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Abstract
Long non-coding RNAs (lncRNAs) are a recently discovered group of non-coding RNAs that play a crucial role in the regula-
tion of various human diseases, especially in the study of nervous system diseases which has garnered significant attention. 
However, there is limited knowledge on the identification and function of lncRNAs in hepatolenticular degeneration (HLD). 
The objective of this study was to identify novel lncRNAs and determine their involvement in the networks associated with 
HLD. We conducted a comprehensive analysis of RNA sequencing (RNA-seq) data, reverse transcription-quantitative 
polymerase chain reaction (RT-qPCR), and computational biology to identify novel lncRNAs and explore their potential 
mechanisms in HLD. We identified 212 differently expressed lncRNAs, with 98 upregulated and 114 downregulated. Addi-
tionally, 32 differently expressed mRNAs were found, with 15 upregulated and 17 downregulated. We obtained a total of 
1131 pairs of co-expressed lncRNAs and mRNAs by Pearson correlation test and prediction and annotation of the lncRNA-
targeted miRNA-mRNA network. The differential lncRNAs identified in this study were found to be involved in various 
biological functions and signaling pathways. These include translational initiation, motor learning, locomotors behavior, 
dioxygenase activity, integral component of postsynaptic membrane, neuroactive ligand-receptor interaction, nuclear factor-
kappa B (NF-κB) signaling pathway, cholinergic synapse, sphingolipid signaling pathway, and Parkinson’s disease signal-
ing pathway, as revealed by the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 
analyses. Six lncRNAs, including XR_001782921.1 (P < 0.01), XR_ 001780581.1 (P < 0.01), ENSMUST_00000207119 
(P < 0.01), XR_865512.2 (P < 0.01), TCONS_00005916 (P < 0.01), and TCONS_00020683 (P < 0.01), showed signifi-
cant differences in expression levels between the model group and normal group by RT-qPCR. Among these, four lncRNAs 
(TCONS_00020683, XR_865512.2, XR_001780581.1, and ENSMUST00000207119) displayed a high degree of conserva-
tion. This study provides a unique perspective for the pathogenesis and therapy of HLD by constructing the lncRNA-miRNA-
mRNA network. This insight provides a foundation for future exploration in this field.
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Introduction

Hepatolenticular degeneration (HLD), commonly referred 
to as Wilson disease (WD), is an infrequent autosomal 
recessive neurological disorder resulting from muta-
tions occurring in the ATP7B gene. This disorder is dis-
tinguished by a persistent and advancing impairment in 
copper metabolism [1]. This disease’s prevalence exhibits 
variation across different countries [2–4]. The prevalence 
of WD in the United Kingdom (UK) was 15.5/million, 
with males having a slightly higher prevalence of 16.9/
million and females having a slightly lower prevalence 
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of 14.1/million [5]. The overall prevalence of WD in the 
UK population is estimated to be 1 in 7000. Additionally, 
it is noteworthy that the proportion of individuals car-
rying a heterozygous ATP7B mutation, which is associ-
ated with WD, is unexpectedly high at approximately 1 in 
40 [6]. The principal pathological manifestation of HLD 
entails the accumulation of excessive copper in various 
tissues and organs, leading to varying degrees of impair-
ment. The nervous system and liver are the most frequently 
affected, with the lenticular nucleus being the most com-
monly impacted region within the nervous system [7, 
8]. Research conducted with adolescent populations has 
indicated that the neurological manifestations of HLD 
typically emerge during the age range of 10 to 20 years, 
primarily presenting as tremors, dystonia, and symptoms 
resembling Parkinson’s disease [9, 10].

Furthermore, long non-coding RNAs (lncRNAs), which 
are generated as by-products of transcription, were previ-
ously regarded as transcripts lacking significant biologi-
cal functionality [11]. Nevertheless, in the past decade, 
an increasing number of research has demonstrated the 
involvement of lncRNAs in the transcriptional processes 
across various species. Moreover, lncRNAs have received 
increasing attention as a prospective novel mechanism of 
biological regulation [12, 13]. Numerous studies have dem-
onstrated that lncRNAs possess the capability to engage 
with microRNA (miRNA) sites, concurrently contending 
for endogenous RNAs (ceRNAs), consequently influencing 
and governing the expression of mRNA and target genes. 
Furthermore, lncRNAs and mRNAs can mutually occupy 
miRNA-binding sites, interact with one another, and estab-
lish a comprehensive ceRNA network [14]. This phenome-
non can contribute to the comprehension of the mechanisms 
underlying pathogenic genes and transcriptional regulatory 
networks. Additionally, ceRNAs may participate in the regu-
lation of disease-associated target genes at both transcrip-
tional and post-transcriptional levels [15, 16]. However, the 
precise role of the majority of lncRNAs across various spe-
cies remains elusive.

Recent research has demonstrated that a considerable 
number of lncRNAs possess the ability to modulate gene 
expression both during transcription and post-transcription, 
thereby exerting a significant influence on the pathogenesis 
and progression of neurological disorders [17–19]. Several 
studies have demonstrated that a significant proportion of 
lncRNAs play a crucial role as a mediator in the process of 
brain development [20]. For example, this phenomenon can 
be observed in the inhibitory effects of lncRNA-GAS5 on 
the polarization of brain M2 microglia, resulting in an expe-
dited process of demyelination [21]. Additionally, it has been 
observed that lncRNA-associated ceRNA networks play a 
crucial role in synaptic plasticity, memory, and regulation 
of neuroinflammation diseases induced by amyloid-β [22].

However, the pathogenesis of lncRNAs in the lenticular 
nucleus region of the brain affected by HLD remains unex-
plored. Given the preferential expression of lncRNAs in the 
nervous system relative to other organ systems, numerous 
investigations have concentrated on elucidating their asso-
ciated neurobiological functions. The establishment and 
maintenance of neural cell identity in brain development, 
plasticity, and stress response are among the most prominent 
functions attributed to lncRNAs [23, 24].

Hence, conducting a comprehensive investigation of the 
functional role of lncRNAs within the lenticular nucleus 
region of the brain represents a promising approach towards 
elucidating the molecular mechanisms that underlie the 
molecular mechanisms underlying of HLD. Nevertheless, 
the intricate nature of its pathogenesis and the diverse clini-
cal manifestations pose significant challenges for research-
ers. Furthermore, the absence of an efficacious therapeutic 
intervention exacerbates the detrimental impact of this con-
dition on patients’ quality of life and imposes a substan-
tial economic burden on both families and society. Under-
standing the molecular mechanisms of HLD is of utmost 
importance due to the observed increase in the number 
of patients affected by this condition in recent years. This 
article presents an innovative approach to investigating the 
pathogenesis of HLD by examining molecular regulation 
and lncRNA, thereby introducing novel therapeutic targets 
for treatment. In this study, we conducted RNA sequenc-
ing (RNA-seq) analysis on the lenticular nucleus region 
of the brain to establish the lncRNA expression profile in 
patients with HLD. We identified differentially expressed 
lncRNAs (DE-lncRNAs) and investigated their biological 
functions and molecular mechanisms using bioinformatics 
analysis. The findings from our current lncRNA expression 
profile and pathway enrichment analysis have the potential 
to greatly enhance research on the pathogenesis of HLD and 
facilitate the identification of novel therapeutic targets.

Materials and Methods

Animal Experiments and Sample Collection

The Jackson Laboratory Toxic Milk (TX-j) mouse is a 
highly suitable model for studying HLD, as it exhibits 
notable liver and brain injury, as well as an early onset 
of copper deposition. Consequently, this mouse model 
has been extensively employed in HLD research [25]. 
There are a novel autosomal recessive mutant discovered 
in1987 in the C3H/HeJ animal resource population at 
Jackson Laboratory in Bar Harbor, Maine. The genetic 
defect is due to a spontaneous recessive point mutation 
at position 2135 in exon 8 of the Atp7b gene, resulting 
in a missense of G712D, with the same mutation gene as 
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HLD patients [26]. Previous research has indicated that 
TX-j mice exhibit excessive accumulation of copper in the 
thalamus and pectin during their third month of life. Sub-
sequently, by the age of 12 months, there is an observed 
elevation in copper concentration within the hippocampus 
and cerebellum of the striatum, while the concentration 
of copper in the cerebral cortex remains unaltered during 
this period [27]. As the deposition of copper persisted, a 
concomitant increase in the concentration of copper within 
the cerebral cortex was observed [28]. Upon analysis of 
their behavior, the TX-j mice exhibited minor abnormali-
ties, such as a predilection for utilizing their forelimbs 
and displaying clumsiness. The study subjects consisted of 
TX-j mice and wild-type (WT) mice, both of which shared 
the same genetic background. TX-j mice, known for their 
high degree of ATP7B sequence homology (82%) with 
human HLD, are widely recognized as the most represent-
ative animal model due to their comparable physiological, 
pathological, and clinical characteristics.

TX-j mice were used as the model group, and WT mice 
were used as the normal group, with 16 mice in each 
group, 6 of which were selected for RNA sequencing 
analysis and 10 for RT-qPCR analysis. In the isolation 
cage, the model and normal groups were given independ-
ent oxygen and free access to food and water, the light/
dark cycle was 12 h, and the feeding lasted 16 weeks. At 
the 16th week, the mice experienced dislocation of the 
cervical vertebra resulting in death, and subsequently, 
brain lenticular nucleus tissues were obtained. Initially, a 
portion of the tissues was treated with 4% paraformalde-
hyde for a duration of 3 h, followed by dehydration using 
ethanol and xylene, embedding in paraffin, and slicing for 
subsequent pathological analysis. The remaining portions 
were securely stored in refrigerated tubes at a temperature 
of − 80 °C.

Total RNA Isolation

Library construction and RNA sequencing were carried out 
by OE Company Shanghai (Oebiotech Biomedical Technol-
ogy Company, Shanghai, China). Total RNA was extracted 
using the TRIzol reagent according to the manufacturer’s 
protocol. RNA purity and quantification were evaluated 
using the NanoDrop 2000 spectrophotometer (Thermo 
Fisher Scientific, Waltham, MA, USA). RNA integrity 
was assessed using the Agilent 2100 Bioanalyzer (Agilent 
Technologies, Santa Clara, CA, USA). One microgram total 
RNA of each sample with RIN value above 7 was used for 
library preparation. Then, the libraries were constructed 
using TruSeq Stranded Total RNA with Ribo-Zero Gold 
(Illumina, Cat. No. RS-122-2301) according to the manu-
facturer’s instructions.

Annotation and Differential Expression of lncRNAs

The libraries were sequenced on an Illumina Novaseq6000 
platform; 150-bp paired-end reads were generated. Raw data 
(raw reads) of fastq format were firstly processed using the 
Trimmomatic software [29]. In this step, clean data (clean 
reads) were obtained by removing reads containing adapter 
and ploy-N or low quality reads from raw data. Based on 
the genome alignment results for each sample, the StringTie 
software applies a flow neural network algorithm to reas-
semble the transcripts [30].

Sequencing reads were mapped to the mouse genome 
(GRCm38) using HISAT2 [31]. For mRNAs, FPKM of each 
gene was calculated using Cufflinks, and the read counts of 
each gene were obtained by HTSeq-count [32, 33]. Differ-
ential expression analysis was performed using the DESeq2 
R package [34]. P value < 0.05 was set as the threshold for 
significantly differential expression. For lncRNAs, the tran-
scriptome from each dataset was assembled independently 
using the Cufflinks 2.0 program [35]. All transcriptomes 
were pooled and merged to generate a final transcriptome 
using Cuffmerge (Cufflinks 2.0). All transcripts that over-
lapped with known mRNAs, other non-coding RNA, and 
non-lncRNA were discarded. Next, the transcripts longer 
than 200 bp and the number of exons > 2 were picked out, 
and the CPC (v 0.9-r2), PLEK (v 1.2), CNCI (v 1.0), and 
Pfam (v 30) were used to predict transcripts with coding 
potential [36–38]. The novel predicted lncRNAs were 
obtained through these processes. The characteristics 
(including length, type, and number of exons) of lncRNA 
were analyzed after screening. Then, the novel-predicted 
lncRNAs and known lncRNAs (from NCBI and Ensemble 
database) were both used for expression calculation and dif-
ferential screening.

Bowtie2 and eXpress software were used to calculate the 
expression abundance of each transcript in each sample by 
sequence similarity comparison [32]. The FPKM method 
eliminates the effect of transcript length and sequencing 
volume difference to calculate the transcript expression 
[39]. Thus, this calculated transcript expression can reflect 
high or low expression. The FEELnc software was used to 
count lncRNA types by the position relationship between 
lncRNA and known protein-encoded transcripts [40]. Then, 
lncRNAs were filtered based on the count mean value, and 
only the lncRNAs in at least one group whose counts mean 
value was > 2 were selected for the next analysis. DESeq2 
software was used to standardize the counts of lncRNAs 
in each sample (BaseMean value was used to estimate the 
expression amount) [41] and calculate the multiple of dif-
ference. The negative binomial (NB) distribution test was 
used for the difference significance test, and differential 
lncRNAs were screened according to the difference mul-
tiple and difference significance test results. The default 
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difference filter was P < 0.05 for non-biological duplicate 
samples with a difference multiple > 2.

Prediction and Annotation of the lncRNA‑Targeted 
miRNA‑mRNA Network

Furthermore, miRNAs can reverse-regulate the expression 
of target genes by inhibiting translation or triggering deg-
radation. On the other hand, lncRNAs can regulate mRNA 
expression and degradation by competing with limited 
miRNAs, known as ceRNAs. The ceRNAs can regulate the 
expression of transcripts by competing with mRNAs for the 
same miRNA response elements (MREs). Both compete 
for the binding of miRNAs and regulate each other to form 
ceRNA networks (ceRNETs).

The miRNA regulatory relationship was predicted using 
Miranda. The threshold parameter settings: S ≥ 150, ΔG 
≤ − 30 kcal/mol and strict 5′ seed pairing. The ceRNA 
MuTATE method was used to calculate the score between 
ceRNA relational pairs [42]. The probability of sharing 
some miRNAs in the ceRNA relational pairs was calculated 
using a hypergeometric distribution algorithm. Finally, a 
ceRNA relational pair with high reliability was obtained. 
These lncRNA-regulated mRNAs and lncRNAs were evalu-
ated for GO and KEGG enrichment analyses.

Verification of Sequencing Data Using RT‑qPCR

In order to corroborate the findings obtained from RNA-
seq analysis, we employed RT-qPCR technique to validate 
the expression of lncRNAs in the identical sample. First, 

we generated primers for the identified lncRNAs following 
the principles of PCR primer design. Primers are listed in 
Table 3. The lenticular nucleus tissue of mice from both 
experimental groups served as a template, while β-actin was 
used as the endogenous control. The relative expression lev-
els of lncRNAs were calculated by the 2−∆∆Ct method to 
detect the recording level of lncRNA transfer in the calibra-
tion samples of the non-treated group.

Statistical Analyses

The mean ± standard deviation (SD) was used to express the 
quantitative data obtained from RT-qPCR. Student’s t-test 
was conducted using the Statistical software package for 
Social Science 22.0 (SPSS, Chicago, USA). A significance 
level of P < 0.05 was deemed statistically significant.

Results

Mice Genotyping and Lenticular Nucleus 
Histopathology

First, all mice were genotyped as diploid mutant Jackson 
Laboratory Toxic Milk mice (TX-j) (model group, MOD) 
or diploid wild-type mice (normal group, NOR) (Fig. 1A, 
B). The hematoxylin and eosin staining showed that a large 
number of inflammatory cells were infiltrated, some neurons 
were shrunken, and nerve fibers were loose in the lenticular 
nucleus region of the model group compared to the normal 
group (Fig. 1C, D).

Fig. 1   The genotyping of mice 
and the histopathological exam-
ination of the lenticular nucleus. 
A The mice in the normal group 
had a diploid wild-type geno-
type; B the mice in the model 
group had a diploid mutant 
genotype. Lenticular nucleus 
histopathology in the C normal 
and D model groups (× 400)



1677Molecular Neurobiology (2024) 61:1673–1686	

1 3

Summary of the RNA‑seq Data

Total transcriptome sequencing was performed on the 
brain’s lenticular nucleus tissue of three model mice 
(TX-j mice) and three normal mice, resulting in a total 
of 83.1 G of clean data. The effective data amount of 
each sample ranged from 13.34 to 14.41 G, the Q30 base 
was distributed in 95.02–95.12%, and the average GC 
content was 47.99%. Reads were compared to the refer-
ence genome to obtain the genome alignments of each 
sample. The alignment rate was 96.58–96.72%. Overall, 
these results indicated that the sequencing data were suf-
ficiently representative and valid.

Expression Profile of lncRNAs in the Lenticular 
Nucleus

The lenticular nucleus expression patterns of three model 
mice (TX-j mice) and three normal mice were studied 
using deep RNA sequencing. In the three model samples 

and three normal samples, a total of 20,471 lncRNA tran-
scripts were identified, and all FPKM values of lncRNA 
expression were > 0 (Fig. 2A). The length of lncRNA 
sequences ranged from 73~93147 nt, and the sequences 
> 2000 nt accounted for the largest proportion (39.99%) 
(Fig. 2B). The most common lncRNA type was anti-
sense-intergenic-upstream followed by downstream anti-
sense-genic-exonic, antisense-genic-intronic, sense-inter-
genic-downstream, and sense-genic-exonic (Fig. 2C). 
Furthermore, we evaluated the distribution of lncRNAs 
on mouse chromosomes and identified 20,471 lncRNA 
transcripts on all chromosomes, including Chr X and Chr 
Y, with Chr 2 having the most lncRNAs (Fig. 2D).

Differentially Expressed lncRNAs (DE‑lncRNAs) 
and mRNAs(DE‑mRNAs)

In order to investigate the involvement of lncRNAs and 
mRNAs in the lenticular nucleus of mice with HLD, we 
conducted a comparative analysis of lncRNA expression 

Fig. 2   Expression profile of lncRNAs in the lenticular nucleus. A FPKM value of lncRNA expression in each sample; B lncRNA sequence 
length distribution range; C lncRNA types; D distribution of lncRNAs on chromosomes
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levels between the lenticular nucleus regions of the 
model and normal groups. Subsequently, we identified 
DE-lncRNAs based on the following criteria: a Log2|fold 
change (FC)| ≥ 1 and corrected P values < 0.05. A total 
of 212 DE-lncRNAs were detected, 98 upregulated and 
114 downregulated. A total of 32 DE-mRNAs were 
detected, 15 upregulated and 17 downregulated. Volcano 
and heat maps are used to show the DE-lncRNAs and 
DE-mRNAs (Fig. 3).

Co‑expression of DE‑lncRNAs and mRNAs

The Pearson correlation test was used to calculate the 
expression correlation between DE-lncRNAs (length < 6000 
nt) and differential mRNA expression data. The threshold 
was a correlation coefficient ≥ 0.8 and a P < 0.05. Finally, 
a total of 1131 pairs of co-expressed genes were obtained. 
To more intuitively display this information, DE-lncRNAs 
and mRNAs in the same comparison group were mapped 

Fig. 3   Differentially expressed lncRNAs (NOR vs. MOD) in the lenticular nucleus as compared to normal control. A Volcano map of DE-lncR-
NAs; B heat map of DE-lncRNAs; C volcano map of DE-mRNAs; D heat map of DE-mRNAs
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using a circos graph [43] (Fig. 4A). A table listing the top 
500 co-expressed lncRNAs and mRNAs with correlation 
coefficient and P values as Supplementary Information (Sup-
plementary table 1).

Association of lncRNAs with Transcription Factors 
(TFs)

Furthermore, lncRNAs that possess the ability to interact 
with TFs actively engage in regulatory processes by recruit-
ing TFs and guiding them to specific regions within the DNA 
sequence, such as the promoter region, thereby exerting con-
trol over transcriptional activity. Additionally, an alternative 
regulatory mechanism involves the binding of multiple TFs 
to lncRNA molecules. In instances where multiple signal-
ing pathways are concurrently activated within an organism, 
these downstream effector molecules can associate with the 
same lncRNA, facilitating the convergence and integration 
of information across distinct signaling pathways.

Based on the co-expression of lncRNAs and mRNAs, TF 
potential binding of lncRNAs was predicted using TF data 
on the JASPAR database [44]. The GTRD database’s gene-
transcription factor pairings and lncRNA-mRNA co-expres-
sion were used to build the three-element regulatory network 
of lncRNA-TF-mRNA [45], extract the top 500 relationship 
pairs, and draw the ternary regulatory network diagram 
using a network software package [46] (Fig. 4B). Finally, 
we obtained four major lncRNAs (ENSMUST00000188485, 

TCONS_00019744, XR_001782921.1, and XR_879406.1) 
that were involved in the regulation of twelve mRNAs (Sp6, 
Kdm5d, S1pr4, Cpxm2, Ddx3y, Uty, Btla, Gm38690, X1r3b, 
H2-Aa, Spaca8, and Eif2s3y) by binding to 51 major TFs.

Prediction and Annotation of the lncRNA‑Targeted 
miRNA‑mRNA Network

The regulation and degradation of mRNAs by lncRNAs 
compete with limited miRNAs, known as competing for 
endogenous RNAs (ceRNAs). These ceRNAs can compete 
with other RNA transcripts for the same miRNA, to achieve 
mutual communication and regulation, including protein-
coding genes, pseudogenes, and lncRNAs [47]. The ceRNA 
hypothesis is based on research on how RNA transcripts 
interact with each other. Additionally, miRNAs are 22 nt 
short RNAs that can reverse-regulate target gene expres-
sion by inhibiting translation or degradation. The ceRNA 
hypothesis suggests that ceRNA regulates the expression 
of transcripts by competing for the same MREs as mRNAs. 
Regardless of their protein-encoding capacity, RNA tran-
scripts can compete with each other to bind to miRNAs 
and also regulate each other to form huge ceRNA networks 
(ceRNETs).

Herein, lenticular nucleus tissues of three model mice 
and three normal mice were analyzed, and the total number 
of differential lncRNAs, miRNAs, and mRNAs was 212, 
1963, and 32, respectively. The Miranda program was used 

Fig. 4   A Circos graph (this graph only represents the distribution of 
DE-mRNAs/DE-lncRNAs on the chromosome, not the number). The 
outermost circle represents the autosomal distribution diagram of 
this species. In the second and third circles, differentially expressed 
mRNAs are distributed on chromosomes. The red line denotes upreg-
ulation, whereas the green line denotes downregulation. The greater 
the bar, the more mRNA was differently expressed at this location. 

The fourth and fifth circles show the distribution of DE-lncRNAs 
on chromosomes, expressed in the same form as mRNAs. The inter-
nal line indicates the mapping between the top 500 co-expressed 
lncRNAs and mRNAs. B Ternary regulation network of lncRNA-
TF-mRNA. The blue nodes represent lncRNAs, the orange nodes 
mRNAs, and the green nodes TFs
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to predict the binding between miRNA-mRNA and miRNA-
lncRNA sequences. The parameters were set as the Miranda 
default V3.3a. A total of 1135 miRNA-mRNA pairs and 
3731 miRNA-lncRNA pairs were finally obtained. The 
top 20 pairs with the highest expression correlation were 
selected and displayed (Tables 1 and 2).

For the relationship pairs with regulatory roles, the ceRNA 
score was calculated based on the MuTaME method [48]. The P 
value for the matching ceRNA relationship was simultaneously 
determined using a combined hypergeometric distribution. The 
smaller the P value, the more significant these miRNAs were 
shared between two ceRNAs (mRNA and Target). A total of 817 
mRNA-lncRNA pairs with positive correlation were evaluated 
based on their inceRNA function associations (Fig. 5A).

Among the top 100 mRNA-lncRNA relationship pairs 
with the highest MuTATE score in the ceRNA analy-
sis results, the ternary network diagram of ceRNA was 
drawn for 200 mRNA-miRNA-lncRNA relationship pairs 
(Fig. 5B). The ceRNA ternary relation network of lncRNAs 
included XR_879175.1, XR_866923.1, TCONS_00005916, 
XR_001782921.1, XR_001784962.1, XR_001780581.1, 
XR_ 865512.2, XR_879406.1, ENSMUST00000207119, 
ENSMUST00000181506, and TCONS_00020683. The 
mRNAs included Kcnj4, LOC108168644, Kcnv1, Sp6, 
Mas1, Lrrc10b, Egr3, Adora2a, Ptprv, and Hoxb3.

Since lncRNAs and mRNAs communicate through 
shared miRNAs, they can also present similar functions. 
A hypergeometric distribution test was used to calcu-
late the GO and KEGG enrichment significance of these 
mRNAs regulated by lncRNAs and comprehended the 
functional annotation of these DE-lncRNAs [49]. Protein 
coding genes in the entire lncRNA-mRNA co-expression 
network were analyzed, and the first 30 items enriched by 
GO and KEGG are presented in Fig. 6A, B, respectively. 
According to the GO enrichment analysis, DE-lncRNAs 
were mostly enriched for biological processes such as 
learning locomotory behavior of the translational initia-
tion motor. The RNA polymerase II proximal promoter 
sequence-specific DNA binding, dioxygenase activ-
ity, and type 5 metabotropic glutamate receptor bind-
ing function were the molecular functions involved. The 
integral component of the postsynaptic membrane was 
the cellular component enriched. The neuroactive ligand-
receptor interaction pathway was the primary enrichment 
of lncRNAs according to the KEGG enrichment analysis 
(the highest number and the lowest P value). Addition-
ally, ABC transporters, amino sugar and nucleotide sugar 
metabolism, NF-κB signaling pathway, cholinergic syn-
apse, sphingolipid signaling pathway, and Parkinson’s 
disease pathway were closely related.

Table 1   First 20 relationship pairs of miRNA-lncRNA co-expression and target gene prediction diagram

miRNA lncRNA Total score Total energy Max score Max energy Target length MRE

mmu-miR-466i-3p XR_001780581.1 1258 − 247.08 196 − 37.37 23199 7
mmu-miR-466m-3p XR_001780581.1 1248 − 258.44 196 − 38.23 23199 7
mmu-miR-466f-3p XR_001780581.1 1237 − 258.04 191 − 38.86 23199 7
mmu-miR-466b-3p>mmu-miR-466c-

3p>mmu-miR-466p-3p
XR_001780581.1 1126 − 220.86 171 − 36 23199 7

mmu-miR-466h-3p XR_001780581.1 1071 − 235.25 153 − 35.08 23199 7
mmu-miR-877-3p ENSMUST00000232598 1008 − 196.71 172 − 35.19 1890 6
mmu-miR-669f-3p XR_001780581.1 1002 − 215.96 177 − 37.92 23199 6
mmu-miR-466a-3p>mmu-miR-466e-3p XR_001780581.1 1001 − 200.5 176 − 37.71 23199 6
mmu-miR-3960 ENSMUST00000057889 993 − 231.42 176 − 48.15 2248 6
mmu-miR-669b-3p XR_001780581.1 978 − 185.83 173 − 31.88 23199 6
mmu-miR-466d-3p XR_001780581.1 966 − 193.38 171 − 33.03 23199 6
mmu-miR-7687-5p ENSMUST00000200143 948 − 198.89 163 − 36.61 1460 6
mmu-miR-466i-5p XR_382195.2 898 − 180 190 − 38.3 5114 5
mmu-miR-7058-3p TCONS_00006180 816 − 161.02 168 − 35.11 2772 5
mmu-miR-5126 ENSMUST00000200143 808 − 201.19 170 − 45.88 1460 5
mmu-miR-467a-3p XR_001780581.1 803 − 163.34 168 − 34.32 23199 5
mmu-miR-877-3p ENSMUST00000185568 799 − 162.04 163 − 32.99 2380 5
mmu-miR-877-3p NR_015605.1 799 − 162.04 163 − 32.99 2585 5
mmu-miR-467f XR_001780581.1 798 − 154.19 167 − 32.49 23199 5
mmu-miR-7081-5p NR_038048.1 793 − 164.09 165 − 35.99 2677 5
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Validation by RT‑qPCR

Eleven DE-lncRNAs in the ceRNA ternary relational 
network were selected for RT-qPCR detection and 

verification, and we found that 6 of them had significant 
differences in expression (Fig. 7), indicating the reli-
ability of the sequencing analysis results. Primers are 
listed in Table 3.

Table 2   Co-expression of miRNA-mRNA and prediction of target genes in the first 20 relationship pairs

miRNA mRNA Total score Total energy Max score Max energy Target length MRE

mmu-miR-5107-5p LOC108168644 3986 − 817.61 167 − 33.01 5689 26
mmu-miR-346-3p LOC108168644 3638 − 741.37 155 − 32.86 5689 24
mmu-miR-504-3p LOC108168644 3051 − 672.44 161 − 36.04 5689 19
mmu-miR-7222-3p LOC108168644 2898 − 564.08 175 − 33.45 5689 17
mmu-miR-1249-5p LOC108168644 2632 − 543.3 184 − 40.4 5689 17
mmu-miR-3572-5p LOC108168644 2567 − 531.59 151 − 31.27 5689 17
mmu-miR-6987-5p LOC108168644 2287 − 464.1 184 − 39.74 5689 13
mmu-miR-5110 LOC108168644 2097 − 413.13 172 − 34.79 5689 13
mmu-miR-7118-5p LOC108168644 1459 − 293.17 168 − 33.44 5689 9
mmu-miR-207 Krt9 1082 − 222.87 157 − 35.52 2580 7
mmu-miR-1893 LOC108168644 930 − 182.22 155 − 30.37 5689 6
mmu-miR-7011-3p Krt9 930 − 206.35 161 − 35.92 2580 6
mmu-miR-149-3p Hoxb3 812 − 182.24 171 − 41.69 8699 5
mmu-miR-149-3p LOC108168644 811 − 185.38 166 − 39.72 5689 5
mmu-miR-7081-5p Kcnj4 790 − 158.48 171 − 34.11 6565 5
mmu-miR-328-5p LOC108168644 750 − 182.55 150 − 36.51 5689 5
mmu-miR-466i-3p Kcnj4 720 − 142.74 180 − 35.79 6565 4
mmu-miR-466m-3p Kcnj4 712 − 153.18 180 − 40.05 6565 4
mmu-miR-466f-3p Kcnj4 700 − 147.94 175 − 38.83 6565 4
mmu-miR-1249-5p Hoxb3 679 − 135.99 176 − 36.45 8699 4

Fig. 5   A Venn diagram of the relationship between ceRNAs and 
mRNA-lncRNA pairs. The calculation results of mRNA and lncRNA 
co-expression were used to filter the ceRNA score results. B ceRNA 

ternary network diagram. The orange nodes represent mRNAs, cyan 
nodes represent lncRNAs, and blue nodes represent miRNAs
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Conservation Analysis of lncRNAs

Eleven DE-lncRNAs in ceRNA ternary network were 
selected for comparison with human blast. Through con-
servation analysis, the human orthologous lncRNA of 5 
murine lncRNAs were obtained, indicating that these 5 
lncRNAs are highly conserved (Table 4). Combined with 
the results of RT-qPCR, we found that these 4 lncRNAs 
(TCONS_00020683, XR_865512.2, XR_001780581.1, 
ENSMUST00000207119) not only had high conservation, 
but also had obvious expression differences. We will carry 

out further research and analysis on these 4 lncRNAs, such 
as lncRNA function analysis, or comparison with lncRNA 
expression profile of HLD patients.

Discussion

Previously, HLD was widely perceived as an infrequent ail-
ment, resulting in limited scholarly investigations. Presently, 
HLD has become more prevalent, imposing a greater eco-
nomic strain on both society and families. Consequently, 

Fig. 6   Enrichment analysis of protein-coding genes in the entire lncRNA-mRNA co-expression network by GO and KEGG. The top 30 items are 
presented. A GO and B KEGG bubble maps

Fig. 7   RT-qPCR validation of 
the selected DE-lncRNAs
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research endeavors pertaining to HLD have progressively 
intensified, albeit the comprehensive understanding of its 
pathogenic molecular mechanism remains elusive. Further-
more, the prominence of lncRNAs has surged in recent years 
due to their involvement in diverse biological processes [50]. 
However, their association with HLD remains unknown. 
Hence, in this study, we used high-throughput transcriptome 
sequencing to evaluate the expression of lncRNAs in the len-
ticular nucleus region of HLD. Through the co-expression 
correlation analysis of DE-lncRNA and DE-mRNA, the 
relationship between lncRNA and transcription factors, and 
ceRNA network analysis, the lncRNA regulatory network 
was obtained, and 11 lncRNAs with very important roles in 
the regulatory network were screened out. Furthermore, four 
important lncRNAs were identified by lncRNA conserva-
tion analysis and RT-qPCR validation. Further functional 

analysis of these four lncRNAs will be performed in the 
future. These results contribute to the understanding of the 
complex neurological pathogenesis of HLD. To the best of 
our knowledge, this is the first comprehensive transcriptome 
analysis of lncRNA expression profiles in the lenticular 
nucleus region of HLD.

In this study, lncRNA transcription factor association 
analysis was employed to assess the functional role of DE-
lncRNAs. The findings revealed the involvement of four 
primary lncRNAs in the regulation of six mRNAs through 
the binding of 51 key transcription factors. Furthermore, we 
performed a comprehensive analysis of specific lncRNAs 
transcription factors and subsequently developed a network 
model of lncRNA-miRNA-mRNA interactions, known as 
ceRNA network, which included 10 lncRNAs, 92 miRNAs, 
and 10 mRNAs.

Among these lncRNAs, namely, TCONS_00020683, 
XR_865512 .2 ,  XR_001780581 .1 ,  and  ENS-
MUST00000207119, it is evident that they exhibit higher 
conservation levels, suggesting their potential significance in 
the pathogenesis of HLD. Burkhead JL’s studies on the mouse 
model for HLD (Atp7b(-)(/-)) revealed copper accumulation 
in hepatic nuclei and specific changes in mRNA profile prior 
to the onset of pathology. They found that remodeling of the 
RNA processing machinery is an important component of 
cell response to elevated copper that may guide pathology 
development in the early stages of HLD [51]. In the past, 
our research group has done a lot of research using RNA-
seq to explore the pathogenesis of liver and kidney injury in 
HLD. We elucidated the lncRNA-mRNA regulation network 
in HLD liver injury in a TX-j WD mouse model using RNA 
sequencing, and constructed differential lncRNA and mRNA 
co-expression networks. The identified differential lncRNAs 
involved in the pathogenesis and development of HLD liver 
injury [52]. Then, we performed gene expression profiling 
of Gan-Dou-Fu-Mu decoction (GDFMD)-treated TX-j WD 
model mice using RNA-Seq analysis and found the genes, 
pathways, and processes effected by the treatment. Our study 
provides a theoretical basis to prevent liver fibrosis resulting 
from WD using GDFMD [53]. Moreover, we identified the 
circRNA/miRNA/mRNA network involved in kidney failure 
in HLD, which may serve as a potential biomarker for the 
pathogenesis of HLD [54].

This study additionally identified Sp6, Mas1, Egr3, 
Adora2a, and Hoxb3 mRNA as potential significant bio-
markers for HLD. The Sp6 gene is implicated in the pro-
liferation of cells during early development, primarily 
exhibiting expression within the developing germ layer. 
Subsequently, it undergoes differentiation into enamel and 
epidermis tissues within the nervous system [55, 56]. The 
recent association of Sp6 expression in the amygdala and 
hippocampus with cognitive function and motor disability-
related diseases has been established [57]. Moreover, the 

Table 3   Primers for RT-qPCR validation

lncRNA_id Primers

XR_001782921.1 Forward: TTC​ACA​CTG​AGA​GGG​TTG​
CT

Reverse: GAG​TTT​CCT​GGG​TCC​TGG​
TT

XR_001780581.1 Forward: CGT​GAC​ATC​CGA​CGA​ACA​
AA

Reverse: TAG​GAT​GCA​GAG​CCC​AAC​
AA

ENSMUST_00000207119 Forward: CCT​GTG​GCC​TTA​AAG​ATG​
CC

Reverse: TGT​GTC​ACA​CCC​ACC​TCT​
AC

XR_865512.2 Forward: AGC​TCA​CGC​AAG​TTT​GTT​
GT

Reverse: GTC​CCA​AGA​TGC​ACA​AGT​
GG

TCONS_00005916 Forward: TCA​CCC​CTA​GCA​GAG​TGG​
TA

Reverse: GTT​CTG​GGA​TGG​GGA​GTT​
CA

TCONS_00020683 Forward: TAC​CTG​TAT​ACC​TTT​GTT​
TG

Reverse: GCT​GGA​AAA​TAG​GAT​GAA​
AT

Table 4   Conservation analysis of lncRNAs

Query id Subject id % identity e-value

TCONS_00020683 ENST00000565467 97.5 4.00E−11
XR_865512.2 NR_002813.1 100 1.00E−09
XR_879175.1 ENST00000564508 83.77 3.00E−17
XR_001780581.1 XR_942049.2 96.36 1.00E−16
ENSMUST00000207119 ENST00000605834 91.07 2.00E−08
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Sp6 gene has been linked to the formation of a crucial ana-
tomical structure in the eye known as the optical (pigment) 
cup [58]. These results indicated that Sp6 may play a role in 
the pathogenesis of HLD dyskinesia and corneal K-F ring 
symptoms. The MAS receptor, encoded by the mas1 gene, 
is observed in microglia and primarily associated with the 
renin-angiotensin system and the stimulation of anti-inflam-
matory signaling pathways [59, 60]. Microglia have been 
extensively studied in the context of brain injury as central 
nervous system guardians [61]. Copper ions deposited in 
the brain can cause inflammation and damage microglia. 
Mas1 regulates the NF-κB signaling pathway that plays 
an important role in the development and pathology of the 
nervous system. The role of NF-κB activity in the nervous 
system is usually based on the control of neuronal apoptosis, 
neurite growth, and synaptic plasticity [62, 63]. From this 
we can know, Mas1 may potentially be associated with the 
inflammatory response of HLD and consequently contribute 
to the development of its pathogenesis. Egr3 is essential for 
nervous system development, particularly in the sympathetic 
autonomic nervous system [64]. Egr3 is also involved in 
motor coordination and motor skill learning functions [65]. 
The Adora2a gene’s polymorphism has been found to be 
linked to the occurrence of central nervous system disorders, 
including attention-deficit hyperactivity disorder (ADHD) 
and Tourette’s syndrome [66, 67]. Additionally, in the cen-
tral nervous system, the activation of Adora2a can lead to 
neuronal damage, while also augmenting excitatory neuro-
transmitters and potentially causing damage to the white 
matter [68–70]. White matter injury is frequently observed 
in patients with HLD from a clinical perspective. Hoxb3 is a 
prominent member of the Hoxbs family that is expressed in 
neural stem cells at a young age. It regulates neuron devel-
opment and proliferation and is involved in nerve cell dif-
ferentiation and oligodendrocyte progenitor cell apoptosis 
in microglia [71, 72]. The interrelated functions of these 
mRNAs exhibit close associations with the pathological 
and clinical manifestations observed in HLD. In subsequent 
investigations, my research will primarily concentrate on 
elucidating the precise mechanisms underlying the involve-
ment of these mRNAs in HLD.

The GO analysis revealed that the primary biological 
functions implicated were motor learning, locomotor behav-
ior, and dioxygenase activity. The neurological manifesta-
tions of HLD primarily consist of extrapyramidal symptoms. 
Dysphasia (dyskinesia) is the predominant initial presenta-
tion, observed in 85–97% of cases [73]. Additional com-
mon neurological manifestations encompass bradykinesia, 
facial grimacing, dystonia, tremor, rigidity (characterized 
by a lead pipe rather than buckling or gear pattern), urinary 
incontinence, hyperreflexia, and other symptoms [74]. Fur-
thermore, cognitive impairment may be present in certain 
patients [75]. The biological functions identified through 

GO analysis exhibit a strong correlation with the clinical 
attributes of HLD, thus warranting further investigation into 
the lncRNAs and mRNAs associated with these biological 
functions.

The KEGG analysis revealed significant enrichment of 
the NF-κB, cholinergic synapse, sphingolipid, and Parkin-
son’s disease signaling pathways. NF-κB proteins consti-
tute a group of transcription factors that hold significant 
significance in the domains of inflammation and immunity 
[76]. Additionally, NF-κB assumes a pivotal role in diverse 
processes encompassing development, cellular growth and 
survival, and proliferation, and its involvement extends to 
various pathological conditions. Research has demonstrated 
a strong association between the pathogenesis of HLD and 
the inflammatory response [77]. Significantly elevated levels 
of inflammatory cytokines have been observed in the plasma 
of HLD patients, exerting an impact on their clinical mani-
festations [78]. Animal experimentation has further revealed 
the accumulation of copper in the striatum of TX-j mice, 
accompanied by an increase in inflammatory markers within 
the striatum and corpus callosum. Consequently, alterations 
in synaptosomes, particularly in numerous synaptic proteins, 
occur, thereby influencing motor symptoms [79].

Although there is limited understanding of the precise roles 
of the majority of DE-lncRNAs, the examination of associated 
mRNA, GO, and KEGG biological functions reveals a signifi-
cant correlation with the pathogenesis of HLD and its clinical 
manifestations. The utilization of bioinformatics analysis offers 
crucial support for forthcoming investigations on HLD. Further-
more, our findings elucidate the fundamental molecular path-
ways contributing to the etiology of neurological symptoms in 
HLD, thereby establishing a basis for its clinical management.

Conclusions

In conclusion, employing a comprehensive approach involv-
ing the integration of RNA-Seq, RT-qPCR, and computa-
tional biology, we successfully identified the four lncRNAs 
(TCONS_00020683, XR_865512.2, XR_001780581.1, and 
ENSMUST00000207119). Additionally, we established 
lncRNA-miRNA-mRNA regulatory networks which contribute 
to explore underlying pathogenesis and therapeutic strategies 
of HLD. These findings have the potential to serve as valuable 
biomarkers for the diagnosis and treatment of HLD.
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