Skip to main content
. 2024 Feb 27;19(3):034036. doi: 10.1088/1748-9326/ad2892

Table 1.

Candidate predictor variables available for model selection.

Variables and categories Unit Buffer size (m) Source
Traffic variables OpenStreetMap (2019) [27]
 Total length of major roads m 50, 100, 200, 500
 Total length of secondary roads m 50, 100, 200, 500
 Distance to the nearest major road m
 Distance to the nearest secondaryroad
m
Land use variables World Bank [28] 20 m × 20 m
 Commercial/business/industrial m2 50, 100, 200, 500
 High-density residential m2 50, 100, 200, 500
 Low/medium-density residential m2 50, 100, 200, 500
 Peri-urban areas m2 50, 100, 200, 500
 Normalized difference vegetationindex (NDVI)
50, 100, 200, 500 United States Geological Survey [29]—Landsat 8 imagery (30 m × 30 m)
 Waterways (total length) m 50, 100, 200, 500 OpenStreetMap [27, 2019]
 Counts of building N 50, 100, 200, 500 Maxar/Ecopia.ai [30, 2020]
Population Ghana census (2010) data [31]
 Biomass use % 50, 100, 200, 500
 Population density pop km−2 50, 100, 200, 500
Human activities Google Places (retrieved in 2020)
 Number of restaurants N 50, 100, 200, 500
 Number of schools N 50, 100, 200, 500
 Presence of bars N 50, 100, 200, 500
 Presence of shops N 50, 100, 200, 500
Meteorological variables
 Temperature ˚C Kestrel weather meters
 Relative humidity % Kestrel weather meters
 Wind speed m s−1 Kestrel weather meters
 Mixing layer depth m HYSPLITE model [32]
 Solar radiation W km−2 HYSPLITE model [32]
 Water vapor mixing ratio kg kg−1 HYSPLITE model [32]

N: number.