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ABSTRACT
Articular cartilage is a common cartilage type found in a multitude of joints throughout the human 
body. However, cartilage is limited in its regenerative capacity. A range of methods have been 
employed to aid adults under the age of 45 with cartilage defects, but other cartilage pathologies 
such as osteoarthritis are limited to non-steroidal anti-inflammatory drugs and total joint arthro-
plasty. Cell therapies and synthetic biology can be utilized to assist not only cartilage defects but 
have the potential as a therapeutic approach for osteoarthritis as well. In this review, we will cover 
current cell therapy approaches for cartilage defect regeneration with a focus on autologous 
chondrocyte implantation and matrix autologous chondrocyte implantation. We will then discuss 
the potential of stem cells for cartilage repair in osteoarthritis and the use of synthetic biology to 
genetically engineer cells to promote cartilage regeneration and potentially reverse osteoarthritis.
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Introduction

Articular cartilage (AC) is a specialized cartilage 
found in many joints of the body such as the 
knees and hips. Particularly, in the knee joint, 
the cartilage functions to facilitate and support 
the movement between the tibia and the femur 
and distributes force during mechanical load.1 

Avascular and anural in nature, the AC is com-
posed primarily of water and extracellular 
matrix (ECM) proteins secreted by chondro-
cytes, the primary cell type of the cartilage.1,2 

Chondrocytes produce ECM proteins, most 
abundantly aggrecan and collagen type II along 
with other proteoglycans.3,4 The cartilage ECM 
is essential for proper cartilage functionality and 
biomechanical properties, yet chondrocytes are 
limited in their regenerative capacity.4 

Furthermore, there are multiple tissue compo-
nents of the knee joint that assist with cartilage 
maintenance, such as the synovium and infra-
patellar fat pad.3 The synovium plays an invalu-
able role by providing nutrients and lubricating 
the cartilage,5 and the infrapatellar fat pad sup-
ports and cushions the cartilage during load.6 

Collectively, the bone, cartilage, fat pad, and 
synovium make up the knee-joint organ.

Cartilage pathologies can be mentally and physi-
cally debilitating and can lead to additional eco-
nomic burden.3 To date, there are not any FDA 
approved disease modifying drugs to treat cartilage 
pathologies such as osteoarthritis (OA), which is the 
11th global contributor to disability.7,8 Knee cartilage 
defects also known as cartilage lesions are common9,  

10 and can occur due to aging, obesity, mechanical 
injury, and gender.3 Cartilage lesions are associated 
with pain and loss of full mechanical function,10 and 
untreated cartilage defects have the potential to 
result in OA.11,12 Cell therapies are primarily used 
for cartilage defects such as autologous chondrocyte 
implantation (ACI) and matrix autologous chon-
drocyte implantation (MACI) which have been 
effective but are limited to patients under the age 
of 45. 38–47% of adults in the U.S. over the age of 60 
are predicted to have OA.11 Therefore, the treatment 
of cartilage defects prior to the onset of OA is vital. 
The current gold standard treatment for OA is total 
joint arthroplasty, but this is also not suitable to all 
patients.3,13 In this review, we will discuss the cur-
rent cell therapies for cartilage defects and OA, the 
potential of stem cells for cartilage regeneration, and 
finally, with a look at future perspectives of synthetic 
biology approaches to cartilage engineering.
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Cell therapies for cartilage regeneration

Microfracture and grafting: the current gold 
standards

Microfracture (MF) also known as marrow stimu-
lation, is used for cartilage defects less than 2 cm2. 
During this procedure, small portions of the sub-
chondral bone are penetrated allowing for 
a conduit between the bone marrow and the carti-
lage. Small holes are drilled into the bone beneath 
the defective cartilage, allowing for bone marrow 
stimulation and is depicted in Figure 1.14 Stem cells 
in the bone marrow assist with cartilage regenera-
tion and healing of the defect area.12, 15, 16 

However, MF focuses more on the repair of fibro-
cartilage rather than the actual regeneration of the 
hyaline cartilage.17,18 Patients that received MF 
have shown a decline in joint functionality after 
24 months of surgery. There is also still a concern 
that MF does not delay the eventual onset of OA.14 

Overall, the quality and repair of the cartilage fol-
lowing MF is variable and inconsistent,18 which is 
thought to be linked to the limited low number of 
stem cells that invade the damaged area following 
stimulation. The lack of standardization and clin-
ical follow ups for patients makes it difficult to 
track the success rate of MF repair and compare 
different clinical outcomes.18 

Other gold standard treatments involve the use 
of osteochondral grafts to repair larger (>2 cm2) 
lesions.19,20 Autografts are pieces of osteochondral 
tissue removed from a lesser loading bearing por-
tion of the joint and transferred into the lesion.15 

By physically filling the patients defect with healthy 
tissue, the hope is that the tissue will integrate into 
the damaged site, thus repairing the defect. 
Extensive clinical studies have demonstrated the 
efficacy of osteochondral autografts for defect 
repair following 10 years post operation, and 
a benefit of this procedure was reported to be 

Figure 1. Schematic summary of therapies for cartilage defect regeneration that are FDA approved and practiced in the clinic. 
Treatments like microfracture and autografts are the current gold standard for cartilage defect repair. ACI and MACI have reached FDA 
approval and can be used for large defect repair.
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rapid graft integration at the defect site.15 

Osteochondral autografts have demonstrated their 
own challenges such as limited tissue availability 
and donor site morbidity. Physiologically, the area 
of the knee joint associated with the lowest 
mechanical pressure is located at the lateral femoral 
trochlea or femoral notch and is the site where 
most plugs are derived. Based on plug size, contact 
pressures in the knee can contribute to donor site 
morbidity and pain, thus contributing to further 
complications for the patient.21 To mitigate donor 
site morbidity, an alternative technique known as 
mosaicplasty has been used, in which multiple, 
small plugs are harvested from a portion of heathy 
cartilage tissue and placed into small to medium- 
sized defect sites.22 The use of the patient’s own 
tissue and further damage to the knee joint is not 
ideal and further necessitates alternative strategies 
for defect repair. Figure 1 depicts the current treat-
ment methods for cartilage defect repair.

Other alternatives to autografts is osteochondral 
allografts which are commonly harvested from 
young donors within 24 h after death, but have 
a short shelf-life of 28 days and immunogenic 
concerns.20 Nonetheless, while these treatments 
have demonstrated clinical success, the feild of 
tissue engineering and regenerative medicine is to 
engineer approaches for cartilage regeneration to 
overcome these limitations. Within the past two 
decades, more research has been conducted on 
the use of xenografts for osteochondral defect 
repair. Here in, osteochondral plugs, from animals 
such as porcine knees are decellularized and have 
shown efficacy in preclinical and clinical studies as 
shown in Figure 2.19

The use of decellularized ECM has become more 
common in which it has been suggested that using 
the architecture of the native cartilage ECM has the 
potential to promote hyaline-like cartilage 
regeneration.23–25 The primary concern regarding 

Figure 2. Schematic summary of therapies currently in clinical trials for cartilage defect regeneration. Implanted therapies such as 
decellularized scaffolds and cell sheet technology are being used to promote cartilage regeneration and fill defects. Additionally, the 
MSC secretome and stromal vascular fraction from adipose tissue have been intra-articularly injected into the knee with the hope that 
the secretome from these cells will result in a therapuetic effect. A combination of the therapeutics such as decellularized ECM paired 
with the stromal vascular faction has also been investigated.
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xenotransplantation involves immunogenic rejec-
tion of the donor tissue. However, antigens that 
cause immune response in humans can be removed 
via the decellularization process. For example, the 
α-gal epitope is found on all cell surface compo-
nents of glycoproteins and glycolipids of all mam-
mals and is the primary contributor to transplant 
rejection and immune response in humans. 
Protocols removing the α-gal epitope have been 
standardized through the decellularization 
process.19, 20, 26 Therefore, the use of decellularized 
ECM for cartilage repair has become increasingly 
investigated.

Decellularization of porcine osteochondral 
xenografts for cartilage regeneration has reached 
preclinical and clinical studies. A study conducted 
by Kheir et al. demonstrated the removal of cells 
and the α-gal epitope in porcine xenografts that 
were then implemented in an in vivo mouse 
model.19 A different study from Adib et al. used 
decellularized osteochondral grafts from sheep 
femurs and combined it with the following biolo-
gical components: platelet-rich fibrin, amniotic 
membrane extract, or rabbit bone marrow- 
derived mesenchymal stromal cells. The ECM and 
biological combination groups were then used to 
treat osteochondral defects in rabbits. The regen-
eration of cartilage and bone in the ECM and 
amniotic membrane extract was determined to be 
the most efficacious.27 As demonstrated in this 
study, biologics can be combined with decellular-
ized scaffolds to promote hyaline cartilage 
regeneration.

More recent studies have used differentiated 
stem cells to form the cartilage ECM, decellularized 
it and integrated native chondrocytes into the 
decellularized scaffold. It has been noted that 
there is a pro-chondrogenic effect of decellularized 
matrices linked to glycogen synthase kinase-3 beta 
(GSK3β) pathway which is crucial for the regula-
tion of cell differentiation.28 Moreover, this study 
demonstrated the use of induced pluripotent stem 
cell (iPSC)-derived chondrocyte decellularized 
ECM as a potential matrix for cartilage regenera-
tion in chondral defects. Mechanistic analysis 
linked the pro-chondrogenic effects of the decellu-
larized matrix to the GSK3β- wingless-related inte-
gration site (WNT) signaling pathway.28 

Decellularized ECM, regardless of the source has 

become a more prevalent natural matrix used for 
cartilage tissue engineering and shows great poten-
tial as a cell-free therapeutic and is also depicted in 
Figure 2. In the next section, we will focus on 
scaffold-free and matrix chondrocyte-based thera-
pies for cartilage repair.

Chondrocyte therapies: a focus on autologous 
chondrocyte implantation

For the past two decades, more research has 
involved the injection of autologous chondrocytes 
to promote cartilage regeneration in patient 
defects. This is known as autologous chondrocyte 
implantation (ACI).29,30 ACI is a two-step method 
for addressing cartilage defects, typically larger 
than 2 cm2. The first step of this procedure is the 
isolation of chondrocytes from a specimen of 
healthy cartilage in a non-load bearing portion of 
the knee.15 These chondrocytes are then expanded 
in monolayer and injected back into the patient’s 
defect. The first generation of this technique used 
a periosteal patch to isolate the chondrocyte sus-
pension to the defect area.15, 29, 31 However, issues 
with chondrocyte hypertrophy, high re-operation 
and debridement rates necessitated the second gen-
eration of ACI.32

This new generation saw a shift in patch material 
from periosteal patch to a collagen type I and III 
porcine membrane.31,32 This method still required 
membrane suturing to the defect and resulted in 
some suspension leaking but it did prove to be 
more effective.15 The tissue maturation following 
ACI has been categorized into four stages: implan-
tation state (0–6 weeks after implantation), transi-
tion and proliferation stage (6–12 weeks), early 
maturation stage (12–26 weeks), and the late 
maturation stage (26 weeks- 3 years). During the 
implantation stage, the chondrocytes begin to 
migrate into the defect and then fill the defect and 
create soft cartilage in the transition and prolifera-
tion stage. Early maturation is considered the point 
at which chondrocytes begin to produce collage 
type II and aggrecan shifting from a primitive car-
tilage to a more solid cartilage. Lastly, during the 
late maturation stage, the new tissue has filled the 
defect area and cartilage reaches a hyaline-like 
status.31
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Despite some limitations of the device, ACI is an 
effective treatment method for cartilage lesions and 
poses benefits such as a lack of immunogenicity 
through the use of the patient’s own cells.29 

Chondrocyte leaking and overall integration into 
the cartilage prompted further improvement. The 
third generation of the ACI technique incorporated 
a matrix scaffold known as Matrix-Assisted 
Autologous Chondrocyte Implant (MACI)15, 31 to 
bolster chondrocyte viability and mimic the 
mechanical properties of the cartilage.15,30 More 
details regarding MACI will be discussed in the 
next section.

Chondrocyte therapies: matrix-assisted autologous 
chondrocyte implantation

MACI is one of the current and most common cell 
therapy approaches for cartilage defects which was 
approved by the FDA in 2016. Chondrocytes are 
isolated from patient cartilage, expanded, then 
seeded on a 3D matrix composed of a porcine 
collagen membrane.33,34 This established medical 
device incorporates both a matrix and cells for 
enhanced cartilage regeneration to fill cartilage 
defects. As chondrocytes are limited in availability 
throughout the knee the idea behind this device is 
to promote the integration of chondrocytes back 
into the native cartilage, thus filling the defect. 
MACI is applicable for a range of cartilage defects 
from single to multiple symptomatic defects.35 

Common chondral defects in the knee include: 
lateral femoral condyle, medial femoral condyle 
with and without damage to the bone, patellar, 
and trochlea defects.35

As mentioned previously, the most abundant 
ECM protein of the cartilage is type II collagen, 
however MACI is composed of type I/III 
collagen.14,29 The matrix portion of MACI is dual 
sided for multi-faceted integration into the knee; 
one side is equipped for cell adhesion and prolif-
eration while the other functions to decrease fric-
tion within the knee joint.10 To secure the matrix to 
the native cartilage a fibrin sealant is used. Similar 
to ACI, isolation of chondrocytes for MACI 
requires surgical intervention to extract a piece of 
healthy cartilage in which autologous chondrocytes 
are collected and expanded in monolayer.36 Once 
chondrocytes have been expanded, they are 

uniformly seeded using a uniform loading unit 
(ULU™) onto the porcine collagen membrane and 
cultured. The desired cell density on the matrix is 
500,000 to 1,000,000 cells per cm.2 When the 
desired cell density is reached MACI is sent to the 
location of surgery36 where a trained surgeon per-
forms a mini-arthrotomy and debrides the cartilage 
defect. The matrix is then cut to fit the shape of the 
defect and implanted into the knee with the cell 
seeded side facing the subchondral defect and the 
reduced friction side facing the joint exterior.29,36 

The autologous aspect of this study limits adverse 
immune response due to the use of the patient’s 
own cells and avoids concerns posed by stem cells, 
such as cost, immune response, and tumorgenicity. 
However, the need to biopsy healthy cartilage from 
patients for the isolation of chondrocytes limits this 
device. The integration of stem cells into this model 
could provide an unlimited cell source for cartilage 
regeneration, and no longer necessitate the addi-
tional surgery to isolate autologous chondrocytes. 
Additionally, MACI is limited to cartilage lesions 
and defects, and it is contraindicated for the use in 
patients with severe or inflammatory OA and 
under the age of 18 and over the age of 55.36 The 
target population for cartilage treatment are people 
over the age of 60. A range of 38–47% of adults over 
the age of 60 are predicted to have OA in the U.S., 
and that number is expected to rise with increase of 
the aging population.11

Chondrocyte therapies: cell sheets

Advances in tissue engineering have modified 
approaches like MACI and new methods such as 
cell sheet technologies. Cell sheets are being imple-
mented in the clinic for tissues such as the cornea,37 

myocardium,38 and esophagus.39 To form a cell 
sheet, cells can be cultured on thermally responsive 
tissue culture ware and removed via lowering the 
incubation temperature.40,41 A Common method-
for cell sheet culturing includes combining sheets 
together. For instance, Takahashi et al. expanded 
and combined three chondrocyte sheets and cul-
tured them together for an additional 7 days to 
create the layered sheet used for implantation.42 

Extensive in vivo work assessing the efficacy of 
chondrocyte cell sheets has been conducted in par-
tial cartilage defect rabbit models,43 osteochondral 
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defects in rats,44 rabbits,45,46 and minipigs.47 

Furthermore, investigations regarding performed 
tumorigenicity and the monitoring of genetic 
mutations and abnormal chromosome 
emergence48 have allowed for the application of 
cell sheet technology in clinical trials in Japan.49

In the clinical aspect, a study conducted by Sato 
et al. utilized conventional surgical intervention for 
the treatment of knee OA which was followed up 
with autologous chondrocyte sheet transplantation 
to promote cartilage repair. The study was con-
ducted using an eight-patient cohort and the suc-
cess of the therapy was monitored 12 moths post 
operation using arthroscopic biopsies. Patient 
biopsies underwent histological analysis and cell 
sheets were evaluated using gene expression analy-
sis to predict their clinical efficacy.50 MRI images 
were taken 36 months post operation. Images indi-
cated that there was cartilage regeneration in 
defected areas and knee alignment was maintained. 
Results from this study support the idea that auto-
logous chondrocyte sheets have the potential to 
support hyaline-like cartilage regeneration in 
human knee defects.50

Further advances in cell sheet engineering have 
begun to investigate different chondrocyte cell 
sources aside from autologous chondrocytes. 
A study conducted by Takao et al. used human 
iPSC-derived expandable limb-bud mesenchymal 
cells for chondrocyte sheet fabrication.51 Prior 

work from these investigators demonstrated the 
successful differentiation of human iPSCs into the 
induced limb-bud cells used in their current 
work.51,52 This study found that expandable limb- 
bud mesenchymal cells were functional and could 
produce engraftable chondrocyte sheets. The utili-
zation of stem cells for the generation of cartilage 
has become more prevalent at an attempt to over-
come the limitations of autologous chondrocyte 
expansion. In the next section, we will further 
expand upon the different stem cell therapies for 
cartilage repair.

Stem cell therapies

Stem cells are a common and abundant cell type 
for cell therapies in a multitude of organs and 
pathologies. In this section, we will discuss the 
use of stem cell therapies for cartilage defects 
and investigate stem cell therapies in OA. Aside 
from the patient’s native bone marrow-derived 
stem cells, other stem cell sources are being stu-
died as a cell therapy for cartilage regeneration. Of 
note, Table 1 describes the different cell sources 
and their advantages and limitations for cartilage 
regeneration. In this section, we will discuss 
mesenchymal stromal cells (MSCs), the MSC 
secretome, and iPSCs.

Table 1. Cell types for cartilage regeneration. A brief list of cell types, subtypes, sources and the advantages and disadvantages of 
each.

Cell Types Cell Subtypes Sources Advantages Limitations

Autologous  
Chondrocytes

None ● Patient cartilage53 ● No immunogenicity29

● Easeof procurement29
● Additional surgery53, 54

● Costly53, 54

● Complications 
regarding phenotype16, 55

Stem Cells Embryonic Stem Cells 
(ESCs)

● Human embryos56 ● Pluripotency57

● Unlimitedcell source58
● Ethical concerns55, 59

● Teratoma formation56

● immunogenicity55, 56

Induced Pluripotent Stem 
Cells (iPSCs)

● Blood60, 61

● fibroblasts56
● Pluripotency57

● Unlimited cell source55, 58

● No immunogenicity57

● In preclinical studies59

● Teratoma formation57

● Unsure of complete hyaline nat-
ure of cartilage29

Mesenchymal Stromal Cell 
(MSCs)

● Bone marrow62 (BMSCs)
● Adipose tissue62 (ADSCs)
● Umbilical Cord63

● Unlimited cell source16

● No immunogenicity53

● Immunomodulation for 
anti-inflammation63

● Variability of cell expansion due 
to aging64

● Phenotypic alterations during 
differentiation55, 64

● Intraarticular injection concern 
of “washout”53, 62

Synthetic Cells None ● Synthetically engineered 
chondrocytes65

● iPSCs66

● Personalized approaches  
via genetic manipulation67

● No immunogenicity68

● Unlimited cell source68

● Limited preclinical work has 
been conducted69

● Costly70

● Ethical concerns regarding the 
use of lentiviruses71
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Mesenchymal stromal cells
MSCs can be easily derived from the umbilical 
cord, bone marrow, adipose tissues, and have the 
ability to self-renew and differentiate into 
a multitude of tissues.16, 29, 72 More importantly, 
MSCs have the multipotent potential to differenti-
ate into both chondrocytes and bone allowing them 
to be used for chondral and osteochondral 
defects.12,29 Specifically, bone marrow derived 
MSCs (BM-MSCs) show potential for articular car-
tilage regeneration when paired with trophic fac-
tors such as transforming growth factor-beta 3 
(TGF- β3).73 Bioactive proteins from these MSCs 
have been shown to decrease T-cell activity in the 
damaged tissue and can act as a vehicle for ther-
apeutic effects.29,74 MSCs contain hypoimmuno-
genic and immunosuppressive properties allowing 
for allogenic MSCs to be used in human tissue 
without HLA matching.75 Other studies have 
found that MSCs aid chondrocytes with phenotype 
maintenance during in vitro expansion,76,77 sug-
gesting that the co-culture of MSCs and chondro-
cytes could be a new approach for MACI. Clinical 
studies using the intra-articular injection of bone 
marrow derived MSCs in OA patients have shown 
cartilage improvement and no serious effects.78–80 

There have been questions regarding effective cell 
density needed for a therapeutic effect. A meta- 
analysis conducted by Muthu et. Al investigated 
the current randomized controlled trials available 
in literature to assess the most effective range of 
MSCs used for the treatment of OA. Here in, 14 
studies including 564 patients were analysed and it 
was determined that the range of cell dose with the 
most therapeutic effect was 5-7×107 MSCs.81 The 
lack of standardization among clinical trials con-
tributes to the varying results of therapeutic effi-
cacy of stem cell treatment for OA. It has been 
recommended that dose-escalation clinical trials 
be conducted to better standardize the use of stem 
cells in the treatment of OA.81

Adipose tissue-derived MSCs also known as 
adipose-derived stem cells (ADSCs) have become 
increasingly investigated due to their ease of 
procurement and therapeutic effect. The intra- 
articular injection of ADSCs have been tested in 
clinical trials for OA as well and showed similar 
results to the bone marrow MSCs.82,83 These cells 
have demonstrated increased interest as 

a potential stem cell source for cartilage regen-
eration due to their ease of accessibility, 
increased proliferative potential, and anti- 
inflammatory traits.22 The isolation of ADSCs is 
minimally invasive and cells are easily isolated 
from subcutaneous fat.84 Additionally, ADSCs 
have low immunogenic reactivity due to the lim-
ited expression of immunogenic antigens such as 
CD40, CD40L, CD80, and CD86.85 A study con-
ducted by Lin et al. investigated the application 
of ADSCs in calcium-alginate hydrogel spheres 
and applied to a monosodium iodoacetate 
(MIA)-induced OA in vivo model in rats. 
Results from this study demonstrated increased 
walking performance of 3D- spheroid-culture 
ADSC treated rats compared to the 2D-culture 
ADSC treatment group. It was reported that the 
OA score was significantly reduced in the spher-
oid group as well.84 A clinical study using the 
intra-articular injection of autologous ADSCs 
demonstrated an improvement in pain, 
function and mobility in patients with severe 
knee OA.83 A meta-analysis comparing ADSCs 
and BM-MSCs found that ADSCs had 
a statistically significant and consistent improve-
ment of outcome measurements compared to 
BM-MSCs. It was noted by this study that adi-
pose tissue was a superior source of MSCs com-
pared to bone marrow for the treatment of knee 
OA.86 Other meta-analysis have suggested the 
same idea; ADSCs have had better functional 
outcomes for the treatment of knee OA.87 

However, further studies should be conducted 
to validate these findings.

The differentiation of ADSCs into chondrocytes 
has also been conducted. Studies have demonstrated 
a 21–28 day differentiation period and involves the 
incorporation of common chondrogenic growth 
factors such as TGF-β1 and TGF- β3, bone morpho-
genic proteins (BMPs), specifically BMP-4, sex 
determining region Y box 9 (SOX9), and basic 
fibroblast growth factor.88 Other studies suggest 
using the more heterogeneous adipose-derived stro-
mal vascular fraction (AD-SVF) which is mechani-
cally and/or enzymatically isolated from fat tissue. 
The AD-SVF poses a unique therapeutic potential 
and has been compared to microfracture in the 
sense that it consists of a plethora of cell types and 
paracrine factors that have been shown to stimulate 
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endogenous regenerative pathways.89 In regards to 
OA related research, there have been numerous 
clinical trials utilizing AD-SVF as an OA therapy.90

On the other hand, the treatment methods for 
OA using MSCs are hindered by phenotypic 
challenges.91 While still an abundant cell source, 
the procurement of a high cell yield from MSCs is 
a concern due to phenotypic changes of chondro-
cytes during long culture times.64 Furthermore, the 
replication of hyaline cartilage producing chondro-
cytes from MSCs has been a challenge,64 and MSC 
differentiation in vivo is also a concern.12 Further 
concerns about donor age and cell passage expan-
sion pose a great limitation to autologous stem cell 
procurement, necessitating the employment allo-
genic procedures.4

While MSCs possess the potential as a cell source 
for cartilage regeneration, they also secrete para-
crine factors such as cytokines, chemokines, and 
extracellular vesicles that are thought to promote 
healing and regeneration as well. Therefore, the 
MSC secretome has gained interest as a potential 
cell-free therapy, not only for cartilage regenera-
tion but in the cardiac field too.92,93 Extensive 
proteomic studies have shown that MSCs secrete 
50–100 nm extracellular vesicles, namely exo-
somes, that provide a therapeutic effect to damaged 
tissues.94,95 A study conducted by Zhang et al. iso-
lated human embryonic MSC-derived exosomes 
and performed weekly intra-articular injections to 
osteochondral defects in rats. Results depicted that 
after 12 weeks of exosome treatment defects had 
complete restoration of cartilage and subchondral 
bone with hyaline-like features compared to the 
fibrous tissues formed in the PBS controls.93

A different study by Zhu et al. investigated the 
difference between exosomes isolated from synovial 
membrane derived MSCs and iPSC-derived MSCs 
for the treatment of OA. In this work, they isolated 
exosomes from the respective cell sources and used 
intra-articular injection to study the exosomal 
effects in a collagenase-induced OA mouse model. 
Both cell sources produced a regenerative outcome. 
However, the iPSC-derived MSC exosomes demon-
strated a stronger effect based on macroscopic, his-
tological, and immunohistochemical analysis.96 

Lastly, a study conducted by Cosenza et al. investi-
gated a combination of exosomes and microparti-
cles. Microparticles express markers from the 

parental cells but are derived from cell membrane 
budding and still contain proteins, lipids, and 
nucleic acids.97,98 In this study, murine BM-MSCs 
were isolated and expanded. Microparticles and exo-
somes were isolated from the MSCs, and 
a collagenase-induced OA model was used in mice. 
The in vitro portion of this study investigated the 
role of these particles on chondrocyte homeostasis 
and macrophage polarization toward an anti- 
inflammatory phenotype. It was determined that 
the microparticles and exosomes were determined 
to promote a chondroprotective effect in the OA 
mice.98 Collectively, these studies suggest that the 
MSC secretome has the potential to promote carti-
lage regeneration in vivo, however, more work 
should be conducted to fully understand the 
mechanism in which the MSC secretome is able to 
promote regeneration prior to use in the clinic.99

Induced pluripotent stem cells
Similar to the pluripotent nature of embryonic 
stem cells, iPSCs are generated from somatic cells 
that undergo a de-differentiation process, first 
demonstrated by Shinya Yamanaka.100 Sources for 
iPSCs consist of the blood60, 61 and fibroblasts68 in 
which isolated cells are lenti-virally altered to 
express common embryonic markers such as octa-
mer-binding transcription factor 4 (Oct4), SRY- 
box 2 (Sox2), Kruppel-like factor 4 (Klf4), and 
c-myc.55 Further analysis of iPSCs have allowed 
for the creation of the iPSC library. This “library” 
allows for the procurement of iPSCs from multiple 
donor types allowing for the creation of iPSCs from 
homozygous donors matching a specific HLA, 
reducing the potential for immune rejection.68 As 
previously stated, iPSCs are pluripotent compared 
to the multipotency of MSCs, meaning that iPSCs 
can differentiate into any of the primary germ 
layers: ectoderm, mesoderm, and endoderm.71,100 

These cells possess high self-renewal potential 
making them an ideal cell source for hyaline 
cartilage.64,101 Since cartilage tissue falls within 
the mesodermal layer, iPSCs can first undergo dif-
ferentiation into mesenchymal progenitor cells 
(iMPCs) and then be differentiated into 
cartilage.71,101

There are limitations to the use of iPSCs/iMPCs: 
heterogenous cell populations following de- 
differentiation can lead to possible teratoma 
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formation, high costs, and the challenge of replicat-
ing the hyaline cartilage in vitro.29,102 Specifically, 
the cell yield from iPSCs can be variable and the 
expansion/differentiation time can be extensive 
and costly.103 Additionally, there are medical ethi-
cal concerns faced by iPSCs/iMPCs regarding the 
methods used to obtain the de-differentiation. 
Viral vectors such as retroviruses and lentiviruses 
alter the genome of the original cell, causing con-
cern for the ethical use of these genetically altered 
cells in the clinic. Infiltrating viruses effect the cell’s 
genome at random and can disrupt the function of 
the integrated genes and/or create genomic 
instability resulting in tumor formation.104 To 
avoid concerns regarding viral interference to the 
cell genome, a study conducted by Stadtfeld et al. 
was able to successfully create iPSCs without the 
use of viral integration through adenoviral 
reprogamming.105,106 Other methods consist of 
episomal vectors,107,108 Sendai viral vectors,109 

expression plasmids,110 and different 
mRNA’s.111,112 The primary limitation of these 
different methods is the transfection rate resulting 
in a heterogenous cell population. Further investi-
gation of complete reprogramming methods and 
additional aspects should be considered for 
a homogenous cell line of iPSCs.104,113

Despite the limitations mentioned, numerous 
studies have begun to investigate the differentiation 
of iPSCs into to cartilage in both in vitro and in vivo 
applications. There has yet to be a clearly estab-
lished protocol that differentiates iPSCs into hya-
line-like cartilage producing chondrocytes.114,115 

As mentioned before, it is common for a two-step 
differentiation process to occur when producing 
iPSC derived chondrocytes. First, the iPSCs 
undergo a mesodermal differentiation into iMPCs 
and from there a subsequent process occurs to 
induce chondrogenesis. The induction of the 
iMPCs into chondrocytes can be accomplished 
through growth factors such as TGF- β and 
BMPs.101 Fibroblast growth factors (FGFs) are 
also linked to chondrogenesis. FGF-18 anabolically 
regulates cartilage tissue, and FGF-2 plays a role in 
the maintenance of cartilage homeostasis.116 As 
mentioned previously, TGF- β has been widely 
used and is well known for its ability to induce 
chondrogenesis in stem cells.104,117 The TGF- β 
family is commonly expressed in cartilage tissue 

and has been closely studied with MSCs to promote 
chondrogenic differentiation in vitro. 118,119 In 
combination with other growth factors, TGF- β 
and BMP-2, the differentiation of collagen II pro-
ducing chondrocytes has been successful.118 Other 
studies have used platelet-derived growth factor - 
BB (PDGF-BB) in combination with TGF- β3 to 
begin the chondrogenic differentiation.120 These 
findings indicate that the use of stem cells such as 
iMPCs can be used to successfully create type II 
producing chondrocytes in vitro.

Common methods for chondrogenesis in iPSCs 
is the creation of embryoid bodies. Embryoid 
bodies are aggregates of pluripotent stem cells 
that can differentiate into the three germ 
layers.104,121 Embryoid bodies can undergo chon-
drogenesis. Once chondrogenesis is complete, they 
can be injected or implanted into the knee cartilage 
defect as demonstrated by Zhu et al.103 In this study 
OA was induced in rats with MIA injection. After 
1 week of MIA administration, 500 uL of differen-
tiated iPSCs were injected into the knee at a cell 
suspension density of 1 × 106 cells/mL. This study 
used a three-step differentiation method of iPSCs, 
first into embryoid bodies, pre-induction of 
embryoid bodies in suspension culture and then 
the outgrowth of the cells on tissue culture dishes. 
Chondrogenic induction medium included ascor-
bic acid 2-phosphate, L-proline, dexamethasone, 
and TGF- β1.103 Other studies have used micro-
mass or pellet culture to determine the efficacy of 
iPSC derived chondrocyte production of articular 
cartilage.61,122 In a study performed by Lee et al. 
mesoderm-derived cells and neural-crest derived 
cells were pelleted and underwent 21 days of chon-
drogenesis then implanted into mice for 30 days for 
ectopic hyaline cartilage generation. These pellets 
were also observed in rats to repair osteochondral 
defects. It was demonstrated that the neural crest 
derived chondrocytes showed phenotypic similari-
ties consistent with hyaline cartilage chondrocytes 
during osteochondral defect regeneration.120

A unique approach to iPSC chondrogenesis was 
the use of mechanical stimulation. In the native 
knee joint chondrocytes often experience mechan-
ical load which induces various stress and strains 
on the cartilage. A study conducted by Limraksasin 
et al. investigated mechanical shaking of 3D mouse 
iPSC constructs that were undergoing 
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chondrogenic induction. Constructs were differen-
tiated for 3 days in static culture and cultured then 
for 17 days on a see-saw shaker. Results from this 
study indicated that mechanical stimulation signif-
icantly promoted cell aggregation and showed 
higher expression of chondrogenic-related genes 
compared to static culture counterparts. It was 
also determined that the shaken group demon-
strated activation of the TGF- β signaling pathway 
which plays an essential role in cartilage 
development.123 A different study by Aisenbrey 
et al. incorporated dynamic loading and growth 
factors to promote chondrogenic differentiation 
in iMPCs encapsulated in a hydrogel.114 iMPCs 
were encapsulated in a poly(ethyleneglycol), chon-
droitin sulfate, and adhesion peptide RGD hydro-
gel and TGF- β3 and BMP-2 were used to promote 
chondrogenesis. Dynamic compression occurred 
for three weeks with hydrogels cultured in custom 
bioreactors which were “subjected to intermittent 
unconfined dynamic compressive strains applied at 
5% peak to peak strain (2.5% amplitude strain) at 1  
Hz in a sinusoidal waveform one hour daily and 
with 23 hours of rest under a tare strain of <  
0.1%.”114 Results indicated that dynamic compres-
sion in hydrogels supported chondrogenesis with 
limited hypertrophic gene expression only when 
TGF- β3 was administered. In groups lacking 
TGF- β3, there was an upregulation of collagen 
type X, which is indicative of a hypertrophic state. 
It was noted that the iMPCs indicated a transition 
into a hypertrophic phenotype prior to encapsula-
tion, and following encapsulation became rapidly 
more hypertrophic.114 Moreover, the study from 
Limraksasin et al. and Aisenbrey et al. demonstrate 
the importance of mechanical stimulation for 
chondrogenesis and provide insight on its role in 
the promotion of hyaline-like cartilage producing 
chondrocytes derived from iMPCs.

It has been thought that iPSCs have epigenetic 
memory and despite their de-differentiation can 
still retain a memory of their native state. This 
memory is thought to be related to DNA methyla-
tion and histone modifications at lineage-specific 
genes.124 A recent study conducted by Khan et al. 
investigated articular chondrocytes as the cell 
source of iPSCs and compared healthy (AC- 
iPSCs) and OA-derived (OA-iPSCs). The goal of 
this study was to assess the chondrogenic potential 

of healthy and diseased chondrocyte-derived iPSCs, 
and whether the initial pathological state greatly 
alters their differentiation capacity. Results deter-
mined that the AC-iPSCs had increased chondro-
genic potential compared to OA-iPSCs. The OA- 
iPSCs did retain alterations in metabolic factor pro-
duction and epigenetics that correlated with 
a diseased chondrocyte state. Here in, it was deter-
mined that epigenetic memory has the potential to 
influence regenerative capacity and chondrogenic 
commitment.124 The genomic analysis of iPSC 
chondrogenesis has been investigated by Wu et al. 
in which single cell transcriptomic analysis of 
human iPSCs was employed throughout the differ-
entiation of hiPSCs to map the genomic changes 
that occur during the differentiation process. This 
study determined that the WNT and melanocyte 
inducing transcription factor (MITF) genes were 
related to off target differentiation into neural cells 
and melanocytes during the chondrogenic differen-
tiation process.115 It was found that the inhibition of 
WNT also prevents chondrocyte hypertrophy and 
limits the differentiation of off target cell popula-
tions during iPSC chondrogenesis.115

Tissue engineers are working toward developing 
methods for 3D bioprinting scaffold-free cartilage 
constructs for cartilage regeneration.120 A study 
conducted by Nakamura et al. used iPSC derived 
neural crest cells and induced them into an MSC- 
like state. The cells were differentiated and shaped 
into spheroids that were used in the bioprinting. 
This study used the bioprinter to construct differ-
ent shapes such as tubes, L-shape, and a surface 
shape designed to mimic the shape of the articular 
surface.120 While these methods have yet to be 
implemented in the clinic, further research is 
being conducted with iPSCs for cartilage defect 
regeneration.120 iPSCs can be applied to persona-
lized medicine as they can be derived from the 
patient themselves limiting immune response.55 

However, understanding the complexities asso-
ciated with iPSC differentiation into chondrocytes 
must be done prior to implementation in the clin-
ical setting to avoid ethical concerns.

Understanding the multiple aspects of OA and 
preexisting joint disease is necessary for patient- 
based therapy development. Moreover, under-
standing the cause of the patient’s OA such as 
mechanical joint failure, inflammatory stresses, 
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and metabolic stress can elucidate the best method 
of treatment for these patients. The lack of under-
standing in the regenerative cascade of cartilage 
regeneration has led to inconsistencies in treatment 
approaches and therefore inconsistent outcomes.99 

It has been suggested in order to mitigate these 
outcomes, future trials should test specific hypoth-
eses and focus on the mechanistic understanding of 
cartilage biology and regeneration in order to pro-
vide valuable information for the development of 
the treatments.99

Future directions: potential of synthetic biology 
for cartilage regeneration

In other disease states such as cancer, cells have 
been actively engineered using synthetic biology to 
target specific receptors. For instance, chimeric 
antigen receptor T-cells (CART-cells) have been 
engineered to target tumor associated antigen 
receptors.125,126 In the case of the aging population 
with relation to OA, there is i) a lack of 

chondrocyte regenerative potential127 and ii) the 
common onset of cellular cell cycle arrest known 
as senescence, which induces a chronic low-grade 
state of inflammation through the onset of the 
senescence associated secretory phenotype 
(SASP).128 It is possible to employ synthetic appli-
cations to increase chondrocyte regenerative 
potential and create therapeutic processes through 
synthetic genetic networks essentially creating an 
“engineered chondrocyte” as shown in Figure 3.

Studies exist focusing on synthetic gene circuits 
to engineer cells to respond to intracellular signals 
for the creation of cell-secreted therapeutics. For 
example in a study conducted by Nims et al. used 
the activation of transient receptor potential vanil-
loid receptor 4 (TRPV4) to drive synthetic gene 
circuits in chondrocytes resulting in the produc-
tion of anti-inflammatory molecule interleukin 
receptor antagonist (IL-1Ra).65 Moreover, this 
study provides insight on the efficacy of syntheti-
cally engineered chondrocytes and their potential 
as a source for cell therapy in OA. Another study 

Figure 3. The multiple cell therapies for cartilage repair. This schematic depicts the multiple cell types and uses for cartilage defect 
repair. Here, we begin with autologous chondrocytes as seen in ACI and MACI. Then we move to stem cells, primarily MSCs and iPscs, 
which can be differentiated into chondrocytes and used in IA injection and matrices. The future of cell therapy focuses primarily with 
synthetically engineered chondrocytes or stem cell-derived chondrocytes for cartilage regeneration.
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conducted by Wu et al. investigated the regulatory 
pathways associated with iPSC chondrogenesis and 
determined that inhibiting WNT pathway signal-
ing in human iPSCs might reduce the heterogene-
ity of iPSC chondrogenesis. Using a WNT inhibitor 
and bioinformatics, they were able to determine 
that WNT inhibition does result in better iPSC 
chondrogenesis.115 The unique features of syn-
thetic biology can be extended into multiple cell 
types such as MSCs. Huynh et al. genetically altered 
MSCs to optimize chondrogenesis and osteogen-
esis using short hair pin RNA and lentiviral vectors. 
In this study, they demonstrate the ability to engi-
neer cells to optimize differentiation potential in 
a biomaterial-based scaffold.129 These studies 
demonstrate the potential of synthetic biology for 
cell therapy and tissue engineering.

Synthetic biology can also be used to address the 
concerns associated with off-target differentiation 
of iPSCs. One of the primary limitations of iPSCs 
was the lack of a standardized protocol for chon-
drogenesis. In order to address this limitation, 
a study by Adkar et al. used CRISPR-Cas9 genome 
editing to create a reporter for the stepwise analysis 
of iPSC chondrogenesis. Through the creation of 
a collagen type II alpha 1 chain- green fluorescent 
protein (COL2A1-GFP) knock-in reporter, the 
chondrogenesis of three different human iPSC cell 
lines could be tracked throughout the differentia-
tion process. The goal of this study was to observe 
iPSC chondrogenesis with hopes of understanding 
different methods to create a homogeneous carti-
lage matrix devoid of off target cell populations. 
Because collagen type II is the primary collagen 
type associated with the production of hyaline car-
tilage, the use of the COL2A1-GFP reporter allows 
for the precise monitoring of COL2A1 expression 
throughout the chondrogenesis process and aids in 
the purification process of chondrocytes during 
iPSC chondrogenesis.130

A different study used CRISPR/Cas9 to delete 
the collagen type X alpha 1 chain gene (COL10A1) 
in iPSCs to investigate the role of COL10A1 in 
chondrocytes. Here, Kamakura et al. established 
iPSCs with heterozygous (COL10A1 +/−) or homo-
zygous (COL10A1 −/−) deletions of COL10A1. This 
study focused on the growth plate and hyper-
trophic chondrocytes. Chondrocytes undergoing 
hypertrophy are thought to be a source of 

osteogenic cells.131,132 Collagen type X is a marker 
of chondrocyte hypertrophy. The knockout of 
COL10A1 in human iPSCs demonstrated that the 
loss of function of COL X does not affect hyper-
trophic differentiation of chondrocytes or endo-
chondral bone formation, but may contribute to 
the differentiation process of iPSC derived 
chondrocytes.133 While this study focused on the 
growth plate rather than hyaline cartilage, it still 
demonstrates the use of synthetic approaches to 
promote chondrogenesis in stem cells. Here in, 
we can utilize synthetic biology approaches to engi-
neer chondrocytes and stem cells through CRISPR/ 
CAS9 for increased cartilage regeneration and 
repair.67,69 Harnessing the inherent potential of 
the cell to optimize the regeneration of a specified 
tissue might be the forefront of tissue engineering.

A common concern regarding iPSCs was the 
medical ethical considerations of using lentiviruses 
and retroviruses and potential alterations to the 
cell’s genome. It is understood that the use to 
synthetic biology in the clinical setting could also 
raise the same ethical concerns. However, extensive 
studies must occur prior to the application of syn-
thetic cells in the clinical setting, as well as the 
approval of all cell-based therapeutics in general. 
For example, CART-cells are genetically engi-
neered cells that have shown success in treating 
cancers. The employment of synthetic approaches 
might face some regulatory challenges before their 
approval in the clinical setting, but with extensive 
studies demonstrating the safety and efficacy of 
synthetic cells in pre-clinical and clinical trials 
there is still hope that these approaches might 
make reach FDA approval. With any medical 
device development there will be challenges and 
setbacks, but the evolution of the scientific field 
necessitates growth and development.

Conclusion

In this review, we discussed the current clinical 
approaches for cartilage regeneration, primarily in 
patients under the age of 45. ACI and MACI have 
demonstrated success for cartilage defects but are 
limited in the breadth of patients that are eligible 
for this procedure. Additionally, there are not any 
current DMOADs that have reached FDA approval 
and stem cell therapies for patients with OA are 
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still in early-stage clinical trials. Understanding the 
effects of the preexisting joint pathology is neces-
sary to develop therapies. Stem cells such as MSCs 
and iPSCs are an unlimited cell source for cartilage 
regeneration but come with their own limitations 
such as cost, ethical and phenotypic challenges. 
Employing synthetic biology techniques for 
enhanced cartilage regeneration might aid in the 
lack of promising cell therapies for OA.
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