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Aims Adiponectin may play an important protective role in heart failure and associated cardiovascular diseases. We hypothesized that 
plasma adiponectin is associated observationally and causally, genetically with risk of heart failure, atrial fibrillation, aortic valve sten-
osis, and myocardial infarction.

Methods 
and results

In the Copenhagen General Population Study, we examined 30 045 individuals with plasma adiponectin measurements observa-
tionally and 96 903 individuals genetically in one-sample Mendelian randomization analyses using five genetic variants explaining 
3% of the variation in plasma adiponectin. In the HERMES, UK Biobank, The Nord-Trøndelag Health Study (HUNT), deCODE, 
the Michigan Genomics Initiative (MGI), DiscovEHR, and the AFGen consortia, we performed two-sample Mendelian randomiza-
tion analyses in up to 1 030 836 individuals using 12 genetic variants explaining 14% of the variation in plasma adiponectin.

In observational analyses modelled linearly, a 1 unit log-transformed higher plasma adiponectin was associated with a hazard ratio 
of 1.51 (95% confidence interval: 1.37–1.66) for heart failure, 1.63 (1.50–1.78) for atrial fibrillation, 1.21 (1.03–1.41) for aortic valve 
stenosis, and 1.03 (0.93–1.14) for myocardial infarction; levels above the median were also associated with an increased risk of 
myocardial infarction, and non-linear U-shaped associations were more apparent for heart failure, aortic valve stenosis, and myo-
cardial infarction in less-adjusted models. Corresponding genetic, causal risk ratios were 0.92 (0.65–1.29), 0.87 (0.68–1.12), 1.55 
(0.87–2.76), and 0.93 (0.67–1.30) in one-sample Mendelian randomization analyses, and no significant associations were seen 
for non-linear one-sample Mendelian randomization analyses; corresponding causal risk ratios were 0.99 (0.89–1.09), 1.00 
(0.92–1.08), 1.01 (0.79–1.28), and 0.99 (0.86–1.13) in two-sample Mendelian randomization analyses, respectively.

Conclusion Observationally, elevated plasma adiponectin was associated with an increased risk of heart failure, atrial fibrillation, aortic valve 
stenosis, and myocardial infarction. However, genetic evidence did not support causality for these associations.
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1. Introduction
The adipocyte-secreted protein-hormone adiponectin potentially plays an 
important role in heart failure. Adiponectin exerts insulin-sensitizing, anti- 
atherogenic, and anti-inflammatory properties in preclinical studies,1,2

supportive of a cardiovascular protective role.3 In human observational 
studies, however, the picture is less clear. While adiponectin seems to 
be inversely associated with cardiovascular risk factors, such as body 
mass index (BMI), type 2 diabetes, and abdominal fat accumulation, in con-
trast to other adipokines,4–6 its association with heart failure and asso-
ciated cardiovascular diseases seems to be inconsistent.7–12 It is, 
therefore, unclear whether adiponectin is a causal risk factor for heart fail-
ure. Unravelling this unclarity is pivotal in understanding etiological me-
chanisms, potentially discovering novel drug targets, and designing 
lifestyle interventions to prevent and treat heart failure.

Mendelian randomization is an approach to investigate causal relation-
ships by taking advantage of natural randomization of genetic variants 
and utilizing them as instrumental variables to estimate the potential effect 
of an exposure on an outcome. At conception, genes are already present 
and alleles randomly distributed; thus, Mendelian randomization is less vul-
nerable to reverse causation and genetic variants are generally not asso-
ciated with potential confounders.13–15 Genome-wide association studies 
have identified genetic variants associated with plasma adiponectin,16–18

making it possible to investigate adiponectin as a risk factor.
We hypothesized that plasma adiponectin is associated observationally 

and causally, genetically with risk of heart failure, atrial fibrillation, aortic 
valve stenosis, and myocardial infarction. We used the Copenhagen 
General Population Study with information on 30 045 and 96 903 indivi-
duals in observational and genetic one-sample Mendelian randomization 
analyses (Figure 1, Part A). In addition, we used information on 367 542– 
1 030 836 individuals from the ADIPOGen, HERMES, UK Biobank 
(UKB), The Nord-Trøndelag Health Study (HUNT), deCODE, the 

Michigan Genomics Initiative (MGI), DiscovEHR, and the AFGen consortia 
in genetic two-sample Mendelian randomization analyses (Figure 1, Part B) 
to increase statistical power and validate findings.

2. Methods
2.1 Observational and genetic one-sample 
Mendelian randomization study design
We included individuals aged 20–100 years from the Copenhagen General 
Population Study (CGPS), a population-based cohort from 2003 with on-
going enrolment. Individuals were randomly invited from the National 
Danish Civil Registration system to reflect the adult white population of 
Danish descent; being of Danish descent is defined in the National 
Danish Civil Registration system as a person jointly with both parents all 
being born in Denmark and with Danish citizenship, while the remainder 
of individuals in the population are registered either as immigrants or des-
cendants of immigrants, where the latter two groups are not included in 
the CGPS. All participants completed a questionnaire, had a physical exam-
ination, and had blood drawn for biochemical and genetic testing.5,6,19 The 
study was approved by a Danish ethical committee (approval number: 
H-KF-01-144/01) and conducted according to the Declaration of 
Helsinki. All participants provided written informed consent.

Plasma adiponectin was measured using a latex-enhanced turbidimetric 
immunoassay on a Cobas® autoanalyzer (Roche) and measurements were 
done blind to information on genetic variants and outcomes.5,6,19

Measurement of plasma adiponectin was available for 30 045 individuals.
We genotyped five genetic variants associated with plasma adiponectin 

that had the lowest P-values and largest effect sizes according to genome- 
wide associations studies.16–18 Importantly, we selected these biologically 
relevant genetic variants in the ADIPOQ and CDH13 loci encoding, respect-
ively, for plasma adiponectin and T-cadherin, a receptor-recognizing 
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adiponectin (see Supplementary material online, Table S1, pink column). 
While a TaqMan-like method by LCG Genomics (Teddington) was used 
to genotype for rs2062632, rs266717, and rs6810075, the ABI PRISM 
7900HT Sequence Detection System (Applied Biosystems) was used 
with TaqMan assays to genotype for rs17366568 and rs2925979. 
Genotyping was conducted blind to information on plasma adiponectin 
and outcomes. There was no indication of linkage disequilibrium between 
pairwise combinations of the four genetic variants in the ADIPOQ locus (all 
R2 < 0.24; Supplementary material online, Table S2).5,6,19,20 We had infor-
mation on all five genetic variants for 96 903 individuals.6,19

Clinical outcomes included heart failure (International Classification of 
Diseases [ICD]-8:427.09–427.11 and ICD-10:I50.0, I50.1, and I50.9), atrial 
fibrillation (ICD-8:427.93–427.93 and ICD-10:I48.0–I48.9), aortic valve 
stenosis (ICD-8:424.10, 424.12, 424.18, 424.19, and ICD-10:I35, and 
I35.2), and myocardial infarction (ICD-8:410 and ICD-10:I21–I22) col-
lected from the National Danish Patient Registry, which records all phys-
ician diagnosed public and private hospital contacts in Denmark, from 
1977 through 2018. Diagnoses from the National Danish Patient 
Registry have previously been evaluated with positive predictive values 
(PPV) ≥90% for cardiovascular outcomes included in the present study, in-
dicating an overall high validity.21,22 While the PPV for aortic valve stenosis 
was not evaluated individually but as a part of aortic valve disorders,21 an-
other study found a PPV of up to 80% for the diagnosis of aortic valve dis-
orders still suggesting a high validity.23

Covariates used for adjustment and stratification in observational ana-
lyses (and for stratification in genetic analyses) included hypertension, dia-
betes, use of lipid-lowering drugs, smoking status, socioeconomic status, 
physical activity, body mass index, waist circumference, non-high-density 
lipoprotein cholesterol, and plasma high-sensitive C-reactive protein. 
Hypertension was systolic blood pressure ≥140 mmHg, diastolic blood 
pressure ≥90 mmHg, systolic blood pressure ≥130 mmHg and diabetes, 
diastolic blood pressure ≥85 mmHg and diabetes, and/or use of antihyper-
tensive medication. Baseline diabetes was based on self-report, non-fasting 
plasma glucose >11 mmol/L (198 mg/dL), use of antidiabetic medication, 
and/or previous inpatient/outpatient hospital contact identified through 

the National Danish Patient Registry (ICD-8:249–250 and ICD-10:E10– 
E14). The use of lipid-lowering drugs was self-reported. Body mass index 
(BMI) was based on measured weight divided by measured height squared 
(kg/m2). Waist circumference (cm) was also measured. Smoking status was 
categorized as current smoker or non-smoker. Alcohol consumption was 
reported in units per week (1 unit = 12 g). Socioeconomic status was 
based on education and annual household income. The degree of leisure- 
time physical activity was self-reported. Plasma C-reactive protein (mg/L), 
high-density lipoprotein (HDL) cholesterol (mmol/L), and plasma total 
cholesterol (mmol/L) were measured using standard hospital assays. 
Non-HDL cholesterol (mmol/L) was calculated by subtracting HDL chol-
esterol from plasma total cholesterol.

2.2 Genetic two-sample Mendelian 
randomization study design
From the ADIPOGen consortium18 we identified genetic variants asso-
ciated with plasma adiponectin (=SNP-plasma adiponectin) that reached 
the genome-wide significance threshold and variants in linkage disequilib-
rium were removed. Thereafter, we identified the same genetic variants 
in the clinical outcome cohorts: i) (=SNP-heart failure) from the 
HERMES,24 ii) (=SNP-atrial fibrillation) from the HUNT, deCODE, MGI, 
DiscovEHR, UKB, and the AFGen consortia,25 iii) (=SNP-aortic valve sten-
osis) from the UKB,26 and (iv) (=SNP-myocardial infarction) from the 
UKB.26 We combined the genetic information on exposure and clinical 
outcomes in two-sample Mendelian randomization analyses to estimate 
the effect of plasma adiponectin on outcome risk.

We used the MR-base software and MR_Practicals R package with infor-
mation on linkage structure in 3775 genomes from the 1000 Genomes 
Project, as done previously.19,27 Palindromic genetic variants (rs7964945 
and rs2980879) were removed due to difficulty harmonizing the effect al-
leles in the exposure sample with the corresponding alleles in all outcome 
samples.27

From the ADIPOGen consortium, we included 12 genetic variants asso-
ciated with plasma adiponectin; in sensitivity analyses, we also studied 

Copenhagen General Population Study

Observational analyses One-sample Mendelian randomization

N = 30,045

Heart failure = 3,154
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Atrial fibrillation = 9,020

Aortic valve stenosis = 1,528
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Figure 5
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Figure 1 Flowchart for observational and genetic Mendelian randomization analyses. (A) In observational and genetic one-sample Mendelian randomization 
analyses, the Copenhagen General Population Study was used as the exposure and outcome cohort (pink). (B) In genetic two-sample Mendelian randomization 
analyses, ADIPOGen was used as the exposure cohort and HERMES, UK Biobank (UKB), The Nord-Trøndelag Health Study (HUNT), deCODE, the Michigan 
Genomics Initiative (MGI), DiscovEHR, and the AFGen consortia as the outcome cohorts (blue). The supplementary material contains summarized descrip-
tions of the included cohorts. SNPs = single nucleotide polymorphisms. MR = Mendelian randomization.
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selectively those variants in the ADIPOQ locus similar to that done in the 
one-sample Mendelian randomization analyses (see Supplementary 
material online, Table S1, blue column). In the outcome samples, we 
harmonized and tested the genetic variants against the outcomes (i) 
heart failure (ID:ebi-a-GCST009541),24 (ii) atrial fibrillation (ID:ebi-a- 
GCST006414),25 (iii) aortic valve stenosis (UKB),26 and (iv) myocardial in-
farction (UKB).26,27

2.3 Statistical analyses
We used STATA/SE 15.1 and R 3.6.1 for Windows.

2.3.1 Observational analyses
The observational association of plasma adiponectin with clinical outcomes 
was investigated using multivariable-adjusted Cox proportional hazards re-
gression with age as timescale (=age adjusted) and left truncation (=de-
layed entry) at study entry (see Supplementary material online, Figure S1, 
Step 1). We tested the Cox proportional hazard model assumptions 
with no major violations observed. We used untransformed plasma adipo-
nectin in µg/mL and natural log-transformed plasma adiponectin, the latter 
to compare observational estimates with one- and two-sample Mendelian 
randomization estimates. First, we investigated the association as a 
dose-response relationship using restricted cubic splines with the median 
value of plasma adiponectin as the reference. Second, we investigated 
such associations using quartiles of plasma adiponectin. The quartiles 
were based on median values of plasma adiponectin within each quartile 
and graphically displayed using kernel-weighted local polynomial smoothing 
and geometric means with 95% confidence intervals (CIs). Third, we inves-
tigated the association per 1 unit higher plasma adiponectin using untrans-
formed and natural log-transformed plasma adiponectin. Observational 
analyses were adjusted for potential confounders age (as timescale), sex, 
hypertension, diabetes, use of lipid-lowering drugs, smoking status, socio-
economic status, physical activity, BMI, waist circumference, non-HDL 
cholesterol, and plasma high-sensitive C-reactive protein. Some of the par-
ticipants lacked information on some potential confounders (missing cov-
ariates were 1.4%). Therefore, we did multiple imputations using chained 
equations to fill in missing values; however, the results were similar without 
imputations. To investigate for potential effect modification (=interaction) 
in observational analyses, the risk of clinical outcomes was also investigated 
jointly with plasma adiponectin and other relevant risk factors, including 
sex, age, BMI, waist circumference, hypertension, and prevalent cardiovas-
cular disease using a likelihood ratio test in models with and without two- 
factor interaction terms. Furthermore, reverse causation was investigated 
by comparing individuals in the 4th quartile (highest plasma adiponectin) 
with those in the 1st quartile (lowest plasma adiponectin) and excluding in-
dividuals with less than one to four years of follow-up from the analyses.

2.3.2 Genetic one-sample Mendelian randomization 
analyses
Deviation of the genetic variants from the Hardy-Weinberg equilibrium 
was investigated using Pearson’s chi-squared test. To assess the strength 
of the genetic variants as instrumental variables, we calculated the 
F-value and the variation in plasma adiponectin explained by the genetic 
variants using linear regression. Associations between the genetic adipo-
nectin score and potential confounders were investigated using linear 
and logistic regressions. The association of the internally weighted genetic 
adiponectin score with plasma adiponectin was investigated using linear re-
gression and graphically displayed using geometric means (see 
Supplementary material online, Figure S1, Step 2). Associations of the in-
ternally weighted genetic adiponectin score with clinical outcomes were in-
vestigated using multivariable logistic regression (see Supplementary 
material online, Figure S1, Step 3). Instrumental variable estimates of causal 
risk ratios were calculated using the Wald-type estimator and internally 
weighted genetic adiponectin score to estimate the influence of genetically 
determined plasma adiponectin with risk of heart failure, atrial fibrillation, 
aortic valve stenosis, and myocardial infarction (see Supplementary 

material online, Figure S1, Step 4). To assess potential bias towards the ob-
servational estimate with the use of an internally weighted genetic score,28

we additionally used an unweighted and externally weighted genetic adipo-
nectin score in sensitivity analyses. The external weighted score was cre-
ated using coefficients from the ADIPOGen consortia.18 All one-sample 
genetic analyses were adjusted for age and sex. To assess potential plei-
otropy in one-sample Mendelian randomization and to compare with re-
sults from two-sample Mendelian randomization, different analytical 
methods were used: inverse-variance weighted (IVW), Mendelian 
randomization-Egger (MR-Egger), weighted median estimates, and 
weighted mode regressions. For this purpose, we also natural log- 
transformed plasma adiponectin in the Copenhagen General Population 
Study. Furthermore, to investigate for potential effect modification 
(=interaction) in genetic one-sample Mendelian randomization analyses, 
the risk of clinical outcomes was also investigated jointly with plasma adi-
ponectin and other relevant risk factors, including sex, age, BMI, waist cir-
cumference, hypertension, and prevalent cardiovascular disease using a 
likelihood ratio test in models with and without two-factor interaction 
terms. Lastly, to investigate the shape of a potential causal relationship, 
we applied a non-linear Mendelian randomization approach29,30 and graph-
ically displayed the results using fractional polynomial and piecewise linear 
methods from the SUMnlmr R package.31 For this purpose, we divided the 
population into ten strata via the novel doubly-ranked stratification meth-
od29–31 on genetic adiponectin score and natural log-transformed plasma 
adiponectin.

2.3.3 Genetic two-sample Mendelian randomization 
analyses
In genetic two-sample Mendelian randomization analyses, we extracted 
summary data on plasma adiponectin from the MR Base GWAS catalogue, 
pruned for linkage disequilibrium between genetic variants and extracted 
summary data on heart failure and atrial fibrillation.27 Updated summary 
data on aortic valve stenosis and myocardial infarction from the UKB 
were uploaded manually. We harmonized the exposure and outcome da-
tasets. Finally, we did Mendelian randomization instrumental variable ana-
lyses using IVW, MR-Egger, weighted median estimates, and weighted 
mode regressions. For this purpose, we used the MR_Practicals R package 
including MRInstruments and Two-sampleMR.27,32 To assess instrument 
strength, we calculated the F-value as F = N−K−1

K · R2

1−R2.33

We used an online power calculator to determine the causal effect we 
can detect with 80% power in one- and two-sample Mendelian randomiza-
tion analyses (see Supplementary material online, Table S3).34

3. Results
3.1 Observational results in the CGPS
Baseline characteristics in the CGPS are summarized in Table 1. Plasma adi-
ponectin was associated with all potential confounders (Table 1).

Elevated plasma adiponectin was associated with higher hazard ratios for 
heart failure, atrial fibrillation, aortic valve stenosis, and myocardial infarc-
tion after multivariable adjustment in restricted cubic splines (Figure 2). 
Divided into quartiles, elevated plasma adiponectin was also associated 
with higher hazard ratios for heart failure and atrial fibrillation but not 
with aortic valve stenosis or myocardial infarction (Figure 3) with a more 
U-shaped association for heart failure, aortic valve stenosis, and myocardial 
infarction (Figures 2 and 3). Results were similar in a less adjusted model by 
excluding factors that have previously been shown to eliminate the 
U-shaped association at lower plasma adiponectin concentrations,35,36

that is, diabetes, use of lipid-lowering drugs, non-HDL cholesterol, and 
plasma high-sensitive C-reactive protein (compare Figures 2–3 with 
Supplementary material online, Figures S2 and S3). Likewise, results were 
similar when excluding individuals with prevalent cardiovascular disease 
in the extensively adjusted model and the less adjusted model (compare 
Figure 2, Supplementary material online, Figures S4 and S5), however, 
with a more U-shaped association for heart failure and myocardial 
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infarction. Likewise, results were similar, in a model without adjustment for 
body mass index and waist circumference (compare Figure 2 with 
Supplementary material online, Figure S6); however, the association attenu-
ated, suggesting that obesity measures affect the risk of disease, as previ-
ously shown.37–40 Furthermore, results were similar when smoking 
status was categorized as never, former, or current smoker and cumulative 
tobacco consumption (pack years) was included in the model (data not 
shown). Finally, there was no evidence of reverse causation (see 
Supplementary material online, Figure S7).

3.2 Genetic results in the CGPS
There was no evidence that the genetic adiponectin score was associated 
with any potential confounders (all P-values ≥0.05 after taking multiple 
testing into account) (Table 1). There was no indication of deviation 
from the Hardy-Weinberg equilibrium (all P-values ≥0.05).

The internally weighted genetic adiponectin score explained 3% of the 
variation in plasma adiponectin with an F-value of 797. The internally 
weighted genetic adiponectin score in quartiles was associated with the 
stepwise higher plasma adiponectin (Figure 4, left part). However, there 
was no association between the internally weighted genetic adiponectin 
score in quartiles and odds ratios for heart failure, atrial fibrillation, aortic 
valve stenosis, or myocardial infarction (P for trend ≥0.05) (Figure 4, right 
part). Results were similar using an unweighted and externally weighted 
genetic adiponectin score (compare Figure 4 with Supplementary 
material online, Figures S8 and S9).

3.3 Observational and genetic one-sample 
Mendelian randomization results in the 
CGPS
In genetic one-sample Mendelian randomization analyses using the 
Wald-type estimator, a 1 µg/mL higher plasma adiponectin was associated 
with a causal risk ratio of 1.00 (95% CI: 0.98–1.02) for heart failure (Figure 5, 
lower part), 0.99 (0.98–1.01) for atrial fibrillation (see Supplementary 
material online, Figure S10, lower part), 1.03 (0.99–1.07) for aortic valve 

stenosis (see Supplementary material online, Figure S11, lower part), and 
0.99 (0.97–1.02) for myocardial infarction (see Supplementary material 
online, Figure S12, lower part). Results were similar when using an un-
weighted and externally weighted genetic adiponectin score (data not 
shown). In contrast, in observational analyses a 1 µg/mL higher plasma adi-
ponectin was associated with a hazard ratio of 1.02 (95% CI: 1.02–1.03) for 
heart failure (Figure 5, upper part), 1.02 (1.02–1.03) for atrial fibrillation 
(see Supplementary material online, Figure S10, upper part), 1.01 (1.00– 
1.02) for aortic valve stenosis (see Supplementary material online, 
Figure S11, upper part), and 1.01 (1.00–1.01) for myocardial infarction 
(see Supplementary material online, Figure S12, upper part). Overall, results 
were similar for women and men separately, for individuals < and ≥60 
years, for individuals with BMI < and ≥30 kg/m2, for individuals with 
waist circumference < and ≥88/102 cm (women/men), for individuals 
with or without hypertension, and for individuals with or without prevalent 
cardiovascular disease (P-values for interaction ≥0.05); however, in obser-
vational analyses, individuals <60 years and individuals without prevalent 
cardiovascular disease had a slightly higher hazard ratio for heart failure 
(P-value for interaction = 0.009 and 0.002, respectively), while men had a 
slightly higher hazard ratio for atrial fibrillation (P-value for interaction =  
0.002)(Figure 5 and Supplementary material online, Figures S10–S12, upper 
parts).

A comparison of results from observational and genetic one-sample 
Mendelian randomization with two-sample Mendelian randomization using 
natural log-transformed plasma adiponectin and IVW, MR-Egger, weighted 
median, and weighted mode is described below.

3.4 Genetic two-sample Mendelian 
randomization and comparison with 
observational and genetic one-sample 
Mendelian randomization results
The 12 genetic variants used in two-sample Mendelian randomization ex-
plained 14% of the variation in plasma adiponectin with an F-value of 398.
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Table 1 Baseline characteristics in observational and genetic analyses in individuals in the Copenhagen General Population Study

Observational analyses Genetic analyses

Individuals in observational 
analyses 

(N = 30 045)

Association with 
plasma adiponectin, 

P-value*

Individuals in genetic 
analyses 

(N = 96 903)

Association with 
genetic adiponectin score, 

P-value*

Age, years 62 (51–72) <1 × 10−300 58 (48–67) 0.97

Women 15 328 (51) <1 × 10−300 53 298 (55) 0.44
Hypertension 20 184 (67) 5 × 10−10 58 531 (60) 0.12

Diabetes 1942 (6) 1 × 10−53 4112 (4) 0.95

Lipid-lowering drugs 4273 (14) 1 × 10−17 11 480 (12) 0.11
Current smoking 7066 (24) 2 × 10−41 17 063 (18) 0.13

Alcohol consumption, units/week 9 (4–16) 1 × 10−26 8 (4–15) 0.86

Poor socioeconomic status 1797 (6) 4 × 10−29 3105 (3) 0.44
Physical inactivity 2446 (8) 2 × 10−11 6053 (6) 0.29

Body mass index, kg/m2 26.0 (23.5–28.9) <1 × 10−300 25.6 (23.2–28.4) 0.95

Waist circumference, cm 92 (83–101) <1 × 10−300 90 (80–99) 0.75
Non-HDL cholesterol, mmol/L 4.0 (3.2–4.8) 6 × 10−171 3.9 (3.2–4.7) 0.01NS

Plasma high-sensitive C-reactive 

protein, mg/L

1.6 (1.0–3.0) 8 × 10−13 1.4 (1.0–2.3) 0.34

Data summarized as median (25th-75th percentiles), or N (%). 
NSNot significant, that is, did not meet Bonferroni-corrected significance level for multiple testing of P = 0.05/13 = 0.004 instead of conventional P = 0.05. 
N = number. Non-HDL = non-high-density lipoprotein. 
*Calculated using linear or logistic regression, as appropriate.
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In observational analyses (the same study, as shown in Figures 2, 3, and 5), 
a 1 unit log-transformed higher plasma adiponectin was associated with a 
hazard ratio of 1.51 (95% CI: 1.37–1.66) for heart failure, 1.63 (1.50–1.78) 
for atrial fibrillation, 1.21 (1.03–1.41) for aortic valve stenosis, and 1.03 
(0.93–1.14) for myocardial infarction (Figure 6). Corresponding genetic, 
causal risk ratios using IVW analysis were 0.92 (0.65–1.29), 0.87 (0.68– 
1.12), 1.55 (0.87–2.76), and 0.93 (0.67–1.30) in one-sample Mendelian ran-
domization analyses, while corresponding causal risk ratios were 0.99 
(0.89–1.09), 1.00 (0.92–1.08), 1.01 (0.79–1.28), and 0.99 (0.86–1.13) in 
two-sample Mendelian randomization analyses, respectively (Figure 6).

When using MR-Egger, weighted median, and weighted mode for heart 
failure, atrial fibrillation, and myocardial infarction results were similar; 
however, for aortic valve stenosis in one-sample Mendelian randomization, 
a 1-unit log-transformed higher plasma adiponectin was associated with a 
causal risk ratio of 5.66 (1.36–23.57) in MR-Egger and 2.73 (1.15–6.52) in 
weighted mode (compare Supplementary material online, Figure S13 with 
Figure 6); this apparent positive association was most likely due to chance 
finding since the main one-sample and additional two-sample Mendelian 
randomization analyses did not concur.

Results for genetic two-sample Mendelian randomization analyses were 
similar in sensitivity analyses when using UKB as the outcome cohort for 
heart failure, atrial fibrillation, and coronary artery disease (compare 
Figure 6 and Supplementary material online, Figure S13 with Supplementary 
material online, Table S4). Furthermore, in a conservative approach using se-
lectively genetic variants in the ADIPOQ locus in two-sample Mendelian ran-
domization analyses results were similar (compare Figure 6 and 
Supplementary material online, Figure S13 with Figure S14).

In addition, we found no evidence of a non-linear effect of plasma adipo-
nectin on the risk of heart failure, atrial fibrillation, aortic valve stenosis, or 
myocardial infarction using non-linear one-sample Mendelian randomiza-
tion in the CGPS (see Supplementary material online, Figures S15–S18).

4. Discussion
We used observational and Mendelian randomization analyses to test our 
hypothesis that plasma adiponectin is associated observationally and caus-
ally, genetically with the risk of heart failure, atrial fibrillation, aortic valve 
stenosis, and myocardial infarction. While elevated plasma adiponectin 
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Figure 2 Observational association of plasma adiponectin with heart failure (HF), atrial fibrillation (AF), aortic valve stenosis (AVS), and myocardial infarction 
(MI) in the Copenhagen general population study. Hazard ratios (HR) are indicated with a solid red line and a 95% confidence interval (CI) with dashed red lines. 
The median concentration of plasma adiponectin (16 µg/mL) was used as a reference with a hazard ratio of 1.0 indicated with a horizontal dashed black line. 
Individuals in the upper 1st percentile for plasma adiponectin (plasma adiponectin ≥50 µg/mL) were included in the analyses but excluded from the graphs for 
visual purposes. Analyses were multivariable and adjusted for age (as timescale), sex, hypertension, diabetes, use of lipid-lowering drugs, smoking status, socio-
economic status, physical activity, body mass index, waist circumference, non-high-density lipoprotein cholesterol, and plasma high-sensitive C-reactive pro-
tein. A fraction of the population is indicated with light blue. N = number of individuals.
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was associated with an increased risk of heart failure, atrial fibrillation, aor-
tic valve stenosis, and myocardial infarction in observational analyses, gen-
etic one- and two-sample Mendelian randomization analyses could not 
support causality for these associations. Taken together, these findings 
are novel. Specific novel findings include the investigation of the causal 
role of plasma adiponectin in aortic valve stenosis and the use of individual 
participant data in Mendelian randomization facilitating exploration of sub-
group associations and non-linear effects in the risk of heart failure, atrial 
fibrillation, aortic valve stenosis, and myocardial infarction.

Biologically, adiponectin potentially plays a pivotal role in cardiovascular 
disease by improving insulin sensitivity and exerting anti-atherogenic and 
anti-inflammatory properties, that is, theoretically, elevated adiponectin 
could protect against cardiovascular disease. However, higher plasma adi-
ponectin has been associated with higher mortality in individuals with heart 
failure and associated cardiovascular diseases.41,42 This phenomenon is be-
come known as the ‘adiponectin paradox’.41,42 In line with this, we found 
that elevated plasma adiponectin was associated with an increased risk of 
heart failure and associated cardiovascular diseases in our observational 
analyses. Potential explanations for this counter-intuitive relationship 
have been suggested to be a compensatory mechanism or a state of adipo-
nectin resistance.41,42 However, our Mendelian randomization studies 
could not support a causal relationship, suggesting that adiponectin may 
be predominantly a biomarker or a bystander rather than a causal risk fac-
tor although further research is needed to determine whether this holds 
throughout the adiponectin concentration range, especially in the lower 
concentration range. Thus, it remains possible that there could still be a 
protective causal association for variants leading to low adiponectin levels, 
and that these are harder to identify because of a counterregulatory in-
crease in levels in the setting of comorbidities at higher adiponectin 

concentrations. In a two-sample Mendelian randomization analysis includ-
ing 29 347 individuals, high N-terminal-pro-brain natriuretic peptide was 
associated with higher plasma adiponectin and the authors concluded 
that reverse causation potentially explained the adiponectin paradox in 
heart failure.43 Interestingly, observational sensitivity analyses in our study 
did not indicate the presence of reverse causation. Regarding residual con-
founding, we recently did a bidirectional one- and two-sample Mendelian 
randomization in 460 397 individuals with no indication of a causal inter-
relation between plasma adiponectin and BMI.5 However, in another bidir-
ectional two-sample Mendelian randomization with 210 088 individuals, 
abdominal fat accumulation was causally associated with low plasma adipo-
nectin, while gluteofemoral fat was causally associated with high plasma adi-
ponectin.4 Furthermore, a genetic study found evidence of a causal 
relationship between insulin resistance and decreased plasma adiponec-
tin.44 Body fat distribution and insulin resistance could, therefore, be po-
tential confounders.

Possible explanations as to why the present genetic findings differ from 
prior ample experimental work supporting insulin-sensitizing, anti- 
atherogenic, and anti-inflammatory roles of adiponectin45,46 include the 
complexity of living humans compared with experimental settings by using 
in-vitro cells and animal models.44,47 Indeed, compensatory mechanisms 
known as canalization have previously been suggested as a potential ex-
planation for observing such differences.48 Alternatively, it has been argued 
that the relatively small plasma adiponectin concentration differences ob-
served in large genetic epidemiological studies may be without any clinical 
significance.49 In this regard and with the caveat of being animal models, an 
early experimental study found that a two-fold increase in plasma adipo-
nectin was required to decrease plasma glucose in mice administered 
with 28 µg/g body weight-purified recombinant adiponectin,50 while 
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Figure 3 Observational association of plasma adiponectin with heart failure, atrial fibrillation, aortic valve stenosis, and myocardial infarction in the 
Copenhagen General Population study. The geometric mean with a 95% confidence interval (CI) for plasma adiponectin is indicated with bars and whiskers. 
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1 µg/g recombinant adiponectin administered to wild-type and adiponectin- 
knockout mice reduced myocardial infarct size and apoptosis.51

Previous research has mainly investigated the observational association 
between plasma adiponectin and heart failure and has mostly suggested a 
positive association in a total of 5574 individuals with 780 events,7,8,10–12

Also, an observational meta-analysis with a total of 18 558 individuals 
and 3165 events found evidence of a positive association between plasma 
adiponectin and atrial fibrillation.9 In contrast, no association was found be-
tween plasma adiponectin and coronary heart disease in another observa-
tional meta-analysis with a total 23 717 individuals.52 Observationally, we 
found a positive association between elevated plasma adiponectin and 
heart failure, atrial fibrillation, aortic valve stenosis, and myocardial infarc-
tion by including up to 29 665 individuals with 3746 events.

We conducted the first one-sample Mendelian randomization study on 
the association between plasma adiponectin with the risk of heart failure, 
atrial fibrillation, aortic valve stenosis, and myocardial infarction facilitating 
exploration of non-linear effects and subgroup associations with no evi-
dence of a causal effect. A recent two-sample Mendelian randomization 
in 547 261– 977 323 individuals concluded that elevated plasma adiponec-
tin may be causally associated with reduced risk of coronary artery disease 
but not with heart failure and atrial fibrillation.53 However, only one of four 
statistical methods could support the potential causal finding. Furthermore, 
they did not present calculations estimating power or instrument strength 
—a weak instrument can introduce bias towards the observational con-
founded estimate.54 Differences compared with our one- and two-sample 
Mendelian randomization studies include the use of different exposure and 
outcome cohorts and choice of genetic variants. In our one-sample 
Mendelian randomization, we focused on genetic variants in and around 
the ADIPOQ and CDH13 loci encoding, respectively for plasma adiponectin 
and T-cadherin, a receptor-recognizing adiponectin, while the former 
study included loci from the whole genome with the risk of horizontal 
pleiotropy. In support of the present one- and two-sample Mendelian 

randomization with up to 367 542 individuals on myocardial infarction, 
two-sample Mendelian randomization studies utilizing ADIPOGen, 
CARDIoGRAMplusC4D, and CARDIoGRAM with up to 281 422 indivi-
duals discovered no conclusive proof of a causal relationship between ele-
vated plasma adiponectin and coronary artery disease and myocardial 
infarction.48,55 With our present study, we add by including aortic valve 
stenosis as an outcome, additional outcome cohorts, and one-sample 
Mendelian randomization studies with investigations of subgroup associa-
tions and non-linear effects.

Potential limitations in Mendelian randomization should be addressed. 
First, bias is due to weak instruments. In one-sample Mendelian randomiza-
tion, we used five genetic variants identified in genome-wide association 
studies with the lowest P-values and largest effect sizes in the association 
with plasma adiponectin.16–18 Since our instrument only explained 3% of 
the variation in plasma adiponectin, we cannot rule out weak-instrument 
bias. However, with an F-value of 797, we have most likely limited the 
bias, arguing against a weak instrument bias as a major limitation in this 
study. Also, the bias should be towards the confounded observational as-
sociation.54 Furthermore, we used the ADIPOGen consortia with genetic 
variants explaining ∼14% of the variation in plasma adiponectin in combin-
ation with HERMES, UKB, HUNT, deCODE, MGI, DiscovEHR, and the 
AFGen consortia in two-sample Mendelian randomization analyses with 
similar results. Second, population stratification bias. For one-sample 
Mendelian randomization, we used an ethnically homogenous population; 
thus, bias due to population stratification is less likely. Moreover, since 
there was no evidence of the Hardy-Weinberg disequilibrium, genotyping 
and population sampling errors also seem unlikely. Third, pleiotropy of the 
included genetic variants. In one-sample Mendelian randomization, we se-
lected biologically relevant genetic variants in the ADIPOQ and CDH13 loci 
encoding, respectively, for plasma adiponectin and T-cadherin, a receptor- 
recognizing adiponectin. Furthermore, we used different methods ac-
counting for potential pleiotropy in sensitivity analyses in both one- and 
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two-sample Mendelian randomization. Fourth is the linkage disequilibrium. 
In one-sample Mendelian randomization, we found no indication of linkage 
disequilibrium between the selected genetic variants,5,6,19,20 and genetic 
variants in two-sample Mendelian randomization were also pruned for link-
age disequilibrium.27,32 Fifth is the statistical power. Relatively large sample 
sizes are required to obtain sufficient statistical power in Mendelian ran-
domization studies. Generally, the confidence intervals are wider in the 
CGPS compared with the UKB due to lower study power. Indeed, based 
on the 95% CIs for our causal odds ratios in the CGPS, an association is still 
possible for aortic valve stenosis in either direction. The confidence inter-
vals for aortic valve stenosis from one- and two-sample Mendelian ran-
domization are overlapping, and the estimates are largely similar 
although the CGPS estimate is nominally slightly higher. This could partly 
be explained by ascertainment bias in the UKB due to shorter follow-up 
compared with the follow-up in the CGPS. Also, MR-Egger regression 

may give biased estimates when applied in one-sample Mendelian random-
ization. However, the bias of the MR-Egger estimate should be towards the 
confounded observational association and the bias is reduced when I2 

GX is 
high as in the present study with an I2GX of 94–95%.56 Lastly, we did not 
examine heart failure with preserved ejection fraction (HFpEF) and heart 
failure with reduced ejection fraction (HFrEF) separately, which have differ-
ences in pathophysiology.57 Indeed, obesity and dysmetabolism appear to 
be stronger risk factors for HFpEF than HFrEF, hence the lack of differen-
tiating between HFpEF and HFrEF could be a potential limitation. Since we 
use ICD-8 and ICD-10 codes defined before the introduction of HFpEF in 
2023, our outcome includes for practical purposes only HFrEF.

The present study has several strengths. Importantly, we used both one- 
and two-sample Mendelian randomization analyses with large sample sizes, 
attenuating the risk of false associations. Furthermore, the observational 
and genetic one-sample Mendelian randomization was conducted in a 

N/eventsExposure Outcome SNPs Hazard/causal risk ratio (95% CI) 
per 1 unit log-transformed higher plasma adiponectin

P-value

0.5 1.0 2.0 4.0 6.0 12.0 24.0

Heart failure

CGPS CGPSObservational 29,143/3,154

One-sample MR 96,903/4,5995 SNPs

12 SNPs 977,323/47,309Two-sample MR

CGPS CGPS

ADIPOGen HERMES

1.51 (1.37–1.66)

0.92 (0.65–1.29)

0.99 (0.89–1.09)

1 x 10-17

0.62

0.81

Atrial fibrillation

CGPS CGPSObservational 28,458/3,746

One-sample MR 96,903/9,0205 SNPs

12 SNPs 1,030,836/60,620Two-sample MR

CGPS CGPS

ADIPOGen HUNT, deCODE, 
MGI, DiscovEHR, 
UKB, AFGen

1.63 (1.50–1.78)

0.87 (0.68–1.12)

1.00 (0.92–1.08)

6 x 10-31

0.27

0.99

Aortic valve stenosis

CGPS CGPSObservational 29,665/1,065

One-sample MR 96,903/1,5285 SNPs

12 SNPs 367,561/3,528Two-sample MR

CGPS CGPS

ADIPOGen UK Biobank

1.21 (1.03–1.41)

1.55 (0.87–2.76)

1.01 (0.79–1.28)

0.02

0.14

0.95

Myocardial infarction

UK Biobank

CGPS CGPSObservational 28,783/2,301 1.03 (0.93–1.14) 0.59

One-sample MR 96,903/4,4495 SNPsCGPS CGPS 0.93 (0.67–1.30) 0.67

12 SNPs 367,542/12,339Two-sample MR ADIPOGen 0.99 (0.86–1.13) 0.83

Figure 6 Observational and genetic one- and two-sample Mendelian randomization of plasma adiponectin with heart failure, atrial fibrillation, aortic valve 
stenosis, and myocardial infarction. Observational analyses in the Copenhagen General Population Study (CGPS) were multivariable and adjusted for age, sex, 
hypertension, diabetes, use of lipid-lowering drugs, smoking status, socioeconomic status, physical activity, body mass index, waist circumference, 
non-high-density lipoprotein cholesterol, and plasma high-sensitive C-reactive protein. The causal risk ratio with a 95% confidence interval (CI) from one- 
sample Mendelian randomization (MR) analyses indicated with red diamonds and whiskers were based on the CGPS. The causal risk ratio with 95% CI 
from two-sample Mendelian randomization analyses indicated with blue diamonds and whiskers was based on HERMES in heart failure; HUNT, deCODE, 
MGI, DiscovEHR, UKB, and AFGen in atrial fibrillation, and UKB in aortic valve stenosis and myocardial infarction. Genetic information on plasma adiponectin 
for the two-sample Mendelian randomization was obtained from ADIPOGen. Genetic results are from inverse variance weighted analyses. Results from 
MR-Egger, weighted median, and weighted mode analyses are shown in Supplementary material online, Figure S13. SNPs = single nucleotide polymorphisms. 
N = number of individuals.
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single homogenous cohort and information on plasma adiponectin and 
outcome diagnoses were assessed with identical methods in all individuals. 
Moreover, with the availability of individual participant data in our one- 
sample Mendelian randomization, we were able to study non-linear effects 
and subgroup associations with no evidence of a causal effect, supporting 
the overall conclusions. If there were non-linearity it could be possible to 
find an incorrect null result in the main analyses due to the incorrect linear-
ity assumption.30 Thus, including the non-linear models shows that our null 
result is robust to relaxing that assumption. Howver, the power of the ana-
lysis means there may still be a small undetected effect. Furthermore, sub-
group analyses support that it is not confounded by covariates causing a 
false null result. Lastly, we used both a conservative Mendelian randomiza-
tion approach including variants in and around the ADIPOQ and CDH13 loci 
and a more liberal approach including variants from various regions, with 
similar results.

Observationally, elevated plasma adiponectin was associated with an in-
creased risk of heart failure, atrial fibrillation, aortic valve stenosis, and myo-
cardial infarction. However, genetic studies could not support causality for 
those associations.

Supplementary material
Supplementary material is available at Cardiovascular Research online.
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Translational perspective
Adiponectin, an adipocyte-secreted protein-hormone, exerts insulin-sensitizing, anti-atherogenic, and anti-inflammatory properties in preclinical stud-
ies. In clinical observational and genetic studies, the picture is less clear. To unravel if adiponectin plays a causal role in heart failure and associated 
cardiovascular diseases, we used an observational and genetic Mendelian randomization design. We found that elevated plasma adiponectin was as-
sociated observationally with an increased risk of heart failure, atrial fibrillation, aortic valve stenosis, and myocardial infarction. However, genetic evi-
dence did not support causality for these associations suggesting that adiponectin may be predominantly a biomarker or a bystander rather than a 
causal risk factor although further research is needed to determine whether this holds throughout the concentration range of adiponectin, especially 
in the lower concentration range.
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