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Abstract 

Background Polygenic effects have been proposed to account for some disease phenotypes; these effects are 
calculated as a polygenic risk score (PRS). This score is correlated with Alzheimer’s disease (AD)-related phenotypes, 
such as biomarker abnormalities and brain atrophy, and is associated with conversion from mild cognitive impair-
ment (MCI) to AD. However, the AD PRS has been examined mainly in Europeans, and owing to differences in genetic 
structure and lifestyle, it is unclear whether the same relationships between the PRS and AD-related phenotypes exist 
in non-European populations. In this study, we calculated and evaluated the AD PRS in Japanese individuals using 
genome-wide association study (GWAS) statistics from Europeans.

Methods In this study, we calculated the AD PRS in 504 Japanese participants (145 cognitively unimpaired (CU) 
participants, 220 participants with late mild cognitive impairment (MCI), and 139 patients with mild AD dementia) 
enrolled in the Japanese Alzheimer’s Disease Neuroimaging Initiative (J-ADNI) project. In order to evaluate the clinical 
value of this score, we (1) determined the polygenic effects on AD in the J-ADNI and validated it using two inde-
pendent cohorts (a Japanese neuropathology (NP) cohort (n = 565) and the North American ADNI (NA-ADNI) cohort 
(n = 617)), (2) examined the AD-related phenotypes associated with the PRS, and (3) tested whether the PRS helps 
predict the conversion of MCI to AD.

Results The PRS using 131 SNPs had an effect independent of APOE. The PRS differentiated between CU participants 
and AD patients with an area under the curve (AUC) of 0.755 when combined with the APOE variants. Similar AUC 
was obtained when PRS calculated by the NP and NA-ADNI cohorts was applied. In MCI patients, the PRS was asso-
ciated with cerebrospinal fluid phosphorylated-tau levels (β estimate = 0.235, p value = 0.026). MCI with a high PRS 
showed a significantly increased conversion to AD in APOE ε4 noncarriers with a hazard rate of 2.22. In addition, we 
also developed a PRS model adjusted for LD and observed similar results.

Conclusions We showed that the AD PRS is useful in the Japanese population, whose genetic structure is differ-
ent from that of the European population. These findings suggest that the polygenicity of AD is partially common 
across ethnic differences.
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Background
Alzheimer’s disease (AD) is a neurodegenerative dis-
ease caused by environmental and genetic factors [1, 2]. 
Environmental factors, which are acquired and modifi-
able, associated with AD include smoking status, alco-
hol consumption, diet, and physical activity [3]. On the 
other hand, the heritability of AD is approximately 70%, 
and genetic factors are inborn and nonmodifiable [4, 
5]. However, knowing one’s genetic risk early in life can 
motivate one to improve modifiable factors. Indeed, 
sharing genetic test results with carriers of genetic risk 
for disease may promote behavioural changes rather than 
increase psychological distress [6, 7]. Thus, knowledge 
of the individual genetic risk of AD is expected to con-
tribute to delaying the onset of AD and early therapeutic 
intervention.

The largest genetic risk factor for AD is the ε4 allele of 
the apolipoprotein E (APOE) gene, but APOE ε4 explains 
only approximately 10% of AD cases based on heritabil-
ity [4, 5]. In addition, even when other AD-associated 
genetic variants found in previous genome-wide asso-
ciation studies (GWAS) are also considered, they do not 
explain all the genetic variance in AD patients [8], sug-
gesting the existence of additional unknown AD-related 
genetic variants. To clarify this “missing heritability”, 
polygenic effects that aggregate the small effects of many 
alleles have been proposed to underlie AD.

Polygenic risk score (PRS) is a measure to quantify the 
combined effect of genetic variants on an individual’s risk 
for disease. The combination of the APOE ε4 allele dose 
and PRS has been shown to improve disease prediction 
accuracy in the European population [9]. Moreover, the 
PRS is associated with AD-related phenotypes, such as 
brain volumes [10–12], brain amyloid-beta (Aβ) burden 
[11, 12], and plasma phosphorylated tau [13], and has 
been reported to be useful in predicting conversion from 
mild cognitive impairment (MCI) to AD [14, 15].

However, the clinical application of the PRS must be 
approached with caution. One of several concerns is that 
the effects of the PRS are not consistent across different 
ancestries [16, 17]. This is because genetic structures, 
such as linkage disequilibrium (LD) blocks, are different 
across populations and because the GWAS summary sta-
tistics used as a weight for each single-nucleotide poly-
morphism (SNP) to calculate the PRS are based primarily 
on people of European ancestry. Taking a PRS calcula-
tion method based on GWAS summary statistics from 
European individuals and applying it to non-European 
individuals compromises prediction accuracy since 
the genetic risk of that population may not be reflected 
properly [18]. Therefore, for future clinical application of 
the AD PRS, it is necessary to evaluate the utility of this 
score in populations of different ancestry. In addition, 

harmonization of protocols such as inclusion and exclu-
sion criteria is critical for rigorous comparisons between 
different cohorts.

Therefore, in this study, we calculated the AD PRS in 
504 Japanese participants (145 cognitively unimpaired 
participants, 220 participants with late MCI, and 139 
patients with mild AD dementia) enrolled in the Japanese 
Alzheimer’s Disease Neuroimaging Initiative (J-ADNI) 
project and evaluated its effectiveness in the North 
American ADNI (NA-ADNI) cohort including North 
American 1070 participants. The J-ADNI study used a 
harmonized protocol to the NA-ADNI study. The pre-
vious comparative study of AD dementia between the 
US and Japan in the ADNI projects reported that MCI 
in the Japanese population shows similar progression 
profile as MCI in North America in terms of cognitive 
function [19]. We moreover validated the AD PRS using 
independent genomic data from 565 Japanese individuals 
with a neuropathological diagnosis by autopsy. Further-
more, we also examined the AD endophenotypes in asso-
ciation with PRS and tested whether the PRS is useful for 
predicting conversion from MCI to AD.

Materials and methods
Japanese participants from the J‑ADNI cohort
Data used in the preparation of this article were obtained 
from the J-ADNI database deposited in the National 
Bioscience Database Center Human Database, Japan 
(Research ID: hum0043.v1, 2016) [19]. This database 
enrolled cognitively unimpaired (CU) participants, par-
ticipants with late MCI, and patients with mild AD 
dementia (ADD) using criteria consistent with those 
of the North American ADNI (NA-ADNI) [20]. The 
J-ADNI was launched in 2007 as a public–private part-
nership led by Principal Investigator Takeshi Iwatsubo, 
MD. The J-ADNI was aimed to test whether serial mag-
netic resonance imaging (MRI), positron emission 
tomography (PET), other biological markers, and clinical 
and neuropsychological assessment can be combined to 
measure the progression of late MCI and mild ADD in 
the Japanese population. The J-ADNI did not recruit par-
ticipants with early MCI. The ethics committees of the 
University of Tokyo, Osaka University and Niigata Uni-
versity approved the study.

A total of 715 volunteer participants between the ages 
of 60 and 84 years were diagnosed with late MCI or mild 
ADD or were CU and considered for inclusion in the 
J-ADNI. Of the 715 participants assessed for study eli-
gibility, 537 met the criteria and were enrolled. Of these 
537 participants, 508 (CU, 147; MCI, 221; ADD, 140) 
underwent genotyping analysis. Participants were evalu-
ated every 6 or 12 months over a period of 36 months for 
CU and MCI participants and over a period of 24 months 
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for participants with ADD, as in the NA-ADNI. As 
detailed below, the J-ADNI collected various imaging, 
clinical and neuropsychological data from these partici-
pants in addition to the genomic data. These data were 
obtained from the database described above.

Japanese neuropathological cohort
An independent neuropathological (NP) cohort com-
posed of 577 brain donors was used for PRS validation 
[21]. Of these donors, 365 control donors had little path-
ological findings associated with AD and 212 case donors 
had those consistent with AD. All ADD patients were 
neuropathologically diagnosed by senile plaque and neu-
rofibrillary tangle. No neuropathological features of other 
neurodegenerative disorders such as dementia with Lewy 
body disease, frontotemporal lobal degeneration, and 
Parkinson’s disease, were observed. Control individuals 
did not show the typical neuropathological hallmarks of 
AD. As no clinical diagnosis is provided in this cohort, 
the term case or control is used in this study. As shown 
below, 565 brain donors (358 controls and 207 cases) 
passed QC. The demographic data of all the participants 
from the NP cohort are shown in Table S1.

Genotyping, quality control, and imputation
Whole blood samples from 508 participants in the 
J-ADNI cohort and post-mortem frontal cortices from 
577 donors in the NP cohort were genotyped using the 
Infinium Asian Screening Array (Illumina), contain-
ing 657,490 SNPs. APOE genotypes in each participant 
were determined by haplotypes derived from rs7412 
and rs429358, which were genotyped using TaqMan 
Assays (Applied Biosystems). We excluded SNPs that 
(i) had duplicated genomic positions, (ii) had low call 
rates (< 5%), (iii) deviated from Hardy–Weinberg equi-
librium compared to controls (p < 1 ×  10−5), or (iv) had 
low minor allele frequency (< 0.01). For QC purposes, 
we excluded participants who (i) had sex inconsistencies, 
(ii) had autosomal heterozygosity deviation (|Fhet|≥ 0.2), 
(iii) had < 99% of their genotypes called, or (iv) were in 
the same family according to pi-hat (> 0.2). Furthermore, 
we used principal component analysis to remove outli-
ers based on the 1000 Genomes Project samples (Phase3 
v5) [22]. Finally, 451,713 autosomal SNPs and the sam-
ples, including 504 participants from the J-ADNI cohort 
and 565 brain donors from the NP cohort passed the QC 
procedures.

Next, we performed phasing with Eagle v2.4.1 [23] and 
imputation with Minimac4 [24] using the whole-genome 
sequencing data of 3541 participants obtained from the 
BioBank Japan Project [25] and the 1000 Genomes Pro-
ject [22] as reference genome data. After repeating the 
above QC procedure for the imputed SNP markers, we 

excluded SNPs with poor imputation quality (r2 ≤ 0.3). 
Finally, we obtained 7,633,670 SNPs and the samples, 
including the 504 participants from the J-ADNI (CU, 145; 
MCI, 220; and ADD, 139) and 565 brain donors from the 
NP cohort (control, 358; case, 207).

The NA‑ADNI genetic data
The independent cohort data used in this study were 
obtained from the NA-ADNI [26]. The NA-ADNI was 
launched in 2003 as a public–private partnership led by 
Principal Investigator Michael W. Weiner, MD. The NA-
ADNI was aimed to test whether serial MRI and PET 
data and the analysis of other biological markers and 
clinical and neuropsychological assessments can be com-
bined to characterize the progression of MCI and early 
ADD.

SNP data from the NA-ADNI project were available for 
1674 participants across ADNI 1 and ADNI GO/2. Gen-
otyping was conducted using three different platforms: 
Human610-Quad, HumanOmniExpress and Omni 2.5 M 
(Illumina) [27]. The SNP data were imputed using the 
TOPMeD imputation server after identical marker QC 
and sample QC as was used for the J-ADNI was per-
formed. The SNP data analysed on each of the three plat-
forms were imputed separately. After repeating the QC 
for the imputed SNP markers, we excluded SNPs with 
poor imputation quality (r2 ≤ 0.3). If a participant was 
genotyped on more than one genotyping array, the data-
set with the fewest missing values was selected.

According to the following procedures, we selected 
participants with predicted central European ancestry 
and self-reported white non-Hispanic ethnicity. For pre-
dicted ancestry, we used SNPweights software to infer 
genetic ancestry from genotyped SNPs [28]. The refer-
ence panel comprised European, West African, East 
Asian and Native American ancestral populations. Par-
ticipants with predicted central European ancestry of 
80% or more were retained. We obtained self-reported 
ethnicity information from the NA-ADNI database. The 
clinical diagnosis at the final visit was used to categorize 
the data. Furthermore, four participants who had sig-
nificant memory concerns but no cognitive impairment 
were excluded. Finally, 1482 participants (CU, 377; MCI, 
481; and ADD, 624) remained.

Of the 1482 participants, 412 participants were par-
ticipants in the Alzheimer’s Disease Genetics Consor-
tium (ADGC) and were included in the meta-analysis of 
AD GWAS used as SNP weights in the PRS calculation 
described below. We analysed a set of 1070 participants 
(CU, 257; MCI, 453; and ADD, 360), excluding the 412 
participants to avoid overfitting. The demographic data 
of all the participants from the NA-ADNI cohort are 
shown in Table S2.



Page 4 of 20Kikuchi et al. Alzheimer’s Research & Therapy  (2024) 16:45

Calculation of the PRS and prediction accuracy
The PRS was calculated for each individual and is 
expressed as the following weighted sum:

where PRSi is the PRS for individual i; M is the total num-
ber of SNPs used in the calculation; βj is the weight of 
SNPj, defined according to the effect size calculated by 
an independent GWAS; and xi,j is the number of minor 
alleles of SNPj that individual i has, thus has a value of 
0, 1, or 2. In other words, the more minor alleles that are 
strongly associated with the disease, the higher the PRS.

SNPs included in the PRS were determined by the 
clumping and thresholding (C + T) method, the most 
common and supported method in AD studies [29, 
30]. We used PRSice software implementing the C + T 
method to calculate the PRS [31]. The clumping method 
preferentially retains markers most strongly associated 
with disease from correlated markers in the same LD 
block. The thresholding method removes variants with 
GWAS p values greater than the selected p value thresh-
old (pT) (p > pT). To determine the optimal pT, we tested 
pT values of 5 ×  10−8, 1 ×  10−6, 1 ×  10−5, 1 ×  10−4, 1 ×  10−3, 
1 ×  10−2, 0.05, 0.5, and 1.0. SNPs were weighted by their 
effect sizes (beta coefficient) from the AD GWAS in the 
European population [32].

The ability of the PRS to accurately classify CU par-
ticipants and ADD patients was estimated in terms of (1) 
Nagelkerke’s R2, the proportion of the variance explained 
by the regression model and (2) the area under the 
receiver operator characteristic curve (AUC). To calcu-
late Nagelkerke’s R2, we constructed a logistic regression 
model, including the PRS and the first two components 
from the multidimensional scaling (MDS) analysis (full 
model), and compared it to a model with only the first 
two MDS components (null model). We assessed the dif-
ference in Nagelkerke’s R2 between the full and null mod-
els (R2 = R2

Full − R2
Null) and used the pT corresponding to 

the highest value of Nagelkerke’s R2. The Nagelkerke’s R2 
was calculated by PRSice software using default parame-
ters [31]. To avoid potential overfitting due to differences 
in LD between the European and Japanese populations, 
we used the LD score (R2) of the EUR population of 1000 
Genomes in the LDpop Tool [33] to exclude SNPs sus-
pected of LD using the criterion of R2 > 0.5. In this anal-
ysis, when adjacent SNPs had R2 > 0.5, one SNP with a 
lower GWAS p-value was selected to calculate PRS and 
the other was excluded. When more than one SNP was 
observed between two SNPs with R2 > 0.5, all of them 
may be in the same LD block, and the SNP showing the 
lowest GWAS p-value was selected from this LD block.

PRSi =

M

j=1

βjxi,j/M,

The AUC was calculated based on the prediction 
results of the logistic regression model using the J-ADNI 
cohort as a test cohort. We also performed fivefold cross 
validation (CV) to evaluate a predictive performance in 
a test cohort. We estimated the 95% credible intervals 
by using the ci.auc function from the R package “pROC”. 
DeLong’s test was conducted to assess potential signifi-
cant differences between curves using the roc.test func-
tion from the R package “pROC”.

CSF biomarkers
In the J-ADNI cohort, cerebrospinal fluid (CSF) samples 
were assayed for Aβ(1–42), total tau (tTau), and phospho-
rylated tau (pTau) by using a multiplex xMAP Luminex 
platform (Luminex Corp, Austin, TX) with an Innogenet-
ics (INNO-BIA AlzBio3; Ghent, Belgium) immunoas-
say kit-based reagent [34]. Of the 504 participants who 
underwent genotyping, 192 participants (CU, 52; MCI, 
85; ADD, 55) also underwent CSF biomarker measure-
ments at baseline.

Structural MRI and PET imaging
All participants in the J-ADNI cohort underwent a struc-
tural MRI scan at a signal strength of 1.5 Tesla using a 
three-dimensional magnetization-prepared rapid-acqui-
sition gradient-echo sequence according to a standard-
ized protocol [35]. Cross-sectional and longitudinal 
processing streams in FreeSurfer, version 5.3, were used 
to estimate the atrophic changes in specific regions; we 
also evaluated the cortical thickness extracted in the lon-
gitudinal analysis. Of the 504 participants who under-
went genotyping, the entorhinal cortex and hippocampus 
of 443 participants (CU, 133; MCI, 196; ADD, 114) was 
assessed by the FreeSurfer longitudinal stream. Each cor-
tical thickness value was adjusted by the total intracranial 
volume.

Of the 504 participants, 315 and 162 individuals under-
went a positron emission tomography (PET) scan using 
18F-2-fluoro-2-deoxy-D-glucose (FDG) and 11C-Pitts-
burgh compound B (PiB), respectively. The PET scan-
ning protocol was standardized to minimize the inter-site 
and inter-scanner variability [36]. All PET images went 
through the J-ADNI PET QC process [36]. The FDG 
PET images were classified into seven categories based 
on the criteria of Silverman et al. [37]. We analysed only 
PET images of 110 participants classified as having a nor-
mal pattern (N1 pattern) and 161 participants classified 
as having an AD pattern (P1 pattern). For PiB PET, the 
visual interpretation of four cortical areas on each side 
(frontal lobe, lateral temporal lobe, lateral parietal lobe, 
and precuneus/posterior cingulate gyrus) was evalu-
ated by classifying PiB uptake in each cortical region as 
positive, equivocal, or negative. Cases with one or more 
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positive cortical areas were defined as amyloid scan posi-
tive, and those with negative results in all four cortical 
regions were defined as amyloid scan negative. Other 
cases were considered equivocal. We analysed 65 nega-
tive and 87 positive amyloid scans, excluding 10 partici-
pants who were judged to be equivocal.

Neuropsychological tests
All participants in the J-ADNI cohort underwent the 
following neuropsychological tests: Mini–Mental State 
Examination (MMSE), Functional Assessment Ques-
tionnaire (FAQ), Clinical Dementia Rating Scale Sum of 
Boxes (CDR-SB), and AD Assessment Scale–Cognitive 
Subscale (ADAS-Cog).

Statistical analyses
Gene functional enrichment analysis of the closest genes 
around SNPs included in the PRS was performed using 
the Metascape database (http:// metas cape. org/) [38].

For the association analyses between the PRS and 
endophenotypes, we compared slopes with zero by linear 
regression model analyses. The covariates included age 
at baseline examination, sex, years of education, the first 
two principal components (PCs), and doses of APOE ε4 
and ε2 alleles. P values were adjusted by false discovery 
rate (FDR) to avoid type I error.

Cox proportional hazards models using months of fol-
low-up as a time scale were used to analyse the effects of 
PRSs on incident AD, presented as hazard ratios (HRs) 
and 95% confidence intervals (CIs) derived from a model 
with the following covariates: age at baseline examina-
tion, sex, years of education, the first two PCs, and dose 
of APOE ε4 and ε2 alleles. We analysed 208 MCI partici-
pants over a follow-up period of ≥ 12  months. Noncon-
verters were censored at the end of follow-up. Log-rank 
test was performed to examine the difference in con-
version to AD between two PRS groups. This test was 

performed using only the PRS without covariates because 
the covariates other than PRS could affect the differences 
between the groups. Cox proportional hazard model 
analyses and log-rank tests were performed using the 
coxph and survdiff functions from the R package “sur-
vival”, respectively.

Results
The PRS successfully distinguish ADD patients and CU 
individuals in the J‑ADNI cohort
After quality control of the genotyping data, the J-ADNI 
cohort included the 504 participants. The group with 
ADD had a higher mean age (p value < 0.001), a lower 
mean length of education (p value < 0.001), and a higher 
frequency of APOE ɛ4 carriers (p value < 0.001) than the 
CU group, whereas no differences were found in sex (p 
value = 0.429) or the frequency of APOE ɛ2 carriers (p 
value = 0.292) (Table 1).

We investigated whether the PRSs that were calculated 
using the statistics from the AD GWAS in the European 
population [32] are useful for discriminating between 
patients with ADD and CU individuals in the Japanese 
population. We calculated PRSs for 145 CU participants 
and 139 patients with ADD from the J-ADNI cohort. 
Our model using 173 SNPs showed the highest predic-
tive power at pT < 1 ×  10−5 and had a Nagelkerke’s R2 of 
0.167 (left side of Table  2), indicating that it explained 
more than 15% of the variance between the CU and ADD 
groups.

Given the known predictive power of SNPs in the 
APOE region for AD, we next removed this region 
from our PRS calculation to evaluate the predictive 
power of other loci. To exclude the effect of APOE, we 
excluded ± 500  kb around APOE (Figure  S1). This PRS, 
referred to as the PRS.noAPOE, was used in subsequent 
analyses. The predictive power of the PRS.noAPOE 
was the highest for pT < 1 ×  10−5, with a Nagelkerke’s R2 

Table 1 Summary of the J-ADNI participants

Abbreviations: CU Cognitively unimpaired, MCI Mild cognitive impairment, ADD Alzheimer’s disease dementia, APOE Apolipoprotein E, SE Standard error, ANOVA 
analysis of variance
a One-way ANOVA
b Chi-squared test
c Fisher’s exact test

CU MCI ADD p value

N 145 220 139 -

Age in years, mean ± SE 67.8 ± 0.472 72.8 ± 0.397 73.8 ± 0.563  < 2.00 × 10−16a

Sex (M:F) 72:73 106:114 59:80 0.429b

Years of education, mean ± SE 13.8 ± 0.230 13.0 ± 0.189 12.5 ± 0.266 8.69 × 10−4 a

APOEε4 alleles (0:1:2) 109:34:2 106:97:17 55:62:22 2.31 × 10−10 c

APOEε2 alleles (0:1:2) 134:11:0 211:9:0 133:6:0 0.323 c

http://metascape.org/
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of 0.085 (right side of Table  2). To remove the effect of 
APOE regions completely, we also validated PRS.nochr19 
excluding SNPs located on chromosome 19. The pre-
dictive power of the PRS.nochr19 was the highest for 
pT < 1 ×  10−5, with a Nagelkerke’s R2 of 0.082 (Table  S3). 
To further avoid potential overfitting due to differences 
in LD between the European and Japanese populations, 
we excluded 18 SNPs with suspected LD in the Euro-
pean population from PRS.noAPOE (see “Methods”). 

We referred to this PRS adjusted for LD as the PRS.
adjLD. A Nagelkerke’s R2 of the PRS.adjLD was 0.075 (p 
value = 9.31 ×  10−5). We analysed the PRS.noAPOE and 
PRS.adjLD in this study. The normalized values of the 
PRS.noAPOE and PRS.adjLD of the ADD patients were 
significantly higher than those of the CU and MCI par-
ticipants (p value < 0.05, Tukey’s honestly significant 
difference (HSD) test; Fig.  1), while there were no sig-
nificant difference between the CU and MCI participants 

Table 2 Nagelkerke’s R2 at differenct p value thresholds

The highest accuracy was highlighted in bold

P value was calculated by Wald test

PRS (All SNPs) PRS.noAPOE (except APOE region)

pT Nagelkerke’s R2 p value #SNPs Nagelkerke’s R2 p value #SNPs

p < 5 ×  10–8 0.148 5.92 ×  10–8 81 0.081 4.57 ×  10–5 44

p < 1 ×  10–6 0.143 9.91 ×  10–8 107 0.067 2.07 ×  10–4 70

p < 1 × 10–5 0.167 1.40 × 10–8 173 0.085 3.18 × 10–5 131
p < 1 ×  10–4 0.091 1.53 ×  10–5 410 0.029 0.013 364

p < 1 ×  10–3 0.034 6.85 ×  10–3 1,696 0.014 0.077 1,642

p < 1 ×  10–2 0.004 0.324 10,101 0.007 0.213 10,041

p < 0.05 0.000 0.929 33,065 0.000 0.979 32,999

p < 0.5 0.005 0.288 121,721 0.004 0.332 121,647

p < 1.0 0.006 0.262 158,289 0.005 0.303 158,208

Fig. 1 The PRS.noAPOE in the ADD group was significantly higher than those in the CU and MCI groups. The PRS.noAPOEs (A) or PRS.adjLD (B) 
in each group were represented by violin plots (CU, n = 145; MCI, n = 220; ADD, n = 139). Each violin plot includes the kernel probability density 
of the data at different values and the box plots with the median value and the interquartile range. Tukey’s HSD test was used to perform multiple 
comparisons of PRSs among each group. We normalized the PRS distribution to have a mean of 0 and an SD of 1. CN = cognitively normal; MCI = mild 
cognitive impairment; ADD = Alzheimer’s disease dementia



Page 7 of 20Kikuchi et al. Alzheimer’s Research & Therapy  (2024) 16:45 

(p value = 0.180 in PRS.noAPOE, p value = 0.296 in PRS.
adjLD, Tukey’s HSD test; Fig.  1). These results suggest 
that the PRS contribute to distinguish between ADD 
patients and CU individuals in J-ADNI cohort even when 
the APOE region is excluded.

The PRS in combination with the APOE alleles improves 
predictive power
Next, we examined whether the PRSs and the charac-
teristics of the participants independently influence the 
predictive power in J-ADNI cohort. The PRS.noAPOE 
and PRS.adjLD were not correlated with sex, years of 
education, age at baseline examination, or the dose of 
the APOE ε4 or ε2 allele, even when participants were 
stratified into CU, MCI, and ADD groups (p value > 0.05; 
Figures S2 and S3). These results suggest that these fac-
tors contribute independently to the discrimination of 
AD and that combinations of these factors improve dis-
crimination accuracy. We constructed models including 
only the PRS.noAPOE or PRS.adjLD and doses of APOE 
ε4 and ε2 alleles. These models showed predictive per-
formance of AUC = 0.755 in the model including PRS.
noAPOE (95% CI = 0.695–0.807) and AUC = 0.748 in 
the model including PRS.adjLD (95% CI = 0.687–0.800) 
(Table  3). The predictive performance of a monogenic 
model of only APOE alleles without the PRS.noAPOE 
was AUC = 0.696 (95% CI = 0.640–0.751) (Table  3). The 
addition of polygenic effects significantly improved 
the predictive accuracy of the monogenic model using 
only APOE (p value = 9.36 ×  10−4 in the PRS.noAPOE 
model, p value = 2.59 ×  10−3 in the PRS.adjLD model, 

DeLong test). Additionally, the PRS model incorporat-
ing APOE alleles independently (PRS.noAPOE + APOE 
doses) has higher accuracy than the PRS model that 
includes SNPs in the APOE region (PRS.incAPOE) 
(AUC = 0.706; 95% CI = 0.643–0.764; p value = 0.049, 
DeLong test). Therefore, we constructed a predictive 
model including the PRS.noAPOE, sex, years of educa-
tion, age at baseline examination, and doses of APOE ε4 
and ε2 alleles. This model showed discriminative per-
formance of AUC = 0.855 in distinguishing between the 
ADD patients and CU individuals in the J-ADNI cohort 
(95% CI = 0.808–0.898) (Table 3). This tendency was con-
served even when LD effects were adjusted (AUC = 0.853; 
95% CI = 0.806–0.897). These predictive performances 
showed the similar tendencies when evaluated by fivefold 
CV (Table S4). Taken together, these results showed that 
the PRS based on European GWAS statistics was useful 
in discriminating between patients with ADD and CU 
participants in the Japanese population. Furthermore, the 
PRS had an effect independent of APOE alleles, and their 
combination improved predictive accuracy.

The effect of our PRS model is replicated 
in the independent cohorts
To examine the predictive accuracy of PRS.noA-
POE and PRS.adjLD in independent cohorts, we cal-
culated the PRS values for 565 brain donors in the 
NP cohort (control, 358; case, 207) and 617 partici-
pants (CU, 257; ADD, 360) in the NA-ADNI using 
our PRS models. We note that the samples from the 
NP cohort received a definitive diagnosis based on 

Table 3 Predictive accuracy of each model

Abbreviations: Age, age at examination; Education, years of education. Years of education were not provided in the NP cohort

Training cohort Validation cohort

J‑ADNI NP NA‑ADNI

Model AUC 95% CI AUC 95% CI AUC 95% CI

PRS and APOE alleles

 APOE ε4 0.693 0.638–0.747 0.691 0.654–0.730 0.701 0.665–0.735

 APOE ε4 + ε2 0.696 0.640–0.751 0.698 0.659–0.737 0.712 0.675–0.750

 PRS.noAPOE 0.640 0.576–0.704 0.550 0.500–0.599 0.602 0.559–0.649

 PRS.adjLD 0.639 0.574–0.704 0.541 0.493–0.589 0.594 0.552–0.640

 PRS.incAPOE 0.706 0.643–0.764 0.628 0.590–0.625 0.679 0.639–0.720

 PRS.noAPOE + APOE ε4 + ε2 0.755 0.695–0.807 0.731 0.686–0.773 0.730 0.692–0.767

 PRS.adjLD + APOE ε4 + ε2 0.748 0.687–0.800 0.728 0.680–0.771 0.731 0.693–0.769

PRS and all covariates

 Age + Sex + (Education) + APOE ε4 0.837 0.788–0.883 0.725 0.681–0.770 0.710 0.670–0.750

 Age + Sex + (Education) + APOE ε4 + ε2 0.838 0.789–0.883 0.723 0.679–0.768 0.706 0.665–0.746

 Age + Sex + (Education) + APOE ε4 + ε2 + PRS.noAPOE 0.855 0.808–0.898 0.737 0.693–0.780 0.722 0.683–0.761

 Age + Sex + (Education) + APOE ε4 + ε2 + PRS.adjLD 0.853 0.806–0.897 0.733 0.690–0.777 0.718 0.678–0.757
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the typical neuropathological hallmarks of AD using 
autopsy brains. The logistic regression model con-
structed in the J-ADNI cohort was applied to each 
cohort to assess discrimination accuracy. The pre-
dictive performance of PRS.noAPOE for the NP 
cohort was lower than that for the J-ADNI cohort 
(AUC = 0.550 (95% CI = 0.500–0.599) in the PRS.noA-
POE; AUC = 0.541 (95% CI = 0.493–0.589) in the PRS.
adjLD), but when APOE alleles were added, the pre-
dictive performance was replicated (AUC = 0.731 
(95% CI = 0.686–0.773) in the PRS.noAPOE model; 
AUC = 0.728 (95% CI = 0.680–0.771) in the PRS.adjLD 
model) (Table 3).

We also analysed the NA-ADNI cohort to verify the 
transferability of PRS.noAPOE in different ancestries. 
In the NA-ADNI cohort, the imputed genotyping data 
included 130 of the 131 SNPs used in the PRS.noA-
POE. The PRS.adjLD model used all 113 SNPs. A simi-
lar analysis in the NA-ADNI cohort also showed that 
the predictive performance of PRS.noAPOE or PRS.
adjLD in combination with APOE alleles were similar 
to that of the NP cohort (AUC = 0.730 (95% CI = 0.692–
0.767) in the PRS.noAPOE model; AUC = 0.731 (95% 
CI = 0.693–0.769) in the PRS.adjLD model). These anal-
yses showed the reproducibility of our PRS model in 
independent cohorts.

ADD in the J‑ADNI shows the polygenicity related 
to immune pathway
In order to examine the polygenicity of our PRS, 
we compared a model including only the PRS.noA-
POE with a single-variable model for each of the 131 
SNPs comprising the PRS.noAPOE. The single models 
with individual SNPs showed AUCs of 0.499 to 0.605 
(median AUC = 0.515), while the model including 
only the PRS.noAPOE showed an AUC of 0.640 (95% 
CI = 0.576–0.704) (Table 3 and S5), suggesting that the 
PRS.noAPOE reflects a polygenic effect. Here, SNPs 
with AUCs of less than 0.5 indicate protection rather 
than risk in our data.

We examined the genes closest to 131 SNPs included 
in the PRS.noAPOE. We found the 96 closest genes 
located within ± 100  kb around the SNPs (Table  S6). 
These genes were associated with leukocyte-mediated 
immunity (FDR = 3.78 ×  10−5), haematopoietic cell line-
age (FDR = 4.45 ×  10−5), the amyloid precursor protein 
(APP) catabolic process (FDR = 5.16 ×  10−5), regulation of 
transferase activity (FDR = 3.57 ×  10−4), and glial cell pro-
liferation (FDR = 5.60 ×  10−3) (Table  S7). The 89 closest 
genes in the PRS.adjLD also contained basically similar 
pathways (Tables S6 and S8). Overall, we found that the 
integrated scores of multiple SNPs around genes mainly 

associated with immune pathways may explain the Japa-
nese AD traits.

The PRS associates with AD‑related phenotypes
To examine whether our PRS associates with clini-
cal characteristics, we next investigated the correlation 
between the PRS.noAPOE or PRS.adjLD and AD-related 
phenotypes, namely CSF biomarker data and FDG and 
PiB PET brain imaging data. We performed linear regres-
sion model analyses based on three models controlling 
for seven covariates: age at baseline examination, sex, 
years of education, the first two PCs, and the doses of 
APOE ε4 and ε2 alleles. Model 1 controlled only age at 
baseline examination, sex, years of education, and the 
first two PCs. Models 2 and 3 took into the dose of APOE 
ε4 allele in addition to Model 1. Model 3 also added the 
dose of APOE ε2 allele as a full model.

The CSF tTau/Aβ42 and pTau/Aβ42 ratios were signifi-
cantly associated with the PRS.noAPOE and PRS.adjLD 
values. These associations were basically maintained in 
all models (FDR < 0.05, Wald test; Table 4a and Fig. 2) and 
reflected the influences of tTau and pTau levels but not 
Aβ42 levels (Table S9).

To investigate the PRS effects to brain atrophy, we first 
tested the associations between the PRS and the vol-
umes of the entorhinal cortex and hippocampus. Hip-
pocampal volume showed a significant association with 
the PRSs in Model 1 that did not include APOE alleles, 
but this association did not remain significance after 
FDR correction (p value = 0.042 in the PRS.noAPOE, p 
value = 0.033 in the PRS.adjLD, Wald test; Table 4b). We 
investigated whether the PRSs contribute to the discrimi-
nation between the normal pattern (N1 pattern) and 
the AD pattern (P1 pattern) in FDG PET imaging and 
between negative and positive amyloid scans in PiB PET 
imaging. As a result, the PRSs were associated only with 
PiB PET imaging (p value = 0.024 in the PRS.noAPOE, p 
value = 0.030 in the PRS.adjLD, Wald test; Table 4c).

We also investigated the correlations between the PRSs 
and cognitive functions. The neuropsychological tests, 
including the ADAS-Cog, CDR-SB, FAQ, and MMSE, 
were significantly associated in all models (FDR < 0.01, 
Wald test; Table 4d).

We next stratified the participants into the CU, MCI 
and ADD groups and examined the association between 
the PRS.noAPOE or PRS.adjLD and each phenotype. Sig-
nificant positive correlations between the PRSs and CSF 
tTau/Aβ and between the PRSs and pTau/Aβ42 ratios 
were observed in only the MCI participants (FDR < 0.05, 
Wald test; Table  4a; Fig.  2). In contrast, these ratios 
remained stable or reached a plateau relative to the PRSs 
in the CU and ADD participants (Fig. 2), suggesting that 
the polygenic burden beyond APOE explains some of the 
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Table 4 Associations between PRS and AD-related phenotypes

Model 1
(Age, Sex, Education, PC1, PC2)

Model 2
(Age, Sex, Education, PC1, PC2, 
APOEε4)

Model 3
(Age, Sex, Education, PC1, PC2, APOEε4, 
APOEε2)

Beta (noAPOE, 
adjLD)

p value (noAPOE, 
adjLD)

Beta (noAPOE, 
adjLD)

p value (noAPOE, 
adjLD)

Beta (noAPOE, 
adjLD)

p value (noAPOE, 
adjLD)

4a CSF biomarker

All subjects

 tTau/Aβ42 0.167, 0.159 0.017a, 0.017a 0.149, 0.146 0.058, 0.053 0.163, 0.156 0.040a, 0.039a

 pTau/Aβ42 0.200, 0.168 0.004b, 0.011b 0.188, 0.154 0.013a, 0.033a 0.189, 0.155 0.013a, 0.032a

CU subjects

 tTau/Aβ42 -0.082, 0.204 0.804, 0.522 -0.050, 0.265 0.888, 0.435 -0.131, 0.194 0.717, 0.579

 pTau/Aβ42 -0.143, -0.010 0.488, 0.960 -0.134, 0.014 0.545, 0.948 -0.178, -0.029 0.430, 0.895

MCI subjects

 tTau/Aβ42 0.292, 0.277 0.025a, 0.032a 0.294, 0.290 0.043a, 0.043a 0.295, 0.292 0.044a, 0.044a

 pTau/Aβ42 0.363, 0.318 0.004b, 0.011a 0.396, 0.355 0.006a, 0.013a 0.396, 0.357 0.007a, 0.014a

ADD patients

 tTau/Aβ42 -0.054, -0.042 0.665, 0.703 -0.053, -0.043 0.682, 0.703 0.026, 0.006 0.854, 0.959

 pTau/Aβ42 0.066, 0.018 0.577, 0.866 0.070, 0.019 0.565, 0.862 0.084, 0.028 0.485, 0.796

4b Brain volume

All subjects

 Entorhinal -0.014, -0.024 0.776, 0.622 -0.008, -0.018 0.869, 0.714 -0.010, -0.019 0.836, 0.699

 Hippocampus -0.109, -0.115 0.042, 0.033 -0.101, -0.106 0.087, 0.073 -0.101, -0.106 0.088, 0.073

CU subjects

 Entorhinal 0.032, 0.024 0.512, 0.626 0.033, 0.024 0.509, 0.626 0.036, 0.033 0.495, 0.529

 Hippocampus 0.041, -0.010 0.758, 0.943 0.041, -0.010 0.760, 0.942 0.043, -0.016 0.754, 0.908

MCI subjects

 Entorhinal -0.355, -0.357 0.150, 0.156 -0.335, -0.344 0.180, 0.176 -0.332, -0.341 0.184, 0.180

 Hippocampus -0.064, -0.082 0.505, 0.407 -0.041, -0.071 0.694, 0.505 -0.043, -0.073 0.684, 0.497

ADD patients

 Entorhinal 0.108, -0.078 0.745, 0.811 0.084, -0.089 0.801, 0.788 0.112, -0.070 0.739, 0.832

 Hippocampus -0.043, -0.055 0.755, 0.688 -0.080, -0.072 0.574, 0.609 -0.069, -0.064 0.633, 0.652

4c PET imaging

All subjects

 FDG (positive) 0.180, 0.193 0.189, 0.149 0.162, 0.174 0.260, 0.218 0.162, 0.172 0.262, 0.224

 PiB (positive) 0.386, 0.359 0.024a, 0.030 0.446, 0.417 0.025a, 0.030 0.442, 0.412 0.027, 0.033
CU subjects

 FDG (positive) -0.119, -0.070 0.729, 0.839 -0.109, -0.064 0.753, 0.852 -0.109, -0.061 0.755, 0.860

 PiB (positive) 0.037, 0.068 0.923, 0.858 0.072, 0.221 0.874, 0.620 0.059, 0.194 0.899, 0.671

MCI subjects

 FDG (positive) 0.020, 0.053 0.942, 0.845 0.038, 0.077 0.892, 0.787 0.040, 0.076 0.888, 0.791

 PiB (positive) 0.201, 0.175 0.489, 0.552 0.299, 0.320 0.432, 0.407 0.303, 0.327 0.433, 0.405

ADD patients

 FDG (positive) -0.395, -0.232 0.357, 0.542 -0.390, -0.232 0.366, 0.545 -0.352, -0.195 0.417, 0.611

 PiB (positive) -0.716, -0.777 0.313, 0.196 -0.747, -0.935 0.314, 0.133 -0.716, -0.915 0.338, 0.146

4d Neuropsychological test

All subjects

 ADAS 0.171, 0.127 0.001b, 0.008b 0.163, 0.117 0.002b, 0.019a 0.164, 0.116 0.002b, 0.019a

 CDRSB 0.188, 0.167 6.29 × 10−5b, 
0.001b

0.182, 0.160 1.78 × 10−4b, 
0.003b

0.182, 0.160 1.84 × 10−4b, 0.003b

 FAQ 0.166, 0.168 3.93 × 10−4b, 
3.58 × 10−4b

0.159, 0.161 0.001b, 0.001b 0.159, 0.161 0.001b, 0.001b
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heterogeneity in MCI, especially in terms of tau-related 
biomarker.

APOE ε4 non‑carriers with high PRS are at high risk of AD 
conversion
Finally, we examined difference in conversion to AD in 
the participants with MCI stratified by PRS. We divided 
MCI participants into three groups based on the PRS.
noAPOE or PRS.adjLD distribution of all participants. 
We compared the conversion to AD of MCI participants 
in the 1st tertile, referred to as the low-PRS group, and of 
MCI participants in the 3rd tertile, noted as the high-PRS 
group. We performed Cox proportional hazard model 
analysis controlling seven covariates: age at baseline 
examination, sex, years of education, the first two PCs, 
and the doses of APOE ε4 and ε2 alleles. We did not find 
significantly different conversion patterns between the 
high- and low-PRS groups (p value = 0.202 in the PRS.
noAPOE, p value = 0.236 in the PRS.adjLD, log-rank test; 
Table 5a and Fig. 3).

When we examined the contribution of each vari-
able, we found that the dose of the APOE ε4 allele sig-
nificantly affected the conversion to AD (HR = 1.604, 
95% CI = 1.153–2.230, and p value = 0.005 in the PRS.
noAPOE; HR = 1.560, 95% CI = 1.102–2.209, and p 
value = 0.012 in the PRS.adjLD, Wald test; Table  5a), 

suggesting that this difference in conversion between the 
two PRS groups was influenced by the APOE ε4 allele 
dose. Therefore, we stratified MCI participants into 
those with and without APOE ε4. In that analysis, we 
found that in the PRS.noAPOE, among MCI participants 
without APOE ε4, the high-PRS group showed a signifi-
cantly higher conversion to AD than the low-PRS group 
(p value = 0.031, log-rank test; Table  5a and Fig.  3A). 
Moreover, the PRS.noAPOE significantly contributed to 
the difference in AD conversion between the two groups 
(HR = 2.216; 95% CI = 1.058–4.643; p value = 0.035, 
Wald test; Table 5a). We also found no difference in AD 
conversion among MCI participants with APOE ε4 (p 
value = 0.292, log-rank test; Table 5a and Fig. 3A). In the 
PRS.adjLD, no significance was observed (Table  5b and 
Fig.  3B). These results suggested that polygenic effects 
increase the risk of AD conversion, particularly in MCI 
subjects without APOE ε4.

On the other hand, in APOE ε4 carriers, a single factor, 
namely, APOE ε4, may explain much of the AD conver-
sion risk. As expected, there was no significant difference 
between the APOE ε4 noncarrier group with high-PRS 
and the APOE ε4 carrier group (p value = 0.595 in the 
PRS.noAPOE, p value = 0.345 in the PRS.adjLD, log-
rank test; Figure  S4). Although age differences between 
the groups compared in the above analysis could have 

Table 4 (continued)

Model 1
(Age, Sex, Education, PC1, PC2)

Model 2
(Age, Sex, Education, PC1, PC2, 
APOEε4)

Model 3
(Age, Sex, Education, PC1, PC2, APOEε4, 
APOEε2)

Beta (noAPOE, 
adjLD)

p value (noAPOE, 
adjLD)

Beta (noAPOE, 
adjLD)

p value (noAPOE, 
adjLD)

Beta (noAPOE, 
adjLD)

p value (noAPOE, 
adjLD)

 MMSE -0.160, -0.149 0.001b, 0.002b -0.152, -0.141 0.002b, 0.005b -0.152, -0.141 0.002b, 0.005b

CU subjects

 ADAS -0.118, 0.045 0.592, 0.837 -0.119, 0.045 0.591, 0.837 -0.111, 0.057 0.617, 0.795

 CDRSB -1.178, -0.835 0.152, 0.305 -1.208, -0.883 0.152, 0.290 -1.217, -0.896 0.150, 0.284

 FAQ 0.291, 0.359 0.473, 0.368 0.294, 0.359 0.470, 0.369 0.287, 0.349 0.483, 0.385

 MMSE -0.153, -0.228 0.454, 0.258 -0.153, -0.229 0.459, 0.258 -0.140, -0.212 0.503, 0.303

MCI subjects

 ADAS 0.194, 0.193 0.098, 0.107 0.176, 0.185 0.147, 0.136 0.182, 0.192 0.133, 0.123

 CDRSB 0.146, 0.162 0.289, 0.251 0.144, 0.160 0.297, 0.256 0.149, 0.166 0.280, 0.241

 FAQ 0.119, 0.145 0.239, 0.161 0.121, 0.146 0.233, 0.159 0.118, 0.143 0.246, 0.168

 MMSE -0.065, -0.062 0.604, 0.626 -0.055, -0.056 0.661, 0.664 -0.045, -0.046 0.720, 0.722

ADD patients

 ADAS -0.048, -0.026 0.719, 0.844 -0.057, -0.029 0.671, 0.824 -0.057, -0.029 0.672, 0.826

 CDRSB 0.102, 0.063 0.290, 0.501 0.109, 0.066 0.260, 0.485 0.097, 0.060 0.318, 0.528

 FAQ 0.078, 0.056 0.327, 0.472 0.093, 0.062 0.248, 0.430 0.088, 0.060 0.275, 0.450

 MMSE 0.036, 0.045 0.794, 0.734 0.031, 0.044 0.823, 0.746 0.033, 0.045 0.810, 0.740

β estimates and p value were calculated by a linear regression model. P value was corrected in each subject group. Statistically significance was highlighted in bold
a FDR < 0.05
b FDR < 0.01
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affected the results, there were no differences in age at 
baseline examination between the low- and high-PRS 
groups or between the converted and nonconverted par-
ticipants (p value > 0.05, Wilcoxon rank-sum test; Fig-
ure S5). These results suggest that the PRS contributes to 
the conversion to AD in participants without APOE ε4.

Discussion
In this study, we evaluated the utility of the PRS for AD 
in a Japanese cohort. The results showed that the PRS 
had an effect independent of APOE and showed rela-
tively high predictive accuracy when combined with 
APOE ε4. In addition, this effect was replicated in the 

Fig. 2 The PRS.noAPOE and PRS.adjLD correlated with CSF Tau/Aβ42 ratios in the MCI. CSF tTau/Aβ42 (A, C) and pTau/Aβ42 (B, D) ratios by decile 
of PRS are shown in each diagnostic group. The participants were divided into ten groups based on the PRS.noAPOE, ranging from the lowest group 
(1st decile) to the highest group (10th decile). CN = cognitively normal; MCI = mild cognitive impairment; ADD = Alzheimer’s disease dementia
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cohort with a neuropathological diagnosis and the pro-
tocol-harmonized independent NA-ADNI cohort. The 
PRS was significantly associated with CSF tau levels in 
MCI participants, and MCI with a high PRS was associ-
ated with an elevated risk of AD conversion in APOE ε4 
noncarriers.

Despite the difference in genetic structure between 
the European and Japanese populations [39], the PRS 
developed in this study, PRS.noAPOE, showed meaning-
ful predictive accuracy. We also developed PRS.adjLD, 
which avoids overfitting due to differences between 
European and Japanese LD blocks, and showed that PRS.
adjLD had similar accuracy. Such predictive accuracy 
may be achieved because all participants were diagnosed 
according to unified inclusion and exclusion criteria and 
harmonized standardized diagnostic criteria using the 
same neuropsychological tests (MMSE, CDR-SB, and 
Wechsler Memory Scale Logical Memory II). The opti-
mal p value threshold for the PRS excluding the APOE 
region was also similar to that reported in previous stud-
ies, pT < 1 ×  10−5 [5, 10, 40]. Moreover, while dozens of 

SNPs were incorporated into these previous PRSs, 131 or 
113 SNPs were included to calculate the PRS in our study. 
This difference in the number of SNPs is likely due to dif-
ferences in genetic structure such as LD blocks. Hence, 
even if there are ancestral differences, adding a few dozen 
SNPs may preserve accuracy.

We also examined potential overfitting due to differ-
ences in LD between European and Japanese populations, 
which may cause a small reduction in predictive accu-
racy. On the other hand, it is possible that SNPs in the 
same LD in Japanese are independent (i.e. linkage equi-
librium) in European population. In this case, underfit-
ting may occur and the actual predictive accuracy may be 
underestimated. To solve this issue, a larger AD GWAS 
data derived from Japanese population will be needed, 
and this warrants further investigation.

There is no consensus on the number of SNPs that 
should be included in the AD PRS. According to a sys-
tematic review of PRS studies in AD, PRSs of AD can be 
organized into two groups: PRSs containing relatively 
large numbers of SNPs, ranging from 4431 to 359,500, 

Table 5 Polygenic risk of conversion of MCI to AD

Abbreviations: HR Hazard ratio, 95% CI 95% confidence interval, APOE apolipoprotein E

Cox proportional hazard model: Conversion/follow-up = PRS (Low = 0, High = 1) + Age + Sex (Female = 0, Male = 1) + Education year + PC1 + PC2 + APOE ε4 
alleles + APOE ε2 alleles

HR, 95% CI, and p-value were calculated by a Cox proportional hazard model controlling age at examination, sex, education years, the first two PCs, and the doses of 
APOE ε4 and ε2 alleles. Statistically significant was highlighted in bold

5a PRS.noAPOE

All MCI subjects MCI subjects without APOE ε4 MCI subjects with APOE ε4

HR 95% CI p value HR 95% CI p value HR 95% CI p value

PRS (High group) 1.301 0.847–1.998 0.230 2.216 1.058–4.643 0.035 0.985 0.770–1.259 0.902

Age 1.070 0.846–1.353 0.574 1.069 0.725–1.578 0.736 0.961 0.687–1.344 0.816

Sex (Male) 0.858 0.532–1.383 0.529 0.589 0.257–1.353 0.212 0.983 0.539–1.793 0.956

Education year 0.791 0.605–1.035 0.087 0.745 0.452–1.229 0.249 0.856 0.610–1.202 0.37

PC1 0.939 0.769–1.146 0.534 0.769 0.541–1.093 0.143 1.034 0.795–1.343 0.806

PC2 0.954 0.753–1.209 0.697 1.028 0.713–1.481 0.884 0.900 0.647–1.251 0.529

APOE ε4 alleles 1.604 1.153–2.230 0.005 NA NA NA 1.108 0.516–2.382 0.793

APOE ε2 alleles 1.447 0.440–4.755 0.543 1.665 0.492–5.635 0.412 NA NA NA

Log-rank test (high vs low PRS) 0.202 0.031 0.292

5b PRS.adjLD

All MCI subjects MCI subjects without APOE ε4 MCI subjects with APOE ε4

HR 95% CI p value HR 95% CI p value HR 95% CI p value

PRS (High group) 1.161 0.752–1.792 0.500 1.547 0.727–3.296 0.258 1.030 0.812–1.305 0.809

Age 1.137 0.902–1.433 0.278 1.251 0.819–1.912 0.301 1.011 0.742–1.379 0.943

Sex (Male) 0.736 0.445–1.219 0.234 0.571 0.234–1.394 0.219 0.808 0.425–1.538 0.516

Education year 0.927 0.714–1.205 0.573 0.873 0.531–1.435 0.592 0.962 0.689–1.344 0.821

PC1 0.909 0.738–1.119 0.368 0.682 0.460–1.011 0.057 1.042 0.801–1.355 0.758

PC2 0.927 0.733–1.173 0.529 1.006 0.697–1.452 0.975 0.910 0.663–1.249 0.558

APOE ε4 alleles 1.560 1.102–2.209 0.012 NA NA NA 1.201 0.543–2.658 0.651

APOE ε2 alleles 0.708 0.169–2.965 0.636 0.709 0.163–3.085 0.647 NA NA NA

Log-rank test (high vs low PRS) 0.236 0.174 0.650
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and PRSs containing relatively small numbers, ranging 
from 5 to 31 [41]. The latter group is referred to as the 
oligogenic effect, in contrast to the polygenic effect [42]. 
From this perspective, our PRS apparently represents an 
oligogenic effect. Notably, a relatively small number of 
SNPs has the advantage of providing an inexpensive gene 
panel. In addition, a PRS composed of many SNPs may be 
sensitive to geographic differences in genetic structure, 
whereas a PRS composed of a few dozen SNPs is robust 
to population bias [43, 44]. However, we should note that 
our PRS may reflect ancestral differences due to the use 
of European GWAS statistics. In the future, more robust 
polygenic effects could be verified by using GWAS sta-
tistics for large groups of East Asians, including Japanese 
individuals.

In our study, the genes contributing to the PRS.noA-
POE or PRS.adjLD were associated with APP degra-
dation, immunity, and glial cell proliferation. Genetic 
variants found in a recent AD GWAS were associated 
with the APP catabolic process and tau protein binding 

[45]. In addition, many of the genes affected by their 
genetic variants are expressed in microglia [45]. An anal-
ysis of cognitively healthy centenarians in addition to 
ADD patients and healthy controls revealed that the PRS 
associated with the immune system was lower in the cen-
tenarian group independent of APOE ε4, indicating that 
immune system function is involved in AD resistance 
[46]. Therefore, our results suggest that common factors 
related to AD may be shared in the vulnerability of clear-
ance mechanisms and neuroimmune surveillance in the 
brain among different population.

In our study, the PRS.noAPOE and PRS.adjLD showed 
significant correlations with CSF tTau/Aβ42 and pTau/
Aβ42 ratios only in individuals with MCI. Tau but not 
Aβ42 strongly influenced this result even controlling 
APOE effect. CU and AD are relatively homogeneous in 
terms of AD-related biomarker changes. However, MCI 
is a heterogeneous condition, in which CSF biomarkers 
are highly variable with dynamic changes. Because of 
this variation in CSF biomarkers, significant correlations 

Fig. 3 The high-PRS group was more likely to convert to AD than the low-PRS group in the APOE ε4 non-carrier individuals with MCI. Kaplan–Meier 
survival curves for conversion rates of MCI to AD in the low-PRS group (1st tertile) and the high-PRS group (3rd tertile). The shaded area represents 
the 95% confidence interval
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with PRS were observed in MCI group. Interestingly, 
NA-ADNI studies have shown that the PRS is associated 
beyond APOE with CSF tau but not CSF Aβ42 [44, 47]. 
From the above, independent studies in different ancestry 
groups have confirmed that polygenic effects are associ-
ated with tau-related biomarkers, especially in individu-
als with MCI.

Although our results are noteworthy, we must 
approach the clinical application of our PRS with cau-
tion at this stage because the predictive accuracy of our 
PRS alone is not very high. Similar to currently available 
PRSs, few biomarkers can perfectly distinguish disease or 
not; most markers bear some uncertainty. AD and MCI 
are explained not only by genetic aspects such as PRS, 
but also by anatomic aspects such as MRI and PET imag-
ing and biological aspects such as CSF biomarkers [48], 
suggesting that combining multiple biomarkers could 
compensate for each other’s weaknesses in predictive 
performance. PRS will allow individuals’ disease risk to 
be assessed at a relatively early stage, leading to future 
lifestyle modification and disease prevention.

There were several limitations to this study. First, the 
CU participants included in the J-ADNI were relatively 
young. We acknowledge that these CU participants 
include potential patients who will develop AD in the 
future. Considering the average age of onset of AD and 
the allele frequency of APOE ε4 in the Japanese popula-
tion, future work should ideally include CU participants 
that are over 70 years old [49]. Second, because the num-
ber of participants available for the study was small, there 
was limited power to identify relationships between the 
PRS and some phenotypes. Larger studies are needed 
to validate the results of this study. Therefore, combin-
ing samples from multiple East Asian cohorts, including 
cohorts from Japan, is necessary for analysis.

Conclusion
This study demonstrated that the AD PRS showed a 
relatively high performance in the Japanese population, 
despite differences in genetic structure from the Euro-
pean population. Furthermore, this PRS was replicated in 
the independent Japanese and European cohorts. The AD 
PRS correlated with phenotypes such as CSF tau levels in 
MCI. The AD PRS predicted the development of AD in 
MCI participants without APOE ε4. The application of 
the PRS will allow us to know an individuals’ disease risk 
at a relatively early life stage, which may lead to future 
lifestyle modification and disease prevention.
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man correlation. Sex and doses of APOE ε4 and ε2 alleles were analysed by 
t tests or ANOVAs. CN = cognitively normal; MCI = mild cognitive impair-
ment; ADD = Alzheimer’s disease dementia. Figure S3. Associations 
between the PRS.adjLD and covariates. Age at examination and years of 
education were examined by Spearman correlations. Sex and dose of 
APOE ε4 and ε2 alleles were analysed by t tests or ANOVAs. Figure S4. 
Comparison of AD conversion between the APOE ε4 carriers and the APOE 
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with high PRS values. p-values were calculated by log-rank test. Figure S5. 
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