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Abstract

Tumor cells reprogram nutrient acquisition and metabolic path-
ways to meet their energetic, biosynthetic, and redox demands.
Similarly, metabolic processes in immune cells support host
immunity against cancer and determine differentiation and fate of
leukocytes. Thus, metabolic deregulation and imbalance in immune
cells within the tumor microenvironment have been reported to
drive immune evasion and to compromise therapeutic outcomes.
Interestingly, emerging evidence indicates that anti-tumor immu-
nity could modulate tumor heterogeneity, aggressiveness, and
metabolic reprogramming, suggesting that immunosurveillance can
instruct cancer progression in multiple dimensions. This review
summarizes our current understanding of how metabolic crosstalk
within tumors affects immunogenicity of tumor cells and promotes
cancer progression. Furthermore, we explain how defects in the
metabolic cascade can contribute to developing dysfunctional
immune responses against cancers and discuss the contribution of
immunosurveillance to these defects as a feedback mechanism.
Finally, we highlight ongoing clinical trials and new therapeutic
strategies targeting cellular metabolism in cancer.
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Introduction

Understanding anti-tumor immunity and immune checkpoints has
fostered the development of immunotherapies, such as immune
checkpoint blockade (ICB) and, more recently, chimeric antigen
receptor T-cells (CAR T-cells). However, the tumor microenviron-
ment (TME) forms a metabolic barrier due to metabolic
deregulations in tumor cells to disarm host anti-tumor immunity
and current immunotherapeutic strategies (Ho and Liu, 2016; Li
et al, 2019c). Metabolic dysregulation in tumors has been known
for decades and is defined as a hallmark of cancer (Hanahan, 2022).
In the past, those gained metabolic activities were considered to
support unconstrained growth and anti-apoptosis in tumor cells.

In addition, metastatic tumor cells with unique metabolic
abilities can potentiate their colonization at the secondary site
(Altea-Manzano et al, 2020; Faubert et al, 2020; Tasdogan et al,
2020). Tumor cells have a high metabolic rate, but the tumor
microenvironment often lacks proper blood flow and experiences
changes in fluid pressure. Thus, it has been speculated that cells
within the TME struggle to obtain nutrition and oxygen they need
to survive (Heldin et al, 2004). However, several studies indicate
that tumor cells can alter their metabolism to adapt to their
environment and to support their bioenergetic needs (Bergers and
Fendt, 2021). Additionally, tumor cells can change their physiolo-
gical traits, such as metabolism and stemness properties, through
interactions with immune and stromal cells to avoid detection by
the immune system (Bayik and Lathia, 2021). Of note, tumor-
derived metabolites can influence the makeup of metastatic niches
and the behavior of T cells by rewiring the epigenetic landscape
(Baumann et al, 2022; Chapman et al, 2020). Therefore, it can be
inferred that tumor cells can alter the metabolic state of the TME or
adapt their metabolism to overcome unfavorable conditions, such
as nutrient scarcity and immune surveillance.

In this review, we discuss the effects of bidirectional metabolic
crosstalk between tumor cells and infiltrating immune cells on
immune suppression and metabolic adaption of cancer cells during
immunosurveillance derived from the innate and adaptive arm of
the immune system, with a particular focus on T cells, regulatory
T cells (Tregs), and natural killer (NK) cells.

Metabolic reprogramming shapes tumorigenesis

Intrinsic mutations drive specific nutrient dependencies during
cancer progression

Several oncogenic mutations that dictate nutrient requirements of
cancer cells among different cancer types and organs have been
identified (Fernandez-Garcia et al, 2020; Nagarajan et al, 2016).
Alterations in oncogenes and tumor suppressor genes regulate
amino acid homeostasis and cellular response to nutrient stress,
contributing to an immune profile shift within a tumor and to the
response to immune therapy (Gwinn et al, 2018; Kao et al, 2022).
For example, activating the PI3K-AKT signaling pathway in various
cancers enables cells to enhance nutrient uptake and to increase the
biosynthesis of biological macromolecules, even in cases of low
extracellular growth factors (Goncalves et al, 2018). Tumors with
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mutant K-RAS can resist nutrient deprivation during hypoxia
in vivo (Garcia-Bermudez et al, 2022) and also can evade immune
surveillance by modulating CD47 and neutrophils-recruiting
chemokines, e.g., CXCL8 (Hu et al, 2023; Sparmann and Bar-Sagi,
2004). Additionally, oncogenic activation of MYC, AKT, and
K-RAS can contribute to PD-L1 expression of tumor cells, which
inhibits immune surveillance (Casey et al, 2016; Coelho et al, 2017;
Parsa et al, 2007). In addition to oncogenic mutations, p53, a
common tumor suppressor gene, is often mutated or deleted in
approximately 50% of human cancers, which leads to aberrant
metabolic reprogramming in cancer cells (Kruiswijk et al, 2015).
Loss of function of PTEN in cancer increases autophosphorylation
of phosphoglycerate kinase 1 (PGK1), enhancing glycolytic activity
and promoting brain tumor formation (Qian et al, 2019). As a
result, intrinsic oncogenic dysfunction accompanies robust changes
in nutrient requirements and the immune landscape of the TME
(Fig. 1).

Furthermore, mutations in metabolic enzymes can directly
impact metabolic phenotypes and cancer aggressiveness through
epigenetic regulation (Fig. 1). For instance, IDH1 and IDH2
mutations are frequently found in gliomas and can produce D-2
hydroxyglutarate (D-2HG). This, in turn, can cause epigenetic
changes by affecting the DNA demethylation status of 5mC (5-
methylcytosine) and its variants. In clinical samples from human
patients with IDH1 mutant gliomas, it was found that CD8+ T cells
take up tumor-derived D-2HG, which changes their metabolic
program. This decreases antitumor functions by impairing
cytotoxicity and interferon-γ signaling (Notarangelo et al, 2022).
Mutations in the succinate dehydrogenase (SDH) and fumarate
hydratase (FH) genes lead to the accumulation of succinate and
fumarate, respectively, and also control the 2-oxoglutarate-
dependent oxygenase superfamily, including histone lysine
demethylase enzymes (KDMs), TET methylcytosine dioxygenases,
and hypoxia-inducible factor (HIF) hydroxylases by competing
with α-ketoglutarate (Xiao et al, 2012). Therefore, cancer cells
engage metabolic flexibility through genetic mutations or epigenetic
modification to facilitate tumor aggressiveness.

Tissue origin determines metabolic preference

The in situ environment of each tissue also reshapes the metabolic
preferences of tumor cells even carrying the same mutations. Pan-
cancer transcriptomic analyses show that the metabolic profile of
the primary tumor is very similar to that of the corresponding
normal tissue (Gaude and Frezza, 2016). Tumors caused by the
same oncogene but originating from different tissues can exhibit
varying metabolic patterns. For instance, hepatocarcinoma (HCC)
with MYC amplification diminishes glutamine anabolism, while
MYC-induced lung adenocarcinoma engages glucose catabolism
and increases glutamine levels (Yuneva et al, 2012). It has been
observed that similar genetic defects such as K-RAS activation and
p53 loss in mouse non-small cell lung cancer (NSCLC) and
pancreatic cancer cause a bifurcation of amino acid metabolism,
indicating that metabolic reprogramming is dependent on the in-
situ tissue (Mayers et al, 2016; Sullivan et al, 2019). Interestingly,
tumor cells interacting with surrounding stroma cells can sculpt
metabolic preferences to facilitate metastasis. For instance,
adipocytes fuel fatty acids for ovarian cancer to boost metastatic
tumor cell growth at distant sites via elevated fatty acid-binding

protein 4 (FABP4) (Nieman et al, 2011). Compared to other tissues,
the lactate expression level in the lung tissue is elevated, even under
well-oxygenated conditions (Fisher, 1984). This means lactate is
readily available in the lung environment and can be used as a
carbon source to help NSCLC growth (Faubert et al, 2017). These
findings indicate that even though tumor cells retain some
metabolic characteristics of their tissue of origin, different
microenvironmental features can drive various metabolic adapta-
tions (Gaude and Frezza, 2016). Thus, oncogenic mutations drive
nutritional requirements during cancer progression, while nutrient
availability in local organs is a critical factor contributing to
metabolic preference and metastatic growth.

On the other hand, different intrinsic oncogenic signaling could
elicit various metabolic changes even in the same tissue type. For
example, MYC amplification-driven HCC relies on aerobic
glycolysis and glutaminolysis, whereas HGF/cMet-driven HCC
utilizes glucose for glutamine anabolism (Yuneva et al, 2012).
Overall, oncogenic mutants can cooperate with local surroundings
to redefine oncogene-imposed metabolic dependencies of cancer
cells and influence tumor development.

Metabolic plasticity and flexibility of cancer

Metabolic plasticity in tumor cells promotes their survival in response
to stress. Tumor cells can survive nutrient deserts by activating a
replenished metabolic route. It has been observed that the metabolic
flexibility of tumor cells is beneficial in liver and lung cancer, which
alternatively engage fatty acid desaturation to support survival (Vriens
et al, 2019). In the case of glutamine deprivation, tumor cells can use
aspartate metabolism by inducing aspartate/glutamate transporter
SLC1A3 expression, which helps them to maintain the electron
transport chain and to continue to synthesize glutamate, glutamine,
and nucleotides (Tajan et al, 2018). Additionally, hepatocytes are
responsible for synthesizing ketone bodies, which normal adult
hepatocytes cannot consume. When there are no nutrients available,
HCC cells can increase the expression of OXCT1 (3-oxoacid CoA
transferase 1), which enables them to break down ketone bodies and
generate energy (Huang et al, 2016).

Tumor cells have a unique capacity for waste recycling that
differs from normal metabolic processes (Li et al, 2019a). The urea
cycle is mainly used to eliminate ammonia, a metabolic waste,
from the body. However, deregulation of the urea cycle occurs in
many tumors by increasing the expression of related enzymes to
enhance pyrimidine synthesis. This accompanying imbalance of
the pyrimidine-purine ratio results in transversion mutations in
the genome (Lee et al, 2018). Moreover, intermediates from the
urea cycle can be transferred to other biosynthesis processes
(Keshet et al, 2018). For example, ammonia can serve as a nitrogen
source for proline and aspartate synthesis to fuel breast cancer
progression (Spinelli et al, 2017). Typically, ammonia-derived
carbamoyl phosphate (CP) cannot be used for polyamine
biosynthesis and nucleotide synthesis. However, upregulation of
the carbamoyl phosphate synthase 1 (CPS1) has been found to
increase CP production in NSCLC, HCC, and colon cancer. The
excess of CP can subsequently enter the pyrimidine synthesis
pathway to sustain tumor cells with rapid proliferation (Kim et al,
2017; Li et al, 2019a). These findings reveal a link between
mutation, cancer context, and metabolic flexibility in controlling
tumor progression.
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Metabolic properties of metastases and the metastatic niche

Aggressive tumor cells usually undergo epithelial-mesenchymal
transition (EMT) to spread and create metastases, and EMT is
associated with significant metabolic rewiring. Recent studies have
identified specific metabolic pathways contributing to EMT, such

as increased glycolysis and TCA activity (Jia et al, 2021; Fig. 2).
Increased glycolysis in tumor cells is known to support
cytoskeleton rearrangements during the EMT process (Parlani
et al, 2023). Certain cofactors for epigenetic modifiers, such as
succinate and fumarate addressed above, can also trigger EMT
(Colvin et al, 2016; Letouze et al, 2013; Sciacovelli et al, 2016;

Figure 1. Mechanisms of metabolic tumor immune evasion.

During cancer progression, tumor cells and tumor-infiltrating lymphocytes (TILs), including CD8+ T cells, regulatory T cells (Tregs), and natural killer (NK) cells, rewire
their metabolic programs in response to microenvironmental stress, such as nutrient deprivation and hypoxia. The metabolic interaction between tumor cells and diverse
immune cells in and around solid tumors orchestrates the immunosuppressive TME and restrains host anti-tumor immunity. As a feedforward response to a stressful
microenvironment, cancer cells acquired different metabolic adaption and interaction mechanisms to evade immune surveillance. It is also likely that harnessing the
adaptive and innate immune response might bring greater rewards in cancer therapy. (A) Metabolic transitions can cause effector lymphocytes to become exhausted and
dysfunctional, which in turn affects their differentiation. NK and T cells rely on glycolysis to maintain their effector function and viability. Proliferating tumor cells with
elevated glycolysis may affect MHC class I and PD-L1 protein expression levels and compete with surrounding immune cells for glucose. This competition leads to glucose
deprivation and elevated lactate levels, which impair the effector function of NK and CD8+ T cells but become beneficial for the suppressive activity of Tregs. (B) Cells
metabolize nutrients such as glucose, amino acids, and fatty acids to produce various metabolites, like ATP, acetyl-CoA, NAD+, SAM, α-KG, fumarate, and succinate. These
metabolites function as substrates or cofactors for modifying proteins and chromatin. Histone acetyltransferases (HATs) catalyze histone acetylation, while lysine
deacetylases (HDAC and SIRT) mediate the reverse reaction. Glycolysis, fatty acid metabolism, and TCA cycle contribute to acetylation modification. The production of
lactate generates lactyl-CoA, which contributes a lactyl group to lysine residues of histone proteins, creating a novel modification called lactylation. Succinyl-CoA, the
primary substrate for succinylation, is derived from the TCA cycle, and KAT2A, CPT1A, and SIRT5 mediate the opposite reaction. AMPK is required for histone
phosphorylation, depending on the ATP: AMP ratio. Chromatin methylation is linked to the folate cycle and the methionine cycle. Succinate, fumarate, and 2-HG inhibit
KDMs and TETs, which catalyze demethylation in an α-KG-dependent manner. Additionally, NAD+ and NADH transitions lead to epigenetic modifications such as
acetylation and succinylation. (C) Certain transcription factors, as well as oncogenic signaling pathways such as MYC, KRAS, AKT, and AMPK, are responsible for
regulating the expression of immune checkpoint molecules like CD47 and PD-L1 as well as glycolysis-related genes, which, in turn, lead to immune evasion. Additionally,
metabolites can also directly impact the expression of immunosuppressive molecules. For instance, succinate can activate PI3K-HIF1 signaling and promote M2
polarization by binding to succinate receptors. (D) Distinct metabolic preferences have been observed among tumor-infiltrating lymphocytes (TILs), which greatly impact
their function and overall status. The maintenance of suppressive function in Tregs and M2 macrophages relies heavily on oxidative phosphorylation (OXPHOS) and fatty
acid (FA) oxidation, facilitated by fatty acid transporters like CD36. The pro-tumorigenic phenotype of macrophages is also attributed to mincle-dependent β-
glucosylceramide efflux. In contrast, the presence of fatty acids in the tumor microenvironment impairs the effector function and viability of intratumoral CD8 T cells. (E)
The extent to which a 2-oxoglutarate-dependent dioxygenase (2OGDD) is suppressed by hypoxia depends on several factors, such as its expression level, oxygen affinity,
and sensitivity to succinate and L-2HG inhibition. Hypoxia decreases the activity of hypoxia-sensitive 2OGDD, including EGLN proline hydroxylases. This inhibition of EGLN
leads to the activation of HIF transcriptional activity. Moreover, hypoxia upregulates HIF target genes, including lactate dehydrogenase (LDH) and 2OGDD subsets. LDH
generates L-2HG, which is potentiated by hypoxia and cellular acidosis, thereby accumulating high level of L-2HG. In certain types of cells, severe hypoxia may dysregulate
the tricarboxylic acid (TCA) cycle, resulting in increased succinate production. Both succinate and L-2HG, which build up under hypoxic conditions, inhibit the function of
2OGDD. KSUCC Succinylated Lysine, FA fatty acid, FAO fatty acid oxidation, TAM tumor-associated macrophage, 2OG 2-oxoglutarate, HRE HIF-responsive element.
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Wu et al, 2020). Acetyl-CoA, another cofactor for post-
translational modifications and an epigenetic modifier, has also
been reported to be involved in EMT (Lu et al, 2019; Qin et al,
2019). On the other hand, increasing alpha-ketoglutarate (α-KG)
levels can boost TET activity and prevent EMT by demethylating
miR-200 family promoter regions (Atlante et al, 2018). Beta-
oxidation also participates in epigenetic regulation of EMT-related
genes through acetylation of histones using acetyl-CoA, ultimately
determining cell metastasis (Loo et al, 2021). In addition, an
increase of the fatty acid transporter CD36 results in lipid uptake,
which in turn promotes EMT (Nath et al, 2015). Similarly, AMPK
activation is often found in metastatic tumor cells, which preserve
NADPH pools by skewing lipogenesis versus beta-oxidation. (Jeon
et al, 2012).

Once tumor cells leave the primary site and embark on the
metastatic journey, these circulating tumor cells (CTCs) must adapt
their metabolism to cope with various stresses (Ubellacker et al,
2020). While detachment of cancer cells causes a spike in reactive

oxygen species (ROS), CTCs must counteract ROS, suggesting that
metabolic reprogramming is required to support metastasis
(Schafer et al, 2009). It was observed that successfully metastasizing
melanomas undergo reversible metabolic alterations to help tumor
cells to survive in the circulation or visceral organs. One such
alteration is using the folate pathway to generate NADPH, which
increases their ability to withstand oxidative stress compared to
tumor cells in primary subcutaneous sites (Piskounova et al, 2015).
Furthermore, CTCs can pass through lymphatic system to acquire
the capacity for overcoming ferroptosis, a lipid ROS-dependent cell
death, and enhance their survival (Ubellacker et al, 2020). Similarly,
the dependence of gastric cancer cells on fatty acid oxidation has
been coupled to increased antioxidant defense by increasing
NADPH generation (He et al, 2019). In addition, CTCs can form
clusters with neutrophils in circulation to enhance survival and
proliferation by upregulating gene signatures associated with cell
cycle, DNA replication, pyrimidine metabolism, and folate
biosynthesis (Szczerba et al, 2019).

Figure 2. Metabolic plasticity in metastasis.

Cells undergo EMT to increase mobility, travel in circulation, and develop metastases, which can be regulated by metabolic activity. Metastasis involves rearranging the
cytoskeleton and releasing enzymes that promote glycolysis for proliferation. Certain metabolites, such as fumarate, succinate, and fatty acid, act as signaling molecules
that support EMT (left panel). Once detached, cancer cells also produce mitochondrial ROS, which promotes EMT and metastatic potential. When cancer cells are
circulating (center panel), they may die due to oxidative stress, but those that survive have a metabolic advantage, which can be promoted in combination of neutrophils.
CTCs increase NADPH production and lactate uptake, which boosts their antioxidant capacity. Once cancer cells reach the metastatic site (right panel), they must alter
the tumor microenvironment to suppress immune surveillance, which can be done metabolically by facilitating TAM polarization and effector T cell dysfunction.
Additionally, cytokines and metabolites likely influence metastatic niche development (e.g., collagen hydroxylation), cancer cell dormancy, and cell proliferation. Thus, the
metabolic cascade plays a critical role in this process and may offer a therapeutic vulnerability for treating metastatic cancer.
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A raised glutamine metabolism also quenches ROS to compro-
mise oxidative stress by replenishing the mitochondrial NADPH
pool through glutathione generation (Gong et al, 2022). Indeed,
glutamine can facilitate a stem cell phenotype by maintaining the
redox status (Liao et al, 2017). Consistently, dietary antioxidants
can decrease ROS and promote metastasis (Le Gal et al, 2015; Sayin
et al, 2014). Additionally, RAS activation can redirect glutamine
metabolism to balance cellular ROS by elevating the levels of
cystine/glutamate antiporters (Lim et al, 2019). Thus, antioxidant
metabolic precursors such as cysteine and glutamine maintain
redox balance in CTCs and combat oxidative damage to promote
survival (Combs and DeNicola, 2019). These studies suggest that
enhanced antioxidant pathways after dissemination provide addi-
tional benefits, while targeting ROS balance by manipulating
cellular metabolism may improve the current treatment in reducing
tumor metastasis.

Since nutrient abundance and oxygen level are known to vary in
different organs, metastatic tumor cells increase metabolic plasticity
by using alternative nutrients and second metabolites to fuel energy
metabolism and biosynthetic pathways. Increasing evidence
indicates that primary tumors and their metastatic counterparts
exhibit distinct metabolic features, suggesting that the local
environment can affect metastatic fitness. A metastatic phenotype
of breast cancer drives bioenergetic flexibility by enhancing
glycolytic activity and mitochondrial functions in cancer cells in
a peroxisome proliferator-activated receptor-gamma coactivator 1α
(PGC1α)-dependent manner (Andrzejewski et al, 2017). Similarly,
CTCs of prostate cancer characterized by increased glycolysis
metabolic enzymes, such as HK2, PDK1, and PKM2, exhibit strong
metastatic capacity (Chen et al, 2018). In contrast, metastatic liver
cells show a preferences for aerobic glycolysis and a reduction of
mitochondrial dependency, which is caused by the dysregulation of
pyruvate dehydrogenase kinase-1 (PDK1) (Dupuy et al, 2015).
Metastatic melanoma cells elevate NADPH and consume lactate to
resettle glucose usage, redirecting glucose carbon into the oxidated
PPP and enhancing their antioxidative capacity (Tasdogan et al,
2020). Furthermore, stage-dependent differential requirements for
anaplerosis have been documented, showing increased pyruvate
carboxylase (PC) in tumors of NSCLC patients compared to
adjacent normal tissue (Sellers et al, 2015). Intriguingly, lung
metastases of breast cancer elevate PC for supporting TCA cycle
compared to primary tumors (Christen et al, 2016). It was found
that lung metastases displayed higher pyruvate levels, the substrate
of pyruvate carboxylase (PC), due to increased mTORC1 signaling.
As a result, lung metastases are more sensitive to mTORC1
inhibitors than the original tumors (Rinaldi et al, 2021). Accord-
ingly, genetic abolishment of PC suppresses pulmonary metastasis
but does not affect metastatic growth in non-pulmonary organs
(Shinde et al, 2018). Those studies highlight that pyruvate
metabolism and PC activity may be the cues of organ tropism.

Metabolites also contribute to the development of metastatic
niches (Fig. 2). For instance, cancer cells can secrete succinate into
the extracellular milieu to induce tumor associated macrophage
(TAM) polarization, which promotes EMT (Wu et al, 2020). An
in vivo metabolic analysis of the secretome in lung cancer models
revealed increased succinate in the plasma, which induces
macrophage-dependent cytokine expression and downstream
signaling in the metastatic niche, stimulating cancer cell migration
and metastasis (Wu et al, 2020). In breast cancer, pyruvate is also

involved in remodeling the metastatic niche in lung tissues by
stimulating the production of α-KG, which serves as a metabolic
activator of collagen prolyl-4-hydroxylase and leads to collagen
hydroxylation. Similarly, glutamine dehydrogenase (GDH)
increases in metastatic lesions, which converts glutamate into α-
KG, particularly under hypoxia and hypoglycemia. Patients with
high GDH expression have poor overall survival (Liu et al, 2015).
Moreover, inhibiting pyruvate uptake or targeting alanine amino-
transferase 2 activity to prevent pyruvate-to-α-KG conversion
decreases collagen hydroxylation and metastatic growth (Elia et al,
2019). This suggests that metabolite availability appears to be
critical for driving metastasis, highlighting the potential of
therapeutic interventions by targeting metabolic vulnerabilities.

Cancer cell–TIL interactions contribute to metabolic
reprogramming and immune evasion

Glucose competition in tumors drives an immunosuppressive TME

With a more detailed understanding of the crosstalk of nutrients
and metabolites between tumor and non-tumoral cells in the TME,
dysregulated energetics would not be stereotypically considered the
alternative way to fuel energy usage for tumor cells (Fig. 1). As
cancer progresses, there may be a shortage of glucose and oxygen
due to competition between immune cells and tumor cells. Studies
have shown that glycolytic transcriptional programs in tumor cells
are linked to an immunosuppressive TME by recruiting suppressive
myeloid cells (Li et al, 2018). Oxygen- and glucose deprivation
decrease MHC class I antigens in cancer cells, causing them to
become unresponsive to IFN-mediated cytotoxic effects due to a
malfunctioning STAT1 (Marijt et al, 2019). Notably, the gain of
metabolic reprogramming in transformed cells also affects the
magnitude of the immune response (Li et al, 2019c). Moreover, if
there is a lack of glucose, the activity of tumor-infiltrating T
lymphocytes (TILs) is metabolically compromised and functionally
exhausted in the TME (Chang et al, 2015; Ho et al, 2015). In
contrast, multiple studies suggest that increased glycolysis may
hinder the induction of Treg cells, whereas impeded glycolysis
promotes the expression of Foxp3 upon IL-2 and TGF-β
stimulation (Michalek et al, 2011; Shi et al, 2011). NK cells also
rely on glycolysis to sustain their effector function and viability
(Cong et al, 2018). Mechanistically, NK cells gradually elicit their
dysfunction by inhibiting glycolysis and impairing viability via
TGFβ-mediated fructose-1,6-bisphosphatase (FBP1) expression
(Cong et al, 2018). Additionally, a similar study indicates that the
dysfunction of NK cells in the TME is caused by the suppression of
glucose metabolism due to lipid peroxidation-associated oxidative
stress (Poznanski et al, 2021). These findings indicate that glucose
availability or glycolysis activity in the TME is crucial for
maintaining the effector function of T cells and NK cells.

Lactate dehydrogenase A (LDHA) is known to be highly
expressed in glycolytic tumor cells, where it converts excess
pyruvate and NADH into lactate and NAD+ to sustain the ATP-
generating arm of glycolysis. Indeed, serum LDHA levels are a
clinical prognosis markers that reflect poor survival and aggres-
siveness (Brand et al, 2016; Gallo et al, 2015). Based on current
evidence, lactic acid, a by-product of glycolysis, has been found to
have an immune suppressive function that may cause the failure of
immune checkpoint blockade (Certo et al, 2021). It is now well-
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appreciated that lactate accumulation in highly glycolytic tumors
suppresses the cytotoxic function of TIL, leading to immune escape
(Brand et al, 2016). Lactic acid in the TME partially facilitates the
downregulation of genes related to NAD+ salvage metabolism,
impairing cytotoxicity, and viability of NK cells (Guo et al, 2022).
In contrast, highly glycolytic tumors can cultivate a metastatic
niche with high lactate levels to suppress T-cell activation and NK
cell function (Huber et al, 2017; Payen et al, 2020). High lactate
expression also stabilizes HIF1α in macrophages to promote the
expression of a HIF1α-stabilizing lncRNA, which is then trans-
ported back to tumor cells via extracellular vesicles. This forms a
feedforward loop that fuels tumor growth and suppresses T-cell/NK
function (Chen et al, 2019). Tregs utilize lactate to sustain their
suppressive function; when lactate utilization is impaired, it results
in the loss of suppressive function and proliferation (Watson et al,
2021). In highly glycolytic tumors, such as MYC-amplified tumors
and liver tumors, Treg cells actively enhance the expression of PD-1
to compromise the response of ICB through monocarboxylate
transporter 1 (MCT1)-mediated uptake of lactic acid, whereas the
expression of PD-1 by effector T cells is dampened in a lactate-
enriched TME (Kumagai et al, 2022). In addition, lactate
differentially impacts tumor-associated macrophages (TAMs) by
harming the metabolism of anti-tumoral TAMs but supporting the
suppressive functionality of pro-tumoral TAMs as well as their
metabolic activity (Geeraerts et al, 2021). Importantly, recent
studies have shown that histone lactylation reveals a new way to
link nutrient metabolism to gene regulation (Zhang et al, 2019) and
gene function as a metabolic-epigenetic alternative hub in
macrophage polarization (Noe et al, 2021).

In contrast to the deprivation of glucose from activating T cells,
acidic tumor microenvironments do not favor lactate export from
T cells via MCT1, which halts T-cell expansion. An inverse
relationship between glucose metabolism and T-cell infiltration has
been described in cancer (Ottensmeier et al, 2016). Acidosis causes
pro-tumorigenic neutrophils to become active, which augment
acidity by exporting protons following their oxidative burst
(Martinez et al, 2006). The metabolic symbiosis between lactate-
producing and lactate-consuming cells within tumors is linked to
acquired resistance against anti-angiogenic therapy and immune
system responses to tumors (Allen et al, 2016; Jimenez-Valerio et al,
2016; Pisarsky et al, 2016).

Amino acid metabolism and immunosurveillance

Except for glucose, the availability of amino acids can also impact
lymphocyte differentiation and function. Within the tumor,
glutamine can be consumed by effector T cells and glutamine-
addicted cancer cells, indicating a metabolic competition for
glutamine in the TME (Carr et al, 2010; Yang et al, 2021).
Glutamine uptake, which fuels mTORC1 activity, is essential for
differentiating T cells into inflammatory effector T cells (Nakaya
et al, 2014; Sinclair et al, 2013). Deprivation of extracellular
glutamine steers differentiation of naïve CD4+ T cells into Tregs
even in conditions favoring the generation of other T cell subsets,
whereas supplementation with the glutamine-derived metabolite α-
KG supports differentiation towards Th1 through mTORC1
regulation (Klysz et al, 2015). In contrast, selective depletion of
glutamine metabolism in cancer cells improves proliferation and
cytokine production of effector T cells in triple-negative breast

cancer models (Edwards et al, 2021). In addition, glutamine
withdrawal, but not glutaminolysis inhibition, in NKs results in
impaired cell growth and effector function due to loss of MYC
(Loftus et al, 2018). Previous studies showed that increased arginine
availability could sustain T-cell anti-tumor immunity and syner-
gistic effects of checkpoint blockade therapy (Geiger et al, 2016).
The depletion of arginine and tryptophan in cell cultures stimulates
Treg generation (Cobbold et al, 2009). Activation of T cells leads to
increased L-arginine metabolism mediated by arginase 2, which
contributes to the generation of central memory-like T cells
endowed with higher survival capacity and anti-tumor immunity.
This suggests that additional arginine-sensing pathways also
contribute to T cell survival (Geiger et al, 2016). On the other
hand, cancer cells can sustain their survival in arginine starvation
conditions by inducing ATF4-dependent upregulation of arginino-
succinate synthetase 1 (ASS1), allowing de novo arginine synthesis
to disrupt T cell function and chromatin remodeling (Crump et al,
2021). Consequently, the accumulation of extracellular lactate
and the deprivation of certain amino acids in the tumor
environment could affect immune cell proliferation, function, and
differentiation.

Distinct metabolic preferences have been shown in tumor-
suppressing macrophages (M1) and tumor-promoting macro-
phages (M2); for example, M1 macrophages upregulate glycolysis,
whereas M2 macrophages upregulate OXPHOS and fatty acid
oxidation (FAO) (Mills and O’Neill, 2016). The metabolic interplay
in the TME has also been described for macrophages and myeloid-
derived suppressor cells (MDSCs) (Vitale et al, 2019). Hypoxic
impaired glycolysis activity in TAMs has been shown to cause
endothelial dysfunction, consequently leading to metastases and
nutrient availability. (Wenes et al, 2016). Tumors can also
upregulate key catabolic enzymes like ARG1 or indoleamine 2,3-
dioxygenase 1 (IDO1) in myeloid cells to deplete arginine and
tryptophan within a tumor, which are crucial for regulating T-cell
differentiation and proliferation (Mondanelli et al, 2019). Tumor-
derived lactate polarizes macrophages towards a pro-tumorigenic
M2 cell fate that induces arginase-1 to deprive arginine in T and
NK cells (Colegio et al, 2014; Vitale et al, 2019). Arginine could be
used in M1 and M2 polarized macrophages but in different
metabolic processes. M1 and M2 macrophages use inducible nitric
oxide synthase (iNOS) and arginase 1 (Arg1), respectively, for
arginine catabolism (Modolell et al, 1995). The metabolite, nitric
oxide (NO) from iNOS, could contribute to anti-tumor activity, but
the metabolites from Arg1 rather promote tumor cell growth and
inhibit NO production (Chang et al, 1998, 2001). Additionally,
glutamine usage also participates in regulating M2 macrophages,
showing that inhibition of the glutamine synthetase can polarize
M2 macrophages towards an M1-like phenotype (Palmieri et al,
2017). These data suggested that immune cell expansion and
differentiation depend on environmental nutrient availability,
which controls an immunosuppressive tumor microenvironment.

Fatty acid and lipid metabolism in immune escape

In addition to glucose and amino acids, tumor cells also perturb fatty
acid (FA) levels and types in the TME (Pavlova and Thompson, 2016;
Fig. 1). Tumor cells engage in de novo synthesis of fatty acids, which is
mainly contributed by ATP-citrate lyase (ACLY), acetyl-CoA
carboxylase (ACC), and fatty acid synthase (also known as FASN)
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(Mashima et al, 2009). With the enrichment of lipid droplets and
extracellular FAs in the tumor microenvironment, recent studies
indicate that tumor-infiltrating leukocytes could undergo metabolic
reprogramming by using lipid compartments to adapt to metabolic
constraints. Metabolic stress causes CD8+ TIL exhaustion, but FA
catabolism can sustain their effector function in hypoglycemia and
hypoxia conditions through peroxisome proliferator-activated recep-
tor (PPAR)-α signaling (Zhang et al, 2017). Linoleic acid also helps to
improve the metabolic fitness of CD8+ T cells, which directs them
away from exhaustion and towards a memory-like phenotype (Nava
Lauson et al, 2023). But, the utilization of oxidized lipids may trigger
the accumulation of lipid-related ROS, which dampens CD8 T cell
effector function by increasing levels of the scavenger receptor CD36
(Ma et al, 2021; Xu et al, 2021). Tregs are reported to preferentially use
FAO (Michalek et al, 2011) or microbe short-chain fatty acids to
control Treg differentiation (Smith et al, 2013). Different from CD8
T cells, Tregs increase the usage of FA through CD36, which sustains
their survival and immunosuppressive function (Wang et al, 2020).
Mechanistically, CD36 is selectively upregulated in intratumoral Treg
cells and enhances mitochondrial fitness via peroxisome proliferator-
activated receptor-β (PPARβ) signaling, rewiring Tregs to adapt to a
lactate-enriched tumor microenvironment (Wang et al, 2020). Higher
percentages of Treg cells expressing CD36 and SLC27A1 are observed
in brain tumors. Inhibiting fatty acid transport with sulfo-N-
succinimidyl oleate (SSO) or FAO with etomoxir impairs the
immunosuppressive capabilities of Tregs (Miska et al, 2019). Tregs
rely on lipogenesis to accumulate intracellular lipids and complement
glycolysis for their function and expansion (Pacella et al, 2018; Zeng
et al, 2013). In addition, the availability and usage of fatty acids in
Tregs within the TME also contribute to anti-PD-1 therapy resistance
(Kumagai et al, 2020).

Myeloid cells are also affected by the lipid compartment. In liver
metastases, M2 macrophages engulf tumor cell-derived long-chain
fatty acids via CD36 and enhance tumor-promoting activities
(Yang et al, 2022). It has been shown that the accumulation of
lipids in dendritic cells (DCs) causes the failure of tumor-associated
antigen presentation through endoplasmic reticulum (ER) stress
and its response factor, XBP1 (Cubillos-Ruiz et al, 2015; Herber
et al, 2010). Moreover, DCs educated by FASN-elevated tumor cells
also have defects in T cell priming (Jiang et al, 2018). Glycerol can
be generated from the glycolytic metabolite dihydroxyacetone
phosphate (DHAP), and it is an essential backbone for lipogenesis.
Like DCs, TAMs also elevate CD36 expression for M2 activation
through lipolysis (Huang et al, 2014). Except for canonical FA
uptake, TAMs can also sense β-glucosylceramide via the Ca2+-
dependent lectin receptor, also known as Mincle, which contributes
to a pro-tumorigenic phenotype and to survival through ER stress
responses (Di Conza et al, 2021). Therefore, there has been
considerable interest in targeting ACLY with anti-cancer drugs
since many cancer cells rely on its activity in fatty acid metabolism,
cholesterol biosynthesis, and protein acetylation and prenylation
(Hatzivassiliou et al, 2005; Zaidi et al, 2012).

Immune–tumor interactions contribute to tumor heterogeneity
and immune surveillance

The interplay between tumor cells and infiltrated immune cells is
persistent, dynamic, and evolving from the initial establishment of
scarce cancer cells or clones to the aggressive disease. Studies have

shown that the composition of immune cells in distant metastatic
sites influences the ability of tumor cells to acquire immune-evasive
capacity during metastasis (Baumann et al, 2022). Due to oncogenic
drivers or external stimuli, tumor cells are usually capable of
plasticity manifested by an EMT phenotype, which has been
implicated in resistance mechanisms to ICB therapy (Chen et al,
2014; Hugo et al, 2016; Mak et al, 2016). When tumor cells go
through EMT, they are affected by transcription factors such as
Snail, Slug, and Zeb1/2, as well as various cytokines, including
TGF-β and IL-8 (Guinney et al, 2015). Cancer-derived IL-8 likely
recruits myeloid-derived suppressive cells, which exclude and
suppress effector T cells (Schalper et al, 2020; Yuen et al, 2020).
While TGF-β is produced by tumor cells and by several other cell
types, including Tregs, macrophages, and fibroblasts, elevated TGF-
β levels favor naive T cell differentiation towards the Treg subset
and dampen antigen-presenting abilities of dendritic cells (Flavell
et al, 2010). Further studies have shown that the expression of Zeb1
triggers immune checkpoints, such as PDL1 and CD47 checkpoints,
to establish an immunosuppressive TME (Guo et al, 2021).
Additionally, the expression of EMT transcription factors in cancer
cells can dampen killing mediated by T and NK cells (Akalay et al,
2013; David et al, 2016; Hamilton et al, 2014; Kudo-Saito et al,
2009; Terry et al, 2017).

The heterogeneity of the TME goes beyond the genetic
differences within tumor cells and encourages tumor cells to
spread and hinder the host immune responses. For example,
neutrophil infiltration increases Snail expression, inhibits immu-
notherapy efficacy, and alters angiogenesis, which enhances an
amplification loop favoring metastasis through neutrophil recruit-
ment (Faget et al, 2017). Moreover, tumor-associated neutrophils
can produce IL-17a to promote cancer EMT through JAK2/
STAT3 signaling (Li et al, 2019b). Overall, the current under-
standings propose that there is a connection between high immune
suppression and the development of tumor plasticity, which causes
cancer heterogeneity and leads to a poorer prognosis for various
types of cancer.

In many different types of cancers, the presence of tumor-
infiltrating T cells within the tumor can predict patient survival
(Clemente et al, 1996; Epstein and Fatti, 1976; Jass, 1986; Lipponen
et al, 1992; Naito et al, 1998; Rilke et al, 1991; Schumacher et al,
2001; Zhang et al, 2003). This suggests that the immune system can
defend against infections and abnormal cells, indicating the
possibility of cancer immunosurveillance. However, this raises
the question of how cancer cells manage to avoid detection.
Approximately two decades ago, Robert Schreibers team discov-
ered that IFNγ and lymphocytes not only protect the host against
tumor growth by upregulating MHC class I but also function to
select for tumor variants with lower immunogenicity, which can
more easily evade immunosurveillance (Shankaran et al, 2001).
Accordingly, they proposed an immunoediting process whereby
tumor antigenicity can be imprinted by the immunologic
environment in which they develop (Dunn et al, 2002). The
theory implies that the immune system protects host from the
development of malignancy, but it also contributes to sculpturing
immunogenicity of tumors and acquiring the capacity to evade
immunosurveillance.

This dynamic process of immunoediting is proposed to consist
of three stages: elimination, equilibrium, and escape, whereby the
immune system can constrain and promote tumor development. In
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the elimination stage, abnormal cells are sensed by innate and
adaptive immunity, particularly in NKs and CD8+ T cells, which
control the development of tumors. Additionally, the binding of
stress-induced ligands on the surface of cancer cells to the NKG2D
receptor of NK and cytotoxic T cells prompt the secretion of
immunomodulatory and pro-inflammatory cytokines, such as
IFNγ, which further stimulate immunosurveillance (Guerra et al,
2008). The second stage corresponds to a balance of fight-tug
between tumor and immune cells. Hence, the immune system
cannot eliminate the tumor cells due to generated cancer cell clones
with reduced immunogenicity, usually because of genomic
instability. However, the tumor growth is in check by immune
system, and the tumor exhibits a property of dormancy due to the
balance of tumor-suppressing and tumor-promoting factors. CTCs
can rewire their metabolism to sustain the arrest demands and
management of the new stationary state at metastatic sites. A
previous study has shown that cancer cells that are capable of
latency can become dormant in primary and metastatic organs for
long periods by avoiding detection from the innate immune system,
especially NK cell-mediated clearance (Malladi et al, 2016).
Correspondingly, mice with dormant sarcomas had significantly
higher rates of NK cells than those with progressing sarcomas (Wu
et al, 2013). A previous study has shown that lymphocyte-derived
IFNγ and TNF within tumors can induce senescence in numerous
murine and human cancers, which may be one of the mechanisms
for the dormancy (Braumuller et al, 2013). As addressed previously,
IFNγ mainly secreted by CD8+ T cells and NK cells, could induce
dormancy and G0/G1 growth arrest in cancer cell via
STAT1 signaling (Aqbi et al, 2018; Dimco et al, 2010; Kortylewski
et al, 2004). In B-cell lymphoma, CD8+ T cell deprivation
significantly decreases the period of dormancy and shortens the
time for recurrence (Farrar et al, 1999). Apart from CD8+ T cells,
CD4+ T cells also cooperate with IFNγ signaling through TNFα-
p55 axis to induce tumor dormancy in a pancreatic cancer mouse
model (Muller-Hermelink et al, 2008).

When the immune system cannot destroy cancer, which turns
into the escape stage, tumor develops with a clinically detectable
tumor appearance. During this phase, tumor cell variants emerge,
which are less immunogenic and contain immune-resistant
features. These changes can reduce antigen expression on the
surface of tumor cells. With cancer progression, immune evasion
can happen due to IFNγ-triggered genetic instability before tumors
become more invasive, suggesting immune cell edit tumor
antigenicity (Mascaux et al, 2019; Takeda et al, 2017). Besides the
loss of antigens, IFNγ facilitates immune escape by driving
expression of PD-L1 in tumor cells to hamper anti-tumor immune
responses through PD-L1/PD-1 axis-mediated dysfunctional TILs
(Dong et al, 2002; Garcia-Diaz et al, 2017). Moreover, IFNγ
expression can diminish NKG2D ligands on cancer cells to avoid
NK cell-based killing (Bui et al, 2006; O’Sullivan et al, 2011). More
recently, immunoediting also contributed to the metastatic
phenotype, indicating that NK cells guide the fate of the circulating
tumor cells for EMT and impact metastatic clonal evolution by
favoring polyclonal seeding (Lo et al, 2020). In contrast to
synchronous brain metastases of breast cancer, latent or meta-
chronous metastatic cancer cells survive in equilibrium with innate
immunosurveillance and maintain cellular redox homeostasis
through the upregulation of amino acid transporters (Lim et al,
2019; Parida et al, 2022).

Understanding the specific actions of immunoediting is crucial
for effective cancer treatment. In fact, the presence of a particular
subset of IFN-stimulated genes (ISGs) in cancer cells is associated
with immune suppression and resistance to ICB by regulating
chromatin accessibility, while abrogating Type I IFN or IFNγ
signaling in tumor cells improves the function of many immune
compartments, such as CD8+ T cells, NK cells, and innate
lymphoid cells (Benci et al, 2019; Benci et al, 2016; Qiu et al,
2023; Teijaro et al, 2013; Wilson et al, 2013). Accordingly,
immunoediting is an ongoing and changing process throughout
tumor development that significantly affects the effectiveness of
immunotherapy and the chances of cancer relapse.

Metabolic reprogramming and immune evasion

To survive in a nutrient-deficient or competitive TME, cancer cells
need to adapt their metabolism, whereas the immune system in
tumors can transmit signals to cells in the vicinity of cancer as well
as in distant organs to assist their metabolic reprogramming.
Metabolic regulators, for example, AMPK, AKT/mTOR, and MYC,
are controlled by various factors within the microenvironment,
such as cytokines, glucose, amino acid, and growth factors (Dejure
and Eilers, 2017; El-Sahli and Wang, 2020; Ivashkiv, 2018;
Weichhart et al, 2015). The activation of mTORC2 can promote
the expression of AKT and further support glutamine metabolism,
ultimately causing chemotherapy resistance and promoting cancer
growth and development (Moloughney et al, 2016; Tanaka et al,
2011). In addition, activation of AKT-mTOR pathway liberates PD-
L1 expression and regulates T cell infiltration (Lastwika et al, 2016).
On the other hand, the balance of energy production, particularly
in AMP/ATP ratio, determines the activation of AMPK, and the
AMPK axis can increase the uptake of fatty acids and glucose as
well as their catabolism capacity to elevate the intracellular ATP
level (Samovski et al, 2015). Certain immune cell-derived cytokines,
like IL-1, IL-17, IL-18, and IL-22, can impact metabolic regulators
and contribute to immunosuppression (Briukhovetska et al, 2021).
Tumor metabolism is not constant but changes as the tumor
evolves and responds to shifts in the TME. Hence, tumor cells alter
their metabolism in certain situations to exploit resources and
evade immune response.

In addition to immunogenicity reduction, emerging evidence
highlights that tumor cells may impose metabolic stress in the TME
by depleting nutrients and facilitating accumulation of by-product
metabolites known to modulate functions of immune cells (Ho and
Liu, 2016; Li et al, 2019c). Hence, the insights into the mechanisms
of tumor metabolic adaption during immunosurveillance point
towards bidirectional crosstalk between immune cells and cancer
cells as a crucial regulatory factor (Kao et al, 2022). Metabolic
adaptation of tumor cells by presenting a more glycolytic
metabolism leads to a stress microenvironment, such as lactate
enrichment, hypoxia development, and nutrient deficiency (Vil-
lalba et al, 2013). These changes can induce expression of stress
markers, e.g., UL16 binding proteins (ULBPs) or MHC class I
polypeptide-related sequence A/B (MICA/B), which are recognized
by cytotoxic lymphocytes (Liu et al, 2019). MICA expression in the
plasma membrane is coupled to lactate, short-chain fatty acids,
glycolysis, and purine nucleotide synthesis (McCarthy et al, 2018;
Andresen et al, 2009). In detail, exposure to short-chain fatty acids
promotes histone acetylation and induces MICA/B expression by
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increasing the availability of acetyl-CoA, which links the metabolic
state to epigenetics for gene regulation (Hogh et al, 2020). Together,
metabolic stress can alter the intrinsic cellular signaling or
reprogram epigenomics, affecting the functionality of surrounding
immune cells.

Notably, heterogenous tumors cause metabolic complications
and immune evasion through competition. For example, increased
glycolysis in tumor cells can inhibit cytotoxic lymphocyte function
by downregulating MHC class I expression (Catalan et al, 2015;
Siska et al, 2020). The infiltration of immune cells appears to
control metabolic process of nearby cancer cells, which facilitates
cancer progression and immune resistance to adoptive cellular
therapy (Cascone et al, 2018). IFNγ expressed by CD8 T cells may
induce the expression of immunosuppressive metabolic enzymes
such as indoleamine-2, 3-deoxygenase (IDO), a tryptophan-
metabolizing enzyme that negatively affects effector T cell function
(Gajewski et al, 2013). IFNγ expression can also lead to tumor-
repopulating cells entering dormancy through upregulation of
IDO1/aryl hydrocarbon receptor (AhR) dependent-p27 induction
but prevents apoptosis (Liu et al, 2017). Additionally, it has been
shown that tumor-associated macrophages can contribute to the
growth of encountered cancer cells by promoting their glycolysis
through TNFα (Jeong et al, 2019). Apart from this, CD39 and
CD73 enzymes, which are the downstream targets of
STAT3 signaling, coordinately dephosphorylate adenosine tripho-
sphate (ATP) to form adenosine, thus promoting tumor cell
metastasis (Mittal et al, 2016; Stagg et al, 2010) and also
angiogenesis (Allard et al, 2014). Adenosine was shown to suppress
T cell proliferation and cytotoxic function by activating the A2A
receptor (Zhang et al, 2004). CD73 has the potential to be a
biomarker for anti-PD-1 therapy. Its high expression can limit the
efficacy of anti-PD-1 therapy, but this can be improved by using
A2A blockade simultaneously (Beavis et al, 2015). In various types
of cancer, high CD73 expression is linked to poor prognosis. Thus,
CD73 blockade is being developed as a treatment for cancer
(Leclerc et al, 2016; Loi et al, 2013; Turcotte et al, 2015).

Metabolism-guided immunoediting

All shreds of evidence directed to the idea that the immune system
could shape the immunogenic phenotype of tumors, although a
unifying mechanism was elusive. The dynamic competition
between heterogeneity of tumor cells and immunity against
malignant cells determines the spatial and temporal prevalence of
tumor cell subclones throughout metastatic disease (Liu et al,
2021). CD8+ T cells can exert selective pressures on tumor cells,
which is the driving force for clonal evolution (Koebel et al, 2007;
Liu et al, 2021; McGranahan et al, 2017). Moreover, CD8+ T cells in
the metastatic region also determine whether disseminated tumor
cells are eliminated or become dormant (Tallon de Lara et al, 2022;
Vitale et al, 2021).

Among soluble factors from TILs, cytokines and metabolites within
a tumor are the most potential mediators in regulating immune
editing. It is increasingly recognized that epigenetics regulation bridges
cellular metabolism with immune surveillance in the TME. Cell-
permeable α-KG can alter the DNA methylation profile to polarizing
Treg conditions (Matias et al, 2021). Additionally, the previous study
has shown that palmitic acid, a metabolite, can stimulate H3K4
methylation in CD36-expressing cells, allowing transcriptomic

changes (Pascual et al, 2021). MYC, a metabolic and epigenetic
regulator, can also orchestrate immune suppressive stromal changes,
including innate and adaptive immunity, mainly by presenting CCL9
and IL-23 (Kortlever et al, 2017). The presence of IFNγ can trigger
epigenetic reprogramming in human melanoma cells (Kim et al, 2021)
and rapidly and transiently increase MYC expression (Ramana et al,
2000). Furthermore, type I interferons can function as resistance hubs
by promoting the epigenetic regulator demethylase 1B (KDM1B) to
rewire cancer cells for stemness and immune evasion during
immunogenic chemotherapy (Musella et al, 2022). Thus, metabolic
regulation may induce dormancy in tumorigenic cells and affect anti-
tumor immunity, highlighting another potential mechanism of
metabolism-driven immune editing through epigenetic modification.
To support this, our recent study has shown that IFNγ secreted by
TILs within tumors impairs T cell function to induce immune escape
by reprograming metabolism via STAT3/MYC signaling, featuring
increased aerobic glycolysis and fatty acid synthesis (Tsai et al, 2023).
Consistent with this, Li et al also found that TILs-derived IFNγ causes
oncometabolic reprogramming in cancer cells, including an increase in
aerobic glycolysis and MYC expression via FGF2 signaling. As a result,
PKM2 activity is suppressed, and NAD+ is decreased, leading to
enhanced β-catenin acetylation and faster cancer progression (Li et al,
2023). Additionally, invading Th2 cells in PDAC with KRAS mutation
express IL4 or IL13 cytokines and activate type I cytokine receptor
complexes signal (IL2rγ–IL4rα and IL2rγ–IL13rα1) to drive MYC
mediated glycolysis via STAT6 (Dey et al, 2020). Another study also
indicated that the presence of IFNγ from T cell or NK cells can
reprogram cellular lipidomes and fatty acid metabolism, which further
affects the sensitivity to ferroptosis by regulating the acyl-CoA
synthetase long-chain family member 4 (Liao et al, 2022). Thus, as
cancer progresses, metabolic adaption allows tumor cells to sustain cell
survival in fluctuating nutrient environments, which may also impact
immune surveillance. Together, this suggests that cytokines released by
immune cells might control the metabolic cascade for immune escape
in cancer, suggesting the contribution of metabolic reprogramming in
immunoediting and cancer treatment (Fig. 3).

Targeting metabolism for rewiring anti-tumor immunity

The metabolic tug-of-war between TILs and malignant cells highly
impacts the immune surveillance and immunotherapy response
(Ho and Liu, 2016; Li et al, 2019c). Several clinical trials are now
underway, with a focus on metabolic activity as a target to treat
cancer, showing favorable responses to cancer immunotherapy.
Strategies such as CD73 blockade, arginase vaccination, and the use
of mutant IDH inhibitor have shown promising results with good
patient tolerance, and are being considered for further phase II/III
studies (see Table EV1). Understanding the impact of tumor
heterogeneity on the associations between immune cells and tumor
cells is of significant clinical importance, as immunity can halt
cancer progression, either through the natural immune system or
immunotherapy. ICB therapy may be particularly effective when
rewiring the metabolic phenotype of effector T cells or targeting
cancer metabolism to render tumor cells low-glycolytic activity or
low LDHA-expression, thus enabling activated CD8+ T cells to
manifest within the tumor microenvironment (Patsoukis et al,
2015). It has been reported that ICB has an inhibitory effect on
immune cell metabolism by suppressing glycolysis and increasing
FAO and lipolysis (Qorraj et al, 2017). This suggests that
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combining ICB with metabolic interventions could be an
alternative approach to improve the antitumor effects by reversing
immune metabolic dysfunctions. For hepatocellular carcinomas
with a deficient urea cycle, the combined treatment of arginine
restriction and GCN2 inhibition significantly exhibits tumor
supersession (Missiaen et al, 2022). Treatment of dichloroacetate
(DCA), which can promote oxidative phosphorylation in p53

positive tumor cells, increases the effectiveness of CAR T-cell or
allogeneic NK cell therapies by inducing the expression of stress
ligands, such as MICA/B (Belkahla et al, 2022). In a B16 melanoma
mouse model, metformin promoted efficacy of PD-1 blockade by
reinvigorating T cells (Scharping et al, 2017). These findings highlight
the potential of targeting cancer metabolism to boost current immune
therapy and avoid recurrence. Therefore, treating highly resistant

Figure 3. Immune cell-guided metabolic reprogramming leads to immune evasion.

During immunosurveillance, a two-way communication occurs between tumor cells and infiltrating immune cells through cytokines or metabolites, controlling immune
evasion. Multiple metabolic features contribute to an immune suppressive TME, such as adenosine expression, lactate generation from robust glycolysis, competition for
glucose, and fatty acid production. IL4 and IL13 production in Th2 and IFNγ expression from CD8+ T cells sculpt the cancer cell immunogenicity by reprograming
metabolism via epigenetic control (Dey et al, 2020; Li et al, 2023; Tsai et al, 2023). Hence, a metabolic immunoediting process facilitates cancer progression and
contributes to escape from immune surveillance by suppressing T cell effector function and promoting survival and function of regulatory T cells (Tregs). The highlighted
targets in red and bold represent potential metabolic targets that could be used for clinical cancer therapy. Green lines represent potential pathways for metabolic
reprogramming during immune evasion.
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tumor cells in refractory patients requires using metabolic drugs or
nutrient restrictions that sensitize tumor cells to cytotoxic lymphocytes
(Brenner et al, 2020). However, there is still room for improvement in
the bench-to-bedside process for metabolic targeting therapy. For
instance, the application of an IDO blocker to the current ICB did not
result in improved efficacy (Table EV1).

As they progress, tumor cells become more diverse due to
genomic instability and acquired resistance to treatments, such as
target therapy or ICB. For example, lung tumors overcome
targeting therapy of EGFR inhibitor by presenting downstream
mutation or alternative signaling cascade to confer resistance (Hata
et al, 2016; Russo et al, 2016). Therefore, a deeper understanding of
the relationship between signaling cascades and metabolic networks
may provide the potential to develop novel combinatorial
therapeutic strategies in this context. Remarkably, tumors display-
ing metabolic plasticity might be targeted by combining kinase
inhibitors and the metabolic drug, which exhibits a synergistic
effect (Hulea et al, 2018). Furthermore, context-dependent immune
profiles and metabolic features within the heterogeneous tumor or
between individual patients could affect bench-to-bedside clinical
success. For instance, APC- or MYC-driven pancreatic tumors were
sensitive to depletion of serine and glycine, leading to reduced
growth; in contrast, KRAS-driven tumors were not affected by
serine and glycine removal (Maddocks et al, 2017).

Targeting cancer metabolism still presents challenges as some
metabolic interventions may further suppress immune surveillance,
which relies on those metabolic processes. When T cells are activated,
they switch to aerobic glycolysis, increasing glucose and glutamine
uptake, which boosts their rapid expansion and cytotoxic activity
(Pacella et al, 2018). However, inhibiting glycolysis in cancer can also
render T cells quiescent status. Additionally, due to the differential
requirement for glutamine, completely blocking glutamine uptake in
tumors can lead to Tregs development, limiting T cell-based therapy.
The mechanism behind how tumors speed up their growth during ICB
and immunosurveillance remains unclear. Cancer patients can display
disease evolution, such as hyperprogressive disease, upon ICB
immunotherapy, suggesting ICB or metabolic therapy could trigger a
chain reaction that alters the immune response, including immune cell
differentiation and cytokine profiles, leading to another round of
immunoediting and ultimately treatment resistance. Consequently, the
outcome of cancer therapy and the required strategy can be influenced
by immune therapies like CAR T-cells and ICB, as well as the presence
of bystander T cells. These parameters can shift the immune cell
landscape and increase selection pressure, resulting in further clone
evolution in cancer. In addition, pre-conditioning metabolic state

within the TME and in TILs has been suggested to be a critical
requirement for effective anti-tumor responses induced by treatments
such as agonistic anti-CD40 antibodies (Liu et al, 2023). It is worth
noting that immune exclusion, which causes resistance to ICB, can
result in a different metabolic tumor microenvironment due to
reduced levels of infiltrating CD8+ T cells and IFNγ gene signature,
which also impact the outcome of metabolic innervation. Thus, it is
crucial to identify the unique metabolic nodes that tumor cells use to
evade the immune system (see also Box 1). By doing so, we can
determine the optimal time to alter immunometabolism and cancer
metabolism, which could significantly improve current immunother-
apy methods.

Conclusions

Robust data show that metabolic reprogramming is particularly
beneficial when tumor cells encounter selective pressures, such as
metastatic barriers, fluctuating nutrient environments, and immune
surveillance. Although the metabolic plasticity of cancer cells may
promote metastatic colonization, seeding at specific secondary sites
may require CTCs to meet metabolic and nutritional demands in
TME. As cancer spreads from the primary tumor to distant sites,
the cells that are selected to colonize specific tissues and evade the
immune system may be determined by their metabolic programs.
This means that different populations of cells within the primary
tumor may have distinct metabolic features that help them to
survive and to grow in different environments. On the other hand,
environmental factors, such as hypoxia, unique metabolites, and
immunosurveillance, may reprogram the metabolic activity, which
triggers cancer cells to enter a dormant state or to experience
outgrowth. Investigating microenvironmental influences, immuno-
surveillance, and metabolic heterogeneity within tumors may lead
to further understanding of how metastatic cancers can remain
dormant for an extended period before relapse, and this mechanism
could be utilized to prevent metastasis (see also Box 1). However,
the success of targeting cancer metabolism to reprogram immune
states in tumors, restricting tumor growth, and ameliorating tumor
metastasis, largely relies on our understanding of the metabolic
crosstalk during tumor progression and evolution. The presence of
immune cells or of immunotherapeutic interventions seems to
prove a selection pressure to edit cancer immunogenicity,
tumorigenicity, and metastatic ability through metabolic repro-
gramming (Liao et al, 2022; Tsai et al, 2023). Thus, further research
on this emerging topic would provide a critical steppingstone for
effectively harnessing metabolic targeting to cancer treatment.

Expanded view data, supplementary information, appendices are
available for this paper at https://doi.org/10.1038/s44319-023-00038-w.
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In need of answers

• How do tumor-derived metabolites or tumor metabolism impact
adjacent stromal cells and systematic immune profiles?

• How do metabolites guide cell differentiation or immune escape in
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