumab 29 24 –
 Other 19a 43b –

MRI

# Gadolinium lesions 0.1 (0.5) NA NA
T2 lesion volume (cm3) 8.17 (10.5) 9.32 (11) NA
NBV (cm3) 1509 (91) 1454 (70.2) 1587 (58.9)
NGMV (cm3) 792 (65) 779 (49.5) 856 (48.3)
NWMV (cm3) 716 (68) 676 (43.5) 731 (31.8)

OCT (µm) OD OS

pRNFL (µm) 100 (12.7) 101 (12.1) NA
mRNFL (µm) 39.6 (4.9) 39.6 (4.31) –NA
GCIPL (µm) 65.6 (8.3) 65.7 (7.08) –NA
INL (µm) 31.5 (2.8) 31.5 (2.77) –NA
ORL (µm) 146.1 (9.5) 147 (8.39) –NA
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By the end of  fol low-up (mean fol low-up 
1.98 ± 0.94 years, n = 274), 2 RRMS cases had progressed 
to SPMS, 22 patients had started DMDs (Cladribine: 1; Fin-
golimod: 2; Glatiramer acetate: 4; Ocrelizumab: 9; Rituxi-
mab: 2; Teriflunomide: (4) and 17 had changed from low to 
high-efficacy therapies. The number of cases with confirmed 
disability accumulation (events) for each of the scales was 
as follows: EDSS: 52, T25WT: 30, 9HPT: 11, SDMT: 27 
and SL25: 75; and 122 patients remained as NEDA. Table 1 
summarises the frequency of each therapy and means dis-
ability scales at the follow-up visit.

Omics analysis

From the HumanOmniExpress-24 v1.2 array, we imputed 
152 SNPs outside the HLA region associated with and17 
HLA-class II alleles. The MSGB, only the HLA alleles 
genetic burden score (MSGBHLA), and the non-HLA genetic 
burden score (MSGBnon-HLA) were calculated. As expected, 
the MSGB was significantly higher in the MS patients than 
in the HC group for the MSGB (MS = 4.23 and HC = 3.2; 
p = 3.4 × 10–8); MSGBHLA (MS = 1.57 and HC = 0.95; 
p = 1.6 × 10–4); and MSGBnon-HLA (MS = 2.6 and HC = 2.2; 
p = 6.8 × 10–5). Of the 322 patients and 98 HCs recruited, 
a flow cytometry analysis was carried out on the first 227 
consecutive patients and 82 HCs, which did not differ from 
the overall cohort in the baseline characteristics. Results of 
the cytomics analysis in this cohort are described in detail 
elsewhere [23]. Briefly, significantly higher frequencies of 
Th17 cells in the RRMS population compared with HC and 
lower frequencies of B memory/B regulatory cells as well as 
higher percentages of B mature cells in patients with PMS 
compared with HCs were found. In addition, we observed 
higher percentages of B mature cells in patients with 
PMS compared with HCs. Fingolimod treatment induced 
a decrease in total CD4 + T cells and in B mature and B 
memory cells and increases in CD4 + and CD8 + T regula-
tory and B regulatory cells [23]. Finally, the phosphoprot-
eomic analysis was carried out on the first 148 consecutive 
MS patients, which did not differ from the overall cohort in 
the baseline characteristics. Patients showed higher levels of 
phosphorylated IKBA, JUN, KSGB1, MK03, RS6, STAT3 
and STAT6 in MS patients compared to controls. See sup-
plementary file for aggregated results for each variable.

Predictors of disease activity

We searched for algorithms predicting clinical outcomes 
at follow-up, such as 6-month confirmed disability accu-
mulation using the EDSS, T25WT, 9HPT, SDMT or SL25 
scales, as well as maintaining the NEDA status or starting 
or changing DMDs, using random forests algorithms (see 

supplementary file for list of outcomes and features). We 
compared algorithm performance based on the use of clini-
cal data alone, or by adding imaging, genetics, and the other 
omics information sequentially to learn how much the pre-
diction improves by including additional tests. This step-
wise approach was chosen for prioritising algorithms based 
on the accuracy but also the consequent burden for patients 
and health systems depending on the tests required (genetics 
was analysed separately form the other omics because the 
accessibility of genotyping at present). We found algorithms 
with AUC higher than 60% for most of the outcomes, and 
AUC above 80% for SL25 and NEDA status during follow-
up (Table 2). We tested also the performance of using sup-
port vector machines without finding improvement on the 
accuracy of the classifiers (data not shown).

At present, the gold standard for defining disease pro-
gression in patients with MS is by probing 3- or 6-month 
confirmed disability accumulation of the EDSS (EDSS-
CDA) [29]. We found random forest algorithms predicting 
which MS patients would achieve EDSS-CDA by 6-month 
on the EDSS 2 years later with precision (positive predic-
tive value): 71%, recall (sensitivity): 73%, and F1 (harmonic 
mean): 72% (Table 2 and Fig. 1a, b). The accuracy of the 
predictor did not increase from using clinical features alone 
to adding imaging, genetic or omics information (a repre-
sentative decision tree of including clinical and imaging fea-
tures is shown in Fig. 1c). The predictors always included 
disability scales, age or disease duration as the most inform-
ative features, followed by brain volume and T2 lesion load, 
whereas the only omics that contributed to predictors was 
phosphoproteomics, including the levels of phosphorylated 
MP2K1, a kinase of the MAPKinase pathway associated 
with MS [42].

Regarding the prediction of confirmed disability accu-
mulation for other disability scales, the algorithm for pre-
dicting 9HPT using clinical and imaging features achieved 
a precision 90%, recall 93% and F1 92%, with disability 
scales, brain volume and T2 lesion volume (T2LV) being the 
most informative (Fig. 2a). The algorithm for predicting the 
T25WT achieved a precision 75%, recall 80% and F1 77%, 
by combining clinical, imaging and omics data, with sev-
eral kinase phosphorylation levels (JUN, STAT6, MP2K1, 
AKT1, PTN1 and GSK3B), disease duration and disability 
scales being the top predictors (Fig. 2b). The algorithm for 
predicting SDMT also achieved a precision 83%, recall 87% 
and F1 85%, when using clinical and imaging variables, with 
disability scales, brain volume and T2LV being the most 
informative ones (Fig. 2c). Moreover, the algorithms for pre-
dicting the SL25 achieved a precision 82%, recall 82%, and 
F1 82%. In this case, the informative variables were visual 
acuity at baseline, retina thickness (pRNFL), and several 
kinase levels (Fig. 2d).
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We also searched for algorithms predicting maintain-
ing the NEDA status by the end of follow-up, obtaining a 
precision 76%, recall 76%, and F1 76%. The algorithm for 
predicting NEDA included as top features several disability 
scales, age, disease duration and disease subtype (Fig. 3a).

Predictors of the use of disease‑modifying drugs

At present, therapeutic decisions are based on the label of 
approved drugs, but personalization of the therapeutic rec-
ommendation is a sought for goal. We analysed whether MS 

Table 2   Algorithm performance 
for predicting clinical outcomes 
at 2-year follow-up for the 
Sys4MS cohort

Outcomes included the change on the EDSS, confirmed disability accumulation (CDA) of disability scales, 
remaining in No Evidence of Disease Activity (NEDA) by end of follow-up, change to high-efficacy drugs 
and starting disease-modifying therapies during follow-up. Features tested are shown by the type of vari-
ables [clinical (C), imaging (I), Genetics (G) and omics (O)]. Results are shown as precision (positive pre-
dictive value), recall (sensitivity), F1 (harmonic mean of precision and recall), the *balanced accuracy, and 
area under the receiver operator curve (AUC)
CDA, confirmed disability accumulation; EDSS, Expanded disability status scale; 9HPT, nine-hole peg 
test; T25WT, timed 25-feet walking test; SDMT, symbol digit modality test; SL25, Sloan low-contrast vis-
ual acuity 2.5%; NEDA, no evidence of disease activity; DMD, disease-modifying drug

Outcome Features # Patients Precision Recall F1 Accuracy* AUC​

EDSS (delta) C 262 0.63 0.63 0.63 0.58 0.56
C/I 262 0.64 0.65 0.64 0.58 0.57
C/I/G 262 0.60 0.64 0.61 0.57 0.54
C/I/O 84 0.71 0.61 0.63 0.54 0.41

EDSS (CDA) C 262 0.71 0.73 0.72 0.52 0.62
C/I 262 0.68 0.71 0.69 0.47 0.57
C/I/G 262 0.69 0.70 0.69 0.52 0.59
C/I/O 84 0.85 0.85 0.85 0.62 0.45

9HPT (CDA) C 228 0.90 0.93 0.92 0.49 0.61
C/I 228 0.90 0.93 0.92 0.48 0.65
C/I/G 228 0.90 0.93 0.92 0.49 0.61
C/I/O 71 0.81 0.90 0.85 0.50 0.65

T25WT (CDA) C 224 0.75 0.80 0.78 0.50 0.44
C/I 224 0.75 0.80 0.77 0.45 0.50
C/I/G 224 0.75 0.80 0.77 0.46 0.48
C/I/O 68 0.85 0.85 0.85 0.46 0.45

SDMT (CDA) C 238 0.83 0.87 0.85 0.49 0.63
C/I 238 0.81 0.84 0.83 0.48 0.62
C/I/G 238 0.81 0.83 0.82 0.47 0.61
C/I/O 73 0.75 0.73 0.74 0.51 0.40

SL25 (CDA) C 212 0.82 0.82 0.82 0.63 0.81
C/I 212 0.82 0.82 0.82 0.61 0.80
C/I/G 212 0.81 0.81 0.81 0.62 0.79
C/I/O 63 0.76 0.84 0.80 0.48 0.47

NEDA C 146 0.75 0.75 0.75 0.58 0.80
C/I 146 0.76 0.76 0.76 0.59 0.80
C/I/G 146 0.76 0.76 0.77 0.60 0.79
C/I/O 46 0.83 0.91 0.87 0.50 0.68

Change to high efficacy C 275 0.89 0.94 0.91 0.49 0.68
C/I 275 0.89 0.93 0.91 0.48 0.64
C/I/G 275 0.89 0.93 0.91 0.50 0.54
C/I/O 89 0.87 0.92 0.89 0.49 0.12

Starting therapy C 142 0.74 0.76 0.75 0.60 0.65
C/I 142 0.70 0.71 0.71 0.52 0.66
C/I/G 142 0.68 0.70 0.69 0.50 0.54
C/I/O 38 0.80 0.82 0.80 0.69 0.50
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Fig. 1   Performance of random 
forest algorithm for predicting 
the EDSS at 2-year follow-up. 
A ROC curve showing 6-month 
confirmed EDSS accumulation 
at the end of follow-up using: 
(1) clinical features (blue); (2) 
clinical and imaging (MRI and 
OCT) features (orange); or (3) 
clinical, imaging and omics fea-
tures (green); the random classi-
fication is shown in red. B Rep-
resentative tree of the random 
forest for predicting 6-month 
confirmed EDSS accumulation. 
Each box of the decision trees 
shows the following informa-
tion: (1) feature of the tree: 
based on the result, it either 
follows the true or the false 
path; (2) entropy, a measure of 
disorder or uncertainty that is 
reduced by the algorithm; (3) 
samples: percentage of samples 
that fall in that node; (4) value: 
the proportion of samples that 
falls in each category (class); 
and (5) class. C discriminatory 
features by order of relevance 
(top to down) for the best 
predictors of EDSS-CDA based 
on the AUC using: a clinical, b 
clinical and imaging, c clinical, 
imaging and genetics, and d 
Clinical, imaging, genetics and 
omics features
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Fig. 2   Performance of random 
forest algorithm for predicting 
confirmed disability accumula-
tion disability scales at 2-year 
follow-up. The figure shows 
the ROC curves on the left and 
the feature importance ranking 
(top 10) for the best predictor 
(Table 2) on the right. A 9HPT; 
B T25WT; C SDMT; D SL25
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patients changing from the low- to high-efficacy therapies 
or who started DMD during the 2-year follow-up period. 
We found a random forest algorithm for the change from 
the low- to high-efficacy therapies using only clinical vari-
ables, with precision 89%, recall 94% and F1 91%, and such 
performance did not improve by adding imaging, genetics 
or other omics (Table 2). The most informative variables for 
the change to high-efficacy therapies were the treatment line 
at baseline, treatment duration, disease duration, time since 
last relapse, age and disability scales (Fig. 3b). Indeed, we 
searched for algorithms predicting the onset of new DMD 
for treatment-naïve MS patients with precision 70%, recall 
71% and F1 71% by including only clinical data (Table 2). 
The most informative variables were treatment duration and 
high- versus low-efficacy therapy, disease duration, time 
since the last relapse, age and disability scales (Fig. 3c).

Assessment of algorithm accuracy in the Barcelona 
cohort

In order to test the accuracy of the predicting algorithms, 
we repeated the analysis in an independent prospective 
cohort from a single centre that includes clinical, imaging 
and genomic features similar to that of the Sys4MS cohort 
(cytomics and phosphoproteomics data were not available 
from this cohort). The cohort was composed of 271 patients 
with RRMS or SPMS and 54 HC (Table 3).

The analysis was conducted by training the random forest 
algorithm with the new data, considering that differences in 
the calculation of several clinical, imaging and MSGB vari-
ables would prevent the direct use of the trained algorithm. 
We found comparable accuracy for the confirmed EDSS 
worsening as well as for most of the outcomes (Table 4). For 
example, the change on EDSS, 9HPT, T25WT and SDMT 
CDA achieved similar AUC, but it was slightly higher (from 
62 to 77%) for the EDSS-CDA and smaller for the SL25 
CDA (from 81 to 67%) in the Barcelona cohort.

Discussion

In this study, we searched for predictors of future disease 
activity in MS by combining longitudinal clinical and imag-
ing, with omics information, and applying machine learn-
ing algorithms such as random forest. We were interested in 
identifying predictors for each of the outcomes, as well as 

establishing the contribution of each type of variable (clini-
cal, imaging, omics) to the predictors to assess the feasibility 
of the algorithms in clinical practice. We found predictors 
with mid- to high-accuracy for several disability outcomes, 
such as confirmed disability progression on the EDSS, 
9HPT, SDMT and SL25. The main variables contributing 
to such predictors were always disability scales at baseline, 
followed by brain or retina atrophy variables, and proteomics 
variables. Such level of accuracy was assessed in a second 
and independent cohort.

Recent studies have addressed the ability of brain MRI to 
predict the course of MS using deep learning, finding good 
accuracy for predicting clinical worsening [45]. Regarding 
the use of DMD as a surrogate marker of disease activity, 
we analysed the ability to predict the start of the DMD or the 
switch to high-efficacy therapies, two relevant milestones in 
MS care. It is well described that disease activity and age are 
strong predictors of response to therapy [46], but also dif-
ferences in cell populations, such as B (CD19 + CD5 +) and 
CD8 (perforin +) T cells, are associated with a differential 
response to some therapies, such as INFB [47], natalizumab 
or fingolimod [23]. Indeed, the recently developed Individ-
ual Treatment Response (ITR) score for MS therapies also 
identified clinical disability, quality of life and some imaging 
outcomes as the main predictors of response to therapy [48]. 
Our machine learning study identified algorithms with high 
accuracy for predicting the escalation of therapy from the 
first-line to high-efficacy DMD.

An in-depth analysis of molecular changes by omics 
analysis offers the promise of providing a comprehensive 
picture of the pathways altered in complex diseases and con-
sequently improve our prediction of the course of the disease 
[49, 50]. In the case of MS, other omics approaches have 
been tested for predicting disease prognosis or response to 
therapy including pharmacogenetics [51, 52], gene expres-
sion [53], proteomics [21, 53], metabolomics [54, 55] or 
phosphoproteomics [42] analysis aimed to interrogate sig-
nalling pathways driving tissue damage and clinical pheno-
type [2, 41]. By examining signalling pathways by phospho-
proteomics and making use of systems biology modelling, it 
has been possible to identify signalling networks associated 
with the use of MS therapies at the individual patient level 
[56]. However, most of such approaches have not achieved 
very high accuracy and has not been validated to be of use 
in clinical practice [2]. For this reason, validation of the 
biomarkers identified so far, combined with prospective mul-
ticentric studies, will be required for generating the evidence 
to be applied in personalised medicine.

In this study, we have applied random forest algorithms 
for searching the combination of variables that better explain 
the outcome 2 years later because they better tolerate data 
unbalance and overfitting. Random forest allows develop-
ing algorithms for classification (dichotomous outcomes) 

Fig. 3   Performance of random forest algorithm for predicting NEDA 
and change on therapy during follow-up. The figure shows the ROC 
curves on the left and the feature importance ranking (top 10) for the 
best predictor (Table 2) on the right. A staying on NEDA after 2 years 
follow-up; B starting DMDs during follow-up; C change from the 
first line to high-efficacy DMDs during follow-up

◂
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or regression (continuous outcomes) by constructing deci-
sion trees, ranking variables by importance, and without 
overfitting the training set. For these reasons, they are being 
applied to omics and imaging classification problems [18, 
19] and are the most commonly used in MS [20–22]. Other 
machine learning techniques can be applied to this type 

of datasets, such as neural networks, linear regression or 
least absolute shrinkage and selection operator (LASSO) 
regression methods, support vector machines or Bayesian 
networks, which may differ in their performance depending 
on the size of the dataset and quality of the data as well as 
on the type of prediction or clinical question [16, 57–60]. 

Table 3   The Barcelona cohort: clinical and imaging variables at baseline

Disability scales are shown as the mean and standard deviation or range, except for the EDSS which is displayed as the median (range)
a Other DMD baseline: alemtuzumab: 9, rituximab: 7, ocrelizumab: 1, daclizumab: 2
b Other DMD year 2: alemtuzumab: 13, rituximab: 11, ocrelizumab: 16, cladribine: 3

MS baseline MS 2-year FU HC
n = 251 n = 235 n = 24

Age 43.5 (10.7) 44.8 (10.8) 39.4 (10.2)
Female 180 (72%) 169 (72) 19 (79%)
Age at disease onset (years) 31.4 (25.7–38.9) 31.1 (25.5–38.9) –
Disease duration (years) 9.9 (2.4–15.7) 10.3 (3.6–17) –
Subtype
 CIS 22 (9) 4 (2)
 RRMS 203 (81) 183 (887)
 SPMS 20 (8) 16 (8)
 PPMS 6 (2) 6 (3) –

EDSS 2.0 (0–6.5) 2.0 (0–7.0) –
MSSS 2.9 (1.8–4.9) 2.7 (1.7–4.2) –
ARMS 3.2 (2.1–4.9) 3 (1.9–4.6) –
T25WT (sec) 4.2 (3.8–5.2) 4.5 (3.9–5.6) –
9HPT (sec) 20.8 (19–23.5) 21 (18.7–24) –
SDMT (# symbols) 50.1, 13.2 51.6, 13.2 –
SL25 (# letters) 27 (16.2–30.5) 22.5 (13–30) –
HCVA (LogMAR) 0 (-0.1–0) 0 (-0.1, 0.1) –
DMD
 Untreated 122 (48) 23 (26) –
 Interferon beta 67 (27) 35 (39) –
 Glatiramer acetate 28 (11) 13 (15) –
 Teriflunomide 8 (3) 1 (1) –
 Fingolimod 9 (4) 9 (10) –
 Dimethyl-Fumarate 3 (1) 2 (2) –
 Natalizumab 12 (5) 4 (5) –
 Other 2 (1)a 2 (2)b –

MRI

T2 lesion volume (cm3) 5.1 (2.2–11.4) 2.1 (0–7.8) –
NBV (cm3) 1505 (124) 1405 (97.5) –
NGMV (cm3) 722.4 (65.3) 662.6 (48.5) –
NWMV (cm3) 778.1 (66.7) 742.4 (63.3) –

OCT (µm)

pRNFL (µm) 90.5 (80.5–100.2) 88.2 (79.4–97.6) –
mRNFL (µm) 26.4 (23.7–28.4) 25.9 (23.6–28.4) –
GCIPL (µm) 68.2 (61.8–74.5) 67.1 (59.9–73.5) –
INL (µm) 37.2 (34.9–39.1) 37.1 (35.1–39.1) –
ORL (µm) 110.1 (106.1–113.9) 109.6 (105.5–113.1) –
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However, the main limitation, in addition to the sample size, 
is having variables sensitive to the outcome to be predicted 
[61]. Indeed, we tested support vector machines in this data-
set without achieving higher accuracies compared to random 
forest algorithms. Informative variables are quite difficult 
to obtain in brain diseases because current assessments 
may not be sensitive to minor changes in the evolution of 
the illness, due to the lack of specificity for the biological 
substrate or lack of spatial and temporal resolution. Whilst 
machine learning can be effectively used to model well-
defined systems, its application to complex diseases dictates 
a much more careful approach, including high-quality data, 
expert knowledge and significant customization to the spe-
cific medical question being addressed. Finally, differences 
between centres in terms of patient population, use of DMD 
or methods for collecting and calculating clinical or imaging 
variables are other sources of noise for this type of analysis, 
even if we made significant efforts to standardised data col-
lection between centres.

Physicians would benefit for their natural Bayesian think-
ing by updating the prior probabilities (e.g. risk of progres-
sion or response to therapy based on clinical judgement) 
with the likelihood ratios (based in the sensitivity and speci-
ficity of the biomarkers) obtained from clinical monitoring, 
imaging or omics to improve their predictions (posterior 

probabilities) [62]. One formal application already available 
for MS patients management is the Bayesian Risk Estimate 
for MS (BREMS) [63], which updates the prior probabilities 
based on age and disability scales (EDSS) for predicting the 
MSSS and the conversion to SPMS [64]. Further refinement 
of these algorithms based on decision trees or Bayesian net-
works would help support the reasoning and decision-mak-
ing process for the management of care for people with MS.

The main limitation of the study is the limited sample 
size considering the heterogeneity, noise and missing data 
for the machine learning approach. Although we collected a 
prospective multicentric cohort of more than 300 cases with 
a 2-year follow-up with a comprehensive assessment with 
clinical information, disability scales, quantitative imaging 
and omics information, the sample size was far from being 
big data, and a follow-up of 2 years is limited to identify 
enough events for the outcome variables. In addition, some 
patients dropped out, or some assessment was not com-
pleted, creating data gaps that impaired the algorithm per-
formance. Our study did not include relevant CSF-based bio-
markers such as IgM oligoclonal bands or chitinase because 
lack of CSF samples and to avoid requesting a lumbar tap as 
inclusion criteria to facilitate recruitment. More, spinal cord 
MRI were also not collected, missing the presence of spinal 
cord lesions as a predictor. Finally, due to the differences in 

Table 4   Random forest 
algorithm performance for 
predicting clinical outcomes at 
2-year follow-up

Features tested are shown by the type of variables (clinical (C), imaging (I) and genetics (G) and the num-
ber of features used. Results are shown as precision (positive predictive value), recall (sensitivity), F1 (har-
monic mean of precision and recall), the *balanced accuracy and the area under the receiver operator curve 
(AUC)
CDA, confirmed disability accumulation; EDSS, Expanded disability status scale; 9HPT, nine-hole peg 
test; T25WT, timed 25-feet walking test; SDMT, symbol digit modality test; SL25, Sloan low-contrast vis-
ual acuity 2.5%; NEDA, no evidence of disease activity; DMD, disease-modifying drug

Outcome Features Precision Recall F1 Accuracy* AUC​

EDSS (delta) C 0.60 0.58 0.59 0.5360 0.60
C/I 0.62 0.60 0.61 0.566 0.56
C/I/G 0.64 0.61 0.62 0.564 0.54

EDSS (CDA) C 0.86 0.86 0.86 0.6777 0.77
C/I 0.81 0.78 0.79 0.5775 0.75
C/I/G 0.83 0.79 0.81 0.5776 0.76

9HPT (CDA) C 0.83 0.89 0.86 0.4965 0.65
C/I 0.83 0.88 0.86 0.4863 0.63
C/I/G 0.83 0.88 0.86 0.4864 0.64

T25WT (CDA) C 0.67 0.69 0.68 0.564 0.54
C/I 0.69 0.62 0.64 0.6148 0.48
C/I/G 0.69 0.62 0.64 0.6148 0.48

SDMT (CDA) C 0.95 0.96 0.95 0.686 0.66
C/I 0.91 0.95 0.93 0.4965 0.65
C/I/G 0.91 0.95 0.93 0.4965 0.65

SL25 (CDA) C 0.62 0.62 0.62 0.627 0.67
C/I 0.63 0.62 0.62 0.634 0.64
C/I/G 0.66 0.64 0.62 0.638 0.68
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how some features were calculated between both cohorts 
(e.g. different method for the imaging analysis and MSGB 
calculations), this prevented to validate the algorithm in the 
second cohort. Indeed, the study includes imaging biomark-
ers but not molecular biomarkers such as oligoclonal bands 
or neurofilaments that may have improved the algorithm per-
formance. However, even with such limitations, we were 
able to identify algorithms with fair to good accuracy for 
predicting relevant clinical outcomes that can be of help to 
patients and clinicians for the management of their care. 
Another limitation is that not all currently available bio-
markers were included in this analysis, such as the presence 
of IgG or IgM oligoclonal bands, neurofilaments light chain 
or chitinase-3 from CSF samples, which may have contrib-
uted to improving the accuracy of the prognosis algorithms.

In summary, we found that machine learning algorithms 
for predicting relevant clinical outcomes in the short term 
for MS patients achieve intermediate to good accuracy using 
data that is commonly collected at the outpatient clinic, such 
as disability scales or imaging. Although omics improved 
the accuracy slightly in some cases, at present, the infor-
mation they provide is not worth the cost and efforts they 
will imply. Future studies with more informative biomarkers 
might improve the accuracy for predicting disease course.
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