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Abstract
Purpose  Nasopharyngeal carcinoma (NPC) has characteristics of high invasion and early metastasis. Most NPC patients 
present with locoregionally advanced illness when first diagnosed. Therefore, it is urgent to discover NPC biomarkers. 
Fibroblast growth Factor 19 (FGF19) plays a role in various physiological or pathological processes, including cancer. In 
this research, we discovered the importance of FGF19 in NPC, and clarified its role in tumour angiogenesis.
Methods  Western blotting, immunohistochemistry and ELISA were used to investigate FGF19 expression in NPC. Then 
we took CCK8, colony formation, Transwell and wound healing assays to identify the influence of FGF19 on NPC malig-
nant behaviours. The proliferative and metastatic capacity of FGF19 were evaluated in nude mice and zebrafish. The role of 
FGF19 in angiogenesis was investigated by tube formation and Matrigel plug angiogenesis assays. We then evaluated the 
variation in Annexin A2(ANXA2) levels with the treatment of FGF19. Lastly, co-immunoprecipitation and ubiquitination 
assays were performed to identify the mechanisms involved.
Results  FGF19 levels were elevated in tissues and serum of NPC patients and were associated with poor clinical stages. High 
expression of FGF19 promoted NPC malignant behaviours. In particular, FGF19 expression was correlated with microves-
sel density in tissues and NPC-derived FGF19 could accelerate angiogenesis in vitro and in vivo. Mechanistically, FGF19 
influenced ANXA2 expression to promote angiogenesis. Moreover, tripartite motif-containing 21(TRIM21) interacted with 
ANXA2 and was responsible for ANXA2 ubiquitination.
Conclusion  FGF19 promoted NPC angiogenesis by inhibiting TRIM21-mediated ANXA2 ubiquitination. It may serve as a 
noninvasive biomarker for NPC and provides new insights for therapy.
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1  Introduction

Nasopharyngeal carcinoma (NPC), an epithelial carcinoma 
derived from the mucosal lining, has a distinct global geo-
graphic distribution. According to the International Agency 
for Research on Cancer, there were over 130,000 new cases 
of NPC reported in 2020. More than 70% of those new cases 
were distributed in east and southeast Asia [1, 2]. With 
advances in radiotherapy and chemotherapy, the mortality 
rate of NPC has shown a downwards trend in recent years 
[3]. However, given the deep-tissue location and concealed 
early symptoms, with characteristics of high invasion and 

early metastasis, more than 70% of patients present with 
locoregionally advanced illness when they are diagnosed, 
which might lead to poor prognosis [4, 5]. Therefore, iden-
tifying biomarkers specific to NPC might help to guide early 
diagnosis and new therapeutic methods.

To manage the rapid growth of malignant cells, tumours 
develop a new vascular network [6, 7]. New vessels transport 
oxygen and nutrients for tumour survival, and are one of the 
vital hallmarks of metastasis [8, 9]. During tumour develop-
ment, pro- and antiangiogenic modulators are imbalanced, 
and the “angiogenic switch” is turned on [10]. The newly 
formed tumour vascular network can accelerate tumour 
growth and metastasis [11, 12]. It has been reported that 
tumour cells or stromal cells can secrete abnormal levels 
of proangiogenic factors and contribute to the creation of 
a tumour vascular network [6]. In our previous research, 
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we found that tumour-derived factors could promote NPC 
progression [13–15]. Additionally, antiangiogenic therapies 
could correct tumour vessel function and make tumours less 
aggressive [16, 17]. However, current antiangiogenic thera-
pies have not achieved these ideal effects. Thus, it is urgent 
to explore the molecular mechanism of NPC angiogenesis.

The fibroblast growth factor (FGF) family is composed of 
22 structurally related polypeptides with different biological 
activities [18]. Most FGFs bind to and activate cell surface 
FGF receptors to exert their functions in physiological or 
pathological processes, including embryonic development, 
tissue regeneration and tumour progression [19, 20]. Some 
FGFs might act as proangiogenic factors, activating signal 
transduction to induce angiogenic responses [21].

FGFs are divided into seven subfamilies. Among them, 
a newly discovered group of noncanonical, endocrine-like 
FGFs has attracted much attention in recent years [22]. This 
subfamily includes FGF19, its murine homologue FGF15, 
FGF21 and FGF23, which can be secreted and function as 
endocrine factors or hormones [23, 24]. FGF19 is a highly 
conserved gene and has unique functions in different tis-
sues [25]. Under physiological conditions, FGF19 acts as a 
growth factor and regulates lipid, protein and glucose metab-
olism during organogenesis [20, 22]. FGF19 also partici-
pates in cell proliferation, differentiation, and motility in cer-
tain pathologies [26]. Aberrant activation of FGF19 might 
contribute to neoplasia development [27]. It is overexpressed 
in a variety of tumours and serves as an oncogenic driver 
[28–31]. In our previous research, we found that FGFR4, the 
receptor of FGF19, was upregulated in clinical NPC samples 
and associated with poor prognosis [32]. However, the role 
of FGF19 in NPC has not been elucidated.

In this research, we reported the functional role of FGF19 
in NPC development. It was highly expressed in the tissues 
and serum of NPC patients and could promote a malignant 
tumour phenotype. In particular, we found that NPC-derived 
FGF19 could enhance tumour angiogenesis. Mechanisti-
cally, FGF19 decreased Annexin A2(ANXA2) degradation 
by influencing tripartite motif-containing 21(TRIM21)-
mediated ANXA2 ubiquitination, leading to the promotion 
of angiogenesis. Our research confirmed the importance of 
FGF19 in NPC and might provide new insight for therapy.

2 � Materials and methods

2.1 � Patients and immunohistochemistry

Paraffin-embedded NPC specimens were retrieved from the 
Department of Pathology, Affiliated Hospital of Nantong 
University. Noncancerous samples in the nasopharynx were 
used as controls. Fresh tissues and serum samples were 
obtained from the Department of Otorhinolaryngology 

Head and Neck surgery，Affiliated Hospital of Nantong 
University. The clinical processes were approved by the Eth-
ics Committee of Affiliated Hospital of Nantong University 
(IRB number: 2017-L080), and each patient provided prior 
consent.

Immunohistochemistry was carried out according to the 
general procedures previously described [14]. To quantify 
FGF19 expression, we multiplied the scores of the stain-
ing intensity and the percentage of positive cells to define 
the final score. The intensity of FGF19 staining was scored 
as 1, no staining; 2, weak staining; 3, medium staining; 4, 
strong staining. The percentage of positive cells was scored 
as 1 ≤ 25; 2, 26–50%; 3, 51–75%; 4 > 75%.

Microvessel density (MVD) was evaluated as described 
by Foote and our previous research [14, 33]. Briefly, to 
quantify the vessel density, we divided the xenograft 
into three layers and cutting three tissue slices from each 
layer. Tumour sections were scanned at a low power 
and we found areas with high MVDs (brown staining). 
Individual microvessels were counted in three fields under 
a magnification of 200 × field. The primary antibodies used 
included anti-FGF19 (sc-390621, Santa Cruz Biotechnology, 
Texas, USA,1:50), anti-CD34 (14486–1-AP, Proteintech, 
China,1:100) and anti-Ki67 (27309–1-AP, Proteintech, 
China, 1:2000).

2.2 � Cell culture

The NPC cell lines CNE1(high differentiation), CNE2(low 
differentiation), 5-8F (high tumorigenesis and high 
metastasis), 6-10B (high tumorigenesis and low metastasis), 
and C666-1 (EBV + and low differentiation) and the 
immortalized normal nasopharyngeal epithelial cell line 
NP69 were kindly provided by the Sun Yat-Sen University 
and Xiang-Ya School of Medicine. Human umbilical vein 
endothelial cells (HUVECs) were cultured in DMEM/F-12 
(HAM) 1:1 (C3130, Viva Cell Biosciences, China) 
containing 10% FBS (04–001-1ACS, Biological Industries, 
Beit-Haemek, Israel). Tumour cells were grown in RPMI 
1640 (C3010, Viva Cell Biosciences, China) with 10% 
FBS, while NP69 cells were maintained in Keratinocyte-
SFM medium (10785, Gibco, Grand Island, USA). Cells 
were cultured at 37 °C under 5% CO2 at the Institute of 
Otorhinolaryngology Head and Neck Surgery, Affiliated 
Hospital of Nantong University (Jiangsu, China).

2.3 � ELISA analysis of FGF19 expression

We collected the cell culture supernatant and centrifuged it 
to remove particulates. Serum was collected with a serum 
separator tube and centrifuged for 15 min at 1000 g. A 
human FGF19 immunoassay ELISA kit (Quantikine® 
ELISA DF1900, R&D Systems, Minnesota, USA) was 
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used to measure FGF19 levels in serum and culture medium 
according to the manufacturer’s protocol. The optical density 
of each well was determined with a microplate reader at 
450 nm.

2.4 � Western blot

Western blotting was performed as previously described 
[32].The antibodies used were as follows: anti-FGF19 
(A6589, ABclonal, China, 1:500), anti-TRIM21 (12108–1-
AP, Proteintech, China, 1:1000), anti-ANXA2 (sc-28385, 
Santa Cruz Biotechnology, Texas, USA, 1:1000), anti-
Tubulin(FD0064, Fude bio, China, 1:1000), anti-p-PI3K 
(A0982, ABclonal, China, 1:500), anti-AKT1 (A11016, 
ABclonal, China, 1:1000), anti-p-AKT1 (AP0140, ABclonal, 
China, 1:1000), anti-mTOR (A11355, ABclonal, China, 
1:500), and anti-p-mTOR (ab109268, Abcam, UK, 1:1000).

2.5 � Quantitative RT‑PCR

Total RNA was extracted from cells and tissues using Trizol 
(M5100, New Cell& Molecular Biotech, China) according 
to the manufacturer’s instructions. cDNA was generated by 
a reverse transcriptase kit (K1622, Thermo Fisher Scientific, 
USA). Then qRT-PCR was performed with a SYBR Green 
Master (04913914001, Roche, Germany) in a Real-Time PCR 
System. Gene expression level was analyzed using the ΔΔCt 
method and normalized to GAPDH expression. Primers were 
obtained from Sangon Biotech(China) and listed as follows: 
FGF19: Forward: 5'- ATG​GCT​ACA​ATG​TGT​ACC​GATC-3', 
Reverse: 5'- AGA​AAG​CCT​CTG​TTC​TTG​TACA-3'; TRIM21: 
Forward: 5'- TCC​TTC​TAC​AAC​ATC​ACT​GACC-3', Reverse: 
5'- CAA​TAT​TCA​GTG​GAC​AGA​GGGT-3'; ANXA2: Forward: 
5`- ACA​TTG​AAA​CAG​CCA​TCA​AGAC-3', Reverse: 5`- GAA​
GGC​AAT​ATC​CTG​TCT​CTGT -3'.

Table 1   Sequences of siRNAs 
and shRNAs

Name Sequences(5’-3’)

TRIM21-siRNA1 Forward: 5'-GCA​UGG​UCU​CCU​UCU​ACA​
ATT-3'

Reverse: 5'-UUG​UAG​AAG​GAG​ACC​AUG​CTT-3'
TRIM21-siRNA2 Forward: 5'-GGU​GAU​AAU​UGU​CCU​GGA​

ATT-3'
Reverse: 5'-UUC​CAG​GAC​AAU​UAU​CAC​CTT-3'

TRIM21-siRNA3 Forward: 5'-CGC​AGA​GUU​UGU​GCA​GCA​
ATT-3'

Reverse: 5'-UUG​CUG​CAC​AAA​CUC​UGC​GTT-3'
FGF19-shRNA1 forward sequence

5′-CCG​GCC​ACT​TGG​AAT​CTG​ACA​TGT​
TCTCG​

AGA​ACA​TGT​CAG​ATT​CCA​AGT​GGT​TTTTG-
3′

FGF19-shRNA2 forward sequence
5′-CCG​GGC​TTT​CTT​CCA​CTC​TCT​CAT​TCTCG​
AGA​ATG​AGA​GAG​TGG​AAG​AAA​GCT​TTTTG-

3′
FGF19-shRNA3 forward sequence

5′-CCG​GCA​ATG​TGT​ACC​GAT​CCG​AGA​ACTC​
GAG​TTC​TCG​GAT​CGG​TAC​ACA​TTG​TTT​TTG​

-3′
ANXA2-shRNA1 forward sequence

5′-CCG​GCT​GTA​CTA​TTA​TAT​CCA​GCA​ACTC​
GAG​TTG​CTG​GAT​ATA​ATA​GTA​CAG​TTT​TTG​

-3′
ANXA2-shRNA2 forward sequence

5′-CCG​GCC​TGC​TTT​CAA​CTG​AAT​TGT​
TCTCG​

AGA​ACA​ATT​CAG​TTG​AAA​GCA​GGT​TTTTG-
3′

ANXA2-shRNA3 forward sequence
5′-CCG​GTG​AGG​GTG​ACG​TTA​GCA​TTA​CCTC​
GAG​GTA​ATG​CTA​ACG​TCA​CCC​TCA​TTT​TTG​

-3′
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2.6 � Transfection with plasmids and siRNAs

Cell transfection was performed according to the 
manufacturer’s instructions. Three short hairpin RNAs 
(shRNAs) against FGF19 or ANXA2 and FGF19 
overexpression plasmid were constructed by GeneChem Co., 
Ltd. (China). Small interfering RNAs (siRNAs) targeting 
TRIM21 were obtained from Tsingke Biotechnology Co., 
Ltd.(China). The sequences are listed in Table1.

2.7 � Immunofluorescence assay

HUVECs were seeded onto slides overnight and fixed with 
4% paraformaldehyde. Then, they were blocked for 1 h and 
incubated with anti-TRIM21 (12108–1-AP, Proteintech, 
China, 1:50) and anti-ANXA2 (sc-28385, Santa Cruz Bio-
technology, Texas, USA, 1:50) antibodies. The next day, the 
cells were incubated with a fluorescent dye-labelled second-
ary antibody for 1 h. We washed the slides and added an anti-
fluorescence attenuator containing DAPI. Images of stained 
cells were captured under a confocal microscopy. Pearson's 
R value of scatter plot analysis was calculated using ImageJ.

2.8 � Cell proliferation assay

Cells were seeded onto 96-well plates(Corning, USA) at a 
density of 5 × 103 cells per well. Cell viability was assessed 
using CCK-8 (BS350B, Biosharp Life Sciences, China). The 
absorbance of each well was measured by a microplate reader.

2.9 � Colony formation

Five hundred cells were seeded on a 6-well plate and 
incubated for 10 days. Then, they were fixed and stained 
with crystal violet. Colonies that contained more than 50 
cells were counted as one positive colony.

2.10 � Wound healing assay

Cells were seeded on a 6-well plate to reach 80% confluence. 
A single scratch wound was created with a 100-μl pipette tip. 
Then, serum-free medium was added to replace the culture 
medium. Every 12 h, we observed the migration distance 
of the cells. Relative distance was measured by the wound 
width/the distance measured at 0 h.

2.11 � Transwell migration assay

A total of 5 × 104 cells were resuspended in 200 μl serum-
free medium and added to the upper chamber with a poly-
carbonate filter of 8 μm. Then, complete medium was added 
to the lower chamber. After 18 h (for NPC cells) or 12 h 
(for HUVECs) of incubation, cells that had passed through 
the membrane were fixed and stained. Migrated cells were 
counted under a microscope in 5 random selected fields.

2.12 � Tube formation assay

96-well plate was coated with 50 μL of Matrigel (Matrigel 
Matrix 354234, Corning, USA) and incubated at 37 °C for 
30 min. Then, 3 × 104 HUVECs were resuspended in 100 μl 
serum-free medium and seeded into the precoated well for 
6 h. Images of the capillary-like structures were captured. 
Relative tube length was calculated by ImageJ.

2.13 � Matrigel plug assay

HUVECs (3 × 106) were collected and mixed with 300 μl 
Matrigel. Then, the mixture was subcutaneously injected 
into five-week-old BALB/c male nude mice. One week 
later, the plugs were obtained and processed into frozen 
sections. We stained the sections with haematoxylin and 
eosin to observe the vessels.

Fig. 1   FGF19 is highly expressed in NPC. A: Representative results 
of immunohistochemical staining. The first column: IHC detection of 
FGF19 in nasopharyngeal epithelium tissues. The second and third 
columns: IHC detection of FGF19 in NPC tissues of stage I-II. The 
forth and fifth columns: IHC detection of FGF19 in NPC tissues of 
stage III-IV (top: × 200, bottom: × 400). B: Western blot analysis of 
FGF19 expression in 3 NPC tissues and 3 nasopharyngeal epithelium 
tissues. (T) Nasopharyngeal squamous cell carcinoma tissues. (N) 
Nasopharyngeal epithelium tissues. Tubulin was used as a control for 
protein load. C: qRT-PCR was used to detect the relative expression 
of FGF19 in tissues. D: ELISA was used to detect serum FGF19 lev-
els in 61 NPC patients and 36 healthy volunteers. E: Serum FGF19 
levels of NPC patients in stage I- II and stage III- IV. F: Serum 
FGF19 levels in male and female NPC patients. G: Serum FGF19 
levels in NPC patients of different ages. Data are presented as the 
mean ± SD of three independent assessments. *P < 0.05, **P < 0.01, 
***P < 0.001, NS: nonsignificant

◂
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2.14 � Coimmunoprecipitation

For Co-IP, we used a Pierce Co-Immunoprecipitation Kit 
(26149, Thermo Fisher Scientific, USA) according to the 
manufacturer’s instructions. Proteins were immunoprecipi-
tated with antibodies and then subjected to western blotting.

2.15 � Cycloheximide chase assay

The stability of ANXA2 was determined by a cycloheximide 
(CHX) chase assay. HUVECs cells were seeded on 6-well 
plates and treated with different stimulations for 24 h. Then, 
100 µg/ml CHX (Med Chem Express, New Jersey, USA) 
was added. At different time points, cells were collected for 
western blotting.

2.16 � Ubiquitylation assay

To analyse ANXA2 ubiquitination, the proteasome inhibi-
tor MG132(20 μM) (A2585, APExBIO, Houston, USA) 
was added to HUVECs and incubated for 6 h. Then, lysates 
were collected and immunoprecipitated with anti-ANXA2. 
Western blotting was performed to determine ubiquitylation 
levels with anti-ubiquitin (ab134953, Abcam, UK, 1:1000).

2.17 � In vivo experiments

CNE2 and C666-1 cells were transfected with shFGF19 or 
shNC and then subcutaneously injected into 5-week-old 
BALB/c male nude mice. Tumours were measured every 
two days and the volume was calculated as 1/2 (length 
(mm)) × (width (mm))2. Two weeks later, the xenografts 
were excised, fixed and embedded in paraffin for subsequent 
IHC assays. All experiments were performed following 
the NIH guidelines and were approved by the Animal 
Experiments Ethics Committee of Nantong University 
(Ethics number: 20170309–001).

2.18 � Zebrafish experiments

We used Tg (fli1a: EGFP) transgenic zebrafish for the 
tumour migration assay. Approximately 300 cells that 
had been stained with DiI (C1036, Beyotime, China) 
were injected into the perivitelline cavity of 48 h 
postfertilization zebrafish embryos with a microinjection 
system. DiI-stained cells were visualized under a 
fluorescence microscope.

For angiogenesis assays in zebrafish, the FGF19 overexpres-
sion plasmid was injected into 1–2-cell stage fertilized eggs of 
Tg (fli1a: EGFP) transgenic zebrafish. Seventy-two hours later, 
we observed the morphology of subintestinal vessels (SIVs) 
with a confocal microscopy (TCS-SP5 LSM, Leica, Germany).

2.19 � Statistical analysis

Data were collected from three independent experiments and 
expressed as the mean ± standard deviation (SD). Statistical 
analysis was performed by SPSS17.0 software and Graph-
Pad Prism. Comparisons between different groups were 
analysed using Student’s t test and one-way ANOVA. Cor-
relation analysis was performed using Spearman’s rank cor-
relation coefficient. The following P values were denoted as 
statistical significance: *P < 0.05, **P < 0.01, ***P < 0.001.

3 � Results

3.1 � FGF19 is highly expressed in NPC

To identify the role of FGF19 in NPC, we first analysed 
its expression level in tissues. Immunohistochemistry 

Fig. 2   FGF19 regulates NPC cell malignant behaviours. A: Western 
blot analysis of FGF19 expression in NPC cell lines (CNE1, CNE2, 
5-8F, 6-10B, C666-1) and the immortalized  normal nasopharyngeal 
epithelial cell line NP69. B: ELISA was used to detect FGF19 level 
in culture medium(CM) of different cells. The column showed FGF19 
concentration in CM from NPC cells relative to CM from NP69. C: 
The interference efficiency of shFGF19 was assessed by western blot-
ting in CNE2 and CNE1 cells. D: CCK8 assay was used to determine 
cell proliferation after transfection with shNC or shFGF19 in CNE2 
and CNE1 cells. E, F: Colony formation assay was performed in 
shNC or shFGF19 cells. We showed the representative images and 
the quantification analysis. G, H: Transwell assay was used to deter-
mine cell migration in shNC or shFGF19 cells. We showed the rep-
resentative images and the quantification analysis. I, J: Wound heal-
ing assay was performed in shNC or shFGF19 cells. Representative 
images of cell migration were captured at 0 and 48 h with a micro-
scope. The relative migrated width was calculated by the wound 
width/the distance measured at 0 h. The histogram showed the rela-
tive distance of wound. K: Tg (fli1a: EGFP) transgenic zebrafish were 
used to evaluate cell metastasis. shNC or shFGF19 CNE2 cells were 
stained with Dil and injected into the perivitelline cavity of zebrafish 
at 48 hpf. The migration of tumour cells was evaluated 2 days postin-
jection. The arrow represented the disseminated foci. We observed 
the disseminated foci from primary sites under a fluorescence micro-
scope. Data are presented as the mean ± SD of three independent 
assessments. *P < 0.05, **P < 0.01, ***P < 0.001

◂
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(IHC) and western blotting demonstrated that most NPC 
samples had abnormally positive FGF19 immunoreactivity, 
while in nasopharyngeal epithelium tissues, FGF19 was 
downregulated or absent (Fig. 1A-B). More importantly, 
from the IHC results, we found that FGF19 was more highly 
expressed in patients in stages III- IV than in patients in 
stage I- II (Fig. 1A). qRT-PCR confirmed that FGF19 mRNA 
levels were higher in NPC tissues (Fig. 1C). These results 
indicated that FGF19 is overexpressed in NPC patients.

3.2 � Serum FGF19 serves as a potential biomarker 
for NPC

As FGF19 can be secreted into serum and function as 
an endocrine factor, we then used ELISA to measure 
serum FGF19 levels. In the serum samples from 61 NPC 
patients, FGF19 ranged from 44.7 pg/mL to 984.7 pg/mL, 
while in 36 healthy volunteers, it ranged from 31.3 pg/
mL to 494.9 pg/mL. NPC patients showed higher serum 
FGF19 levels (*P < 0.05) (Fig. 1D). Then, we analysed 
the association of serum FGF19 levels with patients’ 
clinical characteristics. The results showed that FGF19 
levels were higher in patients in stages III- IV than in 
patients in stages I- II (*P < 0.05) (Fig. 1E), which was in 
accordance with the observation from the IHC analysis. 
However, it was not associated with patient age or sex 
(P > 0.05) (Fig. 1F-G). The above results indicated that 
FGF19 levels were increased in the serum of NPC patients 
and may act as a noninvasive novel biomarker.

3.3 � FGF19 regulates NPC cells malignant 
behaviours

Then, we investigated the role of FGF19 on NPC malignant 
behaviours. Western blotting demonstrated that FGF19 was 
more highly expressed in NPC cell lines (CNE1, CNE2, 
C666-1) than in NP69 cells (Fig. 2A). We also used ELISA 
to measure FGF19 levels in different cell culture superna-
tant. Among NPC cells, CNE2, CNE1 and C666-1 secreted 
higher levels of FGF19 than other cell lines (Fig. 2B). As 
FGF19 was highly expressed in CNE1, CNE2 and C666-
1, we downregulated FGF19 in these cells. First, western 
blotting confirmed the knockdown efficiency (Fig. 2C, 
Figure S1A). CCK8 and colony formation assays showed 
that when FGF19 was knocked down, cell proliferation 
was inhibited (Fig. 2D-F, Figure S1B). Next, Transwell 
and wound healing assays showed that cell migration was 
inhibited in the shFGF19 group (Fig. 2G-J, Figure S1D,F). 
Additionally, to determine whether the ectopic expression 
of FGF19 could promote malignant properties, we trans-
fected 5-8F with ectopic FGF19 as it had the lowest level 
of FGF19. Not surprisingly, cell proliferation and migra-
tion were enhanced in 5-8F oeFGF19 group (Figure S1A-
G). Finally, we established a zebrafish migration model. 
shFGF19 or shNC CNE2 cells were injected into the perivi-
telline cavity of Tg (fli1a: EGFP) zebrafish. As shown in 
Fig. 2K-L, there were fewer disseminated tumour cells in 
zebrafish in the shFGF19 group than in the shNC group. 
Therefore, high expression of FGF19 could promote malig-
nant NPC behaviour.

3.4 � FGF19 promotes NPC growth and positively 
correlates with MVD in vivo

Next, we performed in vivo research to further confirm 
the role of FGF19. The results showed that tumour weight 
and volume of the mice were decreased in shFGF19-CNE2 
or shFGF19-C666-1 group (Fig. 3A-C, Figure S2A-C). 
IHC revealed that when FGF19 was downregulated, Ki67 
expression levels were suppressed, which indicated that 
FGF19 promotes NPC growth (Fig. 3D, F, Figure S2D, 
F). As the FGF family was reported to promote angio-
genesis, we also investigated the function of FGF19 in 
NPC angiogenesis. Microvessel density (MVD) is widely 
used to evaluate angiogenesis and could act as a prog-
nostic indicator in NPC [34]. As shown in Fig. 3D-E and 

Fig. 3   FGF19 promotes NPC growth and positively correlates with 
MVD in  vivo. A: CNE2 cells transfected with shNC or shFGF19 
were subcutaneously injected into nude mice. Representative pictures 
of NPC xenografts in nude mice are shown. B: The weights of the 
excised xenografts in the two groups. C: The volumes of the excised 
xenografts in the two groups. D: Representative results of immuno-
histochemical staining of FGF19, CD34 and Ki67 in xenograft sec-
tions. Red arrows indicate microvessels. E: Spearman correlation 
between FGF19 expression and MVD in tumour xenografts. The 
Pearson correlation coefficient (r2) and P value are shown. F: The col-
umn shows relative positive areas of FGF19 and Ki67 in xenografts 
according to the IHC results. G: Representative results of high and 
low immunohistochemical staining of FGF19 and CD34 in NPC tis-
sues. Red arrows indicate microvessels. H: Spearman correlation 
between FGF19 expression and MVD in 10 NPC tissues. Pearson 
correlation coefficient (r2) and P value are shown. Data are pre-
sented as the mean ± SD of three independent assessments. *P < 0.05, 
**P < 0.01, ***P < 0.001

◂
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Figure S2D-E, shFGF19 xenografts had decreased MVD 
and FGF19 expression was positively related to MVD. 
Thus, FGF19 promoted NPC growth and was related to 
angiogenesis.

Then, IHC was performed on 10 NPC tissues. As 
Fig. 3G-H illustrates, FGF19 expression was positively 
correlated with MVD, and tissues with higher FGF19 
expression levels had increased MVD. Therefore, FGF19 
is associated with NPC angiogenesis.

3.5 � NPC cells secrete FGF19 to HUVECs and promote 
angiogenesis

Since FGF19 is associated with MVD in NPC, we next 
focused on its role in angiogenesis. To evaluate whether 
FGF19 directly influences angiogenesis, we treated 
HUVECs with exogenous FGF19. With the increas-
ing doses of FGF19, tube formation and migration of 
HUVECs were accelerated (Fig. 4A-B). Tg (fli1a: EGFP) 
transgenic zebrafish were used to observe vessel phe-
notypes. The results showed that FGF19 significantly 
promotes the sprouting of subintestinal vessels (SIVs) 
in zebrafish, which further confirmed the proangiogenic 
function of FGF19 (Fig. 4C).

Next, we collected culture medium (CM) from shFGF19- 
or oeFGF19-CNE2 cells and further identified the role of 
secreted FGF19 from NPC cells (Fig. 4D). We observed that 
shFGF19-CM inhibited the tube formation and migration 
of HUVECs, while oeFGF19-CM had the opposite effects 
(Fig.  4E-G). Moreover, the Matrigel plug angiogenesis 
assay showed that HUVECs pretreated with shFGF19-CM 
exhibited fewer vessels, while oeFGF19-CM-treated cells 
had more vessels (Fig. 4H). Additionally, we collected CM 

from shFGF19-C666-1 and oeFGF19-5-8F cells (Figure 
S3A), and the results further confirmed the promotion role 
of FGF19 on HUVECs (Figure S3B-D). Collectively, FGF19 
derived from NPC cells promoted HUVECs angiogenesis.

3.6 � FGF19 upregulates ANXA2 expression 
to accelerate angiogenesis

Then, we wondered how FGF19 promotes angiogenesis and 
its probable mechanism. Previous studies have confirmed 
that ANXA2 influences tumour angiogenesis [35], and we 
then determined ANXA2 expression after FGF19 treat-
ment. With the increasing doses of FGF19, ANXA2 levels 
in HUVECs were elevated (Fig. 5A). Figure 5B-D confirmed 
that when ANXA2 was downregulated, tube formation and 
migration were inhibited. More importantly, western blot-
ting showed the variation in ANXA2 with FGF19 treatment 
(Fig. 5E). Next, we tested whether ANXA2 is involved in the 
positive effect of FGF19 on HUVECs. The results showed 
that tube formation and migration were suppressed when 
ANXA2 was downregulated (Fig.  5F-H). The Matrigel 
plug angiogenesis assay also exhibited the similar results 
(Fig. 5I). Thus, the promoting function of FGF19 on angio-
genesis relied on ANXA2 expression.

3.7 � TRIM21 interacts with ANXA2 and triggers 
ubiquitination

Since FGF19 influences ANXA2 expression, we then 
determined the effects of FGF19 on ANXA2 stability in 
HUVECs. Figure 6A showed that ANXA2 degradation was 
significantly delayed with FGF19 stimulation in the presence 
of the protein synthesis inhibitor cycloheximide (CHX), 
which suggested that FGF19 prevented the degradation of 
ANXA2. The ubiquitin/proteasome system is one of the 
most important processes for protein degradation. We treated 
cells with Mg132, which is a specific ubiquitin/proteasome 
inhibitor and found that it inhibited ANXA2 degradation 
(Fig. 6B). Therefore, ANXA2 degradation was associated 
with ubiquitin–proteasome and the influence of FGF19 on 
ANXA2 expression might rely on this way.

Next, we wondered how FGF19 influences ANXA2 
ubiquitination. E3 ubiquitin ligase plays important roles in 
the ubiquitin/proteasome pathway. Since FGF19 is not an E3 
ligase, we performed co-IP to identify the protein that had 
E3 ubiquitin ligase activity and could interact with ANXA2. 
From the co-IP results, TRIM21 interacted with ANXA2 in 
HUVECs (Fig. 6C). Moreover, the localization of ANXA2 and 
TRIM21 was observed by immunofluorescent colocalization 
analysis (Fig. 6D). Then, we also found that FGF19 greatly 
increased the expression of ANXA2 and decreased TRIM21 
by immunofluorescence staining (Fig. 6E). Accordingly, we 
hypothesized that TRIM21 might be responsible for ANXA2 

Fig. 4   NPC cells secrete FGF19 into HUVECs and promote angio-
genesis. A: Tube formation assays (top) and Transwell migration 
assays (bottom) were performed to measure tube formation and 
migration of HUVECs treated with increasing doses of FGF19. B: 
The relative tube length and number of migrated HUVECs were 
quantified. C: Morphology of subintestinal vessels (SIVs) in Tg (fli1a: 
EGFP) transgenic zebrafish after the injection of FGF19 plasmid or 
negative control. Up: Morphology of subintestinal vessels (SIVs) was 
photographed by a fluorescence microscope. Bottom: Morphology of 
SIVs was photographed by a confocal microscope. Arrows: sprouts 
of SIVs. D: Relative FGF19 level in culture medium(CM) collected 
from CNE2 cells transfected with shFGF19 or oeFGF19 plasmids. 
E: Tube formation assays (top) and Transwell migration assays (bot-
tom) were performed to measure tube formation and migration of 
HUVECs treated with different CMs. F, G: The relative tube length 
and number of migrated HUVECs were quantified. H: HUVECs pre-
treated with different CMs were mixed with Matrigel for subcutane-
ous injection. Top: Gross observation of angiogenesis in Matrigel 
plugs. Bottom: H&E staining was performed to observe blood vessel 
formation in different groups. Data represent the mean ± SD of three 
independent experiments. *P < 0.05, **P < 0.01, ***P < 0.001
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ubiquitination. Not surprisingly, siTRIM21 increased the 
protein level of ANXA2, while the mRNA level was not 
affected (Fig.  6F-H). Furthermore, HUVECs transfected 
with siTRIM21 or siNC were treated with CHX, and 
ANXA2 degradation was inhibited in siTRIM21-treated cells 
(Fig. 6I). Ubiquitination assays showed that when TRIM21 
was downregulated, ANXA2 ubiquitin levels were decreased 
(Fig. 6J). To further elucidate the functional role of TRIM21, 
shANXA2-HUVECs were transfected with siTRIM21, which 
reversed the inhibitory effect of shANXA2 on HUVECs 
(Fig. 6K-M). Therefore, TRIM21 interacted with ANXA2 and 
could trigger its ubiquitination in HUVECs.

3.8 � NPC‑derived FGF19 upregulates ANXA2 
by blocking TRIM21‑mediated ubiquitination

Furthermore, we investigated whether NPC-derived FGF19 
could regulate ANXA2 ubiquitination. CMs from shFGF19- 
or oeFGF19-CNE2 were cocultured with HUVECs. Western 
blot analysis showed that ANXA2 expression was down-
regulated by shFGF19-CM treatment but upregulated by 
oeFGF19-CM treatment (Fig. 7A). We also collected CMs 
from shFGF19-C666-1 and oeFGF19-5-8F, ANXA2 showed 
a similar expression variation (Figure  S4A). Then, we 
determined the effects of NPC-derived FGF19 on ANXA2 
stability. As shown in Fig. 7B, ANXA2 degradation was 
delayed with oeFGF19-CM treatment. Ubiquitination assays 
confirmed that oeFGF19-CM downregulated ANXA2 poly-
ubiquitination level, and shFGF19-CM increased ANXA2 
polyubiquitination (Fig.  7C). HUVECs treated with 
shFGF19-C666-1 or oeFGF19-5-8F also influence ANXA2 
polyubiquitination level (Figure S4B-C). These results sug-
gested that NPC-derived FGF19 prevented ANXA2 ubiqui-
tination and degradation.

The PI3K/AKT pathway was reported to regulate 
angiogenesis and could contribute to abnormal blood ves-
sel formation [36]. We found that p-PI3K, p-AKT1 and 
p-mTOR were elevated with oeFGF19-CM treatment, while 

shFGF19-CM had the opposite effect (Fig. 7D, Figure S4D). 
Moreover, we found that mTOR activity was inhibited when 
cells were treated with rapamycin, which is a well-known 
mTOR inhibitor [37]. The inhibitory effect was reversed 
with oeFGF19-CM treatment (Fig. 7E, Figure S4E). There-
fore, the promotion of angiogenesis by FGF19 might be 
associated with the PI3K/AKT/mTOR pathway.

Furthermore, we wondered whether NPC-derived FGF19 
could regulate ANXA2 expression by influencing TRIM21-
mediated ubiquitination. From the immunoprecipitation 
assay, we observed that with shFGF19-CM treatment, ubiq-
uitination of ANXA2 was increased, while when HUVECs 
were pretransfected with siTRIM21, ANXA2 ubiquitination 
was decreased (Fig. 7F).

Finally, we elucidated the functional roles in  vitro. 
HUVECs were pretransfected with siTRIM21, and 
subsequently treated with shFGF19-CM from CNE2 or 
C666-1. The results showed that shFGF19-CM decreased 
tube formation and cell migration, while cells transfected 
with siTRIM21 could partly reverse this effect (Fig. 7G-I, 
Figure S4F-I). Altogether, NPC-derived FGF19 regulated 
angiogenesis by influencing TRIM21-mediated ANXA2 
ubiquitination.

4 � Discussion

Several studies have focused on the molecular landscape of 
NPC and identified multiple factors that contribute to NPC 
progression. However, its in-depth mechanism remains to be 
further explored. In this research, we found that high expres-
sion of FGF19 could promote NPC progression. We then 
investigated the role of FGF19 in angiogenesis and identi-
fied that NPC cells secreted high levels of FGF19, promot-
ing the angiogenesis of HUVECs. Mechanistically, FGF19 
regulated angiogenesis by influencing TRIM21-mediated 
ANXA2 ubiquitination through PI3K/Akt/mTOR (Fig. 7J). 
This evidence demonstrates the importance of FGF19 in 
NPC progression.

FGF19, belongs to the endocrine FGF family, acts as a 
signalling molecule and is overexpressed in a subgroup of 
tumours [38]. However, the role of FGF19 in NPC remains 
unclear. One of the most important findings of this research 
was that FGF19 is highly expressed in NPC tissues and 
associated with clinical stages (Fig. 1A-C). In a previous 
study on head and neck squamous cell carcinoma(HNSCC), 
FGF19 was overexpressed in tumours and promoted cell 
proliferation [31]. In our study, we confirmed that FGF19 
accelerates NPC cell malignant behaviours (Figs. 2 and 3, 
Figure S1-2).

As an endocrine factor, FGF19 diffuses into circulation to 
drive interorgan crosstalk [39]. The concentration of FGF19 
in circulation is associated with the pathogenesis of diseases. 

Fig. 5   FGF19 influences ANXA2 expression to accelerate angiogen-
esis. A: ANXA2 expression in HUVECs with the increasing doses 
of FGF19. B: The interference efficiency of shANXA2 was assessed 
by western blotting in HUVECs. C, D: Tube formation assays (top) 
and Transwell migration assays (bottom) were performed to measure 
tube formation and migration of HUVECs transfected with shNC or 
shANXA2. E: Western blotting was used to detect ANXA2 expres-
sion with the treatment of FGF19 or shANXA2. F: Tube formation 
assays (top) and Transwell migration assays (bottom) were performed 
to measure tube formation and migration of HUVECs. G, H: The rel-
ative tube length and migrated HUVECs were quantified. I: HUVECs 
transfected with shANXA2 or shNC and pretreated with FGF19 were 
mixed with Matrigel for subcutaneous injection. Top: Gross observa-
tion of angiogenesis in Matrigel plugs. Bottom: H&E staining was 
performed to observe blood vessel formation in different groups. Data 
represent the mean ± SD of three independent experiments. *P < 0.05, 
**P < 0.01, ***P < 0.001
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In hepatocellular carcinoma(HCC) and melanoma, serum 
FGF19 levels were significantly elevated in tumour patients 
[40, 41]. In accordance with these studies, we found that 
FGF19 levels were higher in the serum of NPC patients 
and had a close relationship with tumour stage, support-
ing the importance of FGF19 in NPC diagnosis (Fig. 1D-
E). In HNSCC, secreted FGF19 levels were correlated 
with FGF19 expression in tumours [31]. We also evaluated 
FGF19 expression in NPC cell lines. Not surprisingly, it was 
elevated in the culture medium of CNE2, CNE1 and C666-1 
cells, which was consistent with the higher expression of 
protein levels in NPC cells (Fig. 2B). Therefore, FGF19 
could be easily detected and might serve as a noninvasive 
biomarker for NPC.

Abnormal tumour vasculature might have profound con-
sequences for tumour survival. Tumour and stromal cells 
secrete several growth factors to promote abnormal tumour 
vessel formation. In colorectal cancer, secreted dickkopf2 
might be a potential antiangiogenic target for patients [42]. 
FGFs can also be secreted and induce angiogenic responses. 
FGF2 was highly expressed in antiangiogenic drug-resist-
ant NPC, and its knockdown reduced tumour angiogenesis 
[43]. Here, we identified a previously unreported function of 
FGF19 in angiogenesis. We found that FGF19 overexpres-
sion was accompanied by MVD in both clinical NPC tissues 
and subcutaneous tumours (Fig. 3D-E, G-H, Figure S2D-E). 
Moreover, HUVECs cocultured with oeFGF19-CM exhib-
ited more tubes and vessels (Fig. 4E-H, Figure S3B-D). 

Therefore, novel mechanisms by which FGF19 promotes 
angiogenesis need to be investigated in-depth.

FGF/FGFR is an important pathway that participates in 
tumour progression, including cell proliferation, migration, 
angiogenesis and immune evasion [39, 44]. Studies have 
confirmed that FGF19 binds exclusively to FGFR4. We 
previously identified that FGFR4, the receptor of FGF19, 
promoted NPC pathogenesis and might act as a prognostic 
biomarker [32]. Similar results were also reported in HCC; 
FGF19-FGFR4 mediated the upregulation of SOX8 and 
promoted HCC metastasis [45]. FGF19-FGFR4 signalling 
activates several pathways, including extracellular regulated 
protein kinases(ERK), jun N-terminal kinase (JNK), phosph-
oinositide 3-kinase (PI3K), mammalian target of rapamycin 
(mTOR) and others, which are closely related to tumour pro-
gression [28, 45, 46]. In HNSCC, FGF19 activated FGFR4-
dependent ERK/AKT-p70S6K-S6 signalling to promote 
cell proliferation [31]. We also reported that FGF19 could 
activate FGF19-FGFR4-dependent ERK signaling cascade 
to exert its function [47]. Previous research has confirmed 
that HUVECs natively express FGFR4 [48], so we hypothe-
sized that FGF19 binds to FGFR4 in HUVECs and activates 
downstream signals.

PI3K/AKT was reported to be activated by FGF19/FGFR4 
and involved in tumour progression. Silencing FGF19 or neu-
tralizing extracellular FGF19 with an anti-FGF19 antibody 
(1A6) decreased FGFR4-mediated AKT phosphorylation and 
inhibited cell growth, which further enhanced drug sensitiv-
ity [30]. PI3K/AKT could also regulate angiogenesis [36]. In 
our research, we found that FGF19 activates the PI3K/AKT1/
mTOR pathway in HUVECs (Fig. 7D, Figure S4D). Moreo-
ver, we found rapamycin, a well-known mTOR inhibitor, 
could inhibit mTOR activity, and the inhibitory effect was 
reversed with oeFGF19-CM treatment (Fig. 7E, Figure S4E). 
Therefore, the promotion of angiogenesis by FGF19 might be 
associated with the PI3K/AKT1/mTOR pathway.

ANXA2, a 36 kDa protein, is involved in autoimmune 
and neurodegenerative diseases and malignant tumours 
[49]. It also activates factors that promote angiogenesis 
[50]. Silencing ANXA2 was able to suppress HUVEC 
proliferation and represented a useful target for future 
therapies [51]. In breast cancer, blocking ANXA2 sig-
nificantly inhibited neoangiogenesis [52]. We found that 
with the increasing of FGF19 levels, ANXA2 levels were 
also elevated, while when ANXA2 was downregulated, 
the promotion function of FGF19 was inhibited (Fig. 5E-
I). Therefore, FGF19 promoted angiogenesis by influ-
encing ANXA2 expression. Then, we wondered how 
FGF19 influences ANXA2 expression. Posttranslational 
modifications, such as ubiquitination, can regulate pro-
tein stability. FGF19 was reported to increase SHP sta-
bility by inhibiting its ubiquitination [53]. In this study, 

Fig. 6   TRIM21 interacts with ANXA2 and triggers ubiquitination. 
A: ANXA2 expression in HUVECs with or without FGF19 treatment 
following CHX treatment for the indicated times. B: ANXA2 expres-
sion in HUVECs with or without the addition of Mg132 following 
CHX treatment for the indicated times. C: Co-IP was performed to 
analyse the interaction between ANXA2 and TRIM21 in HUVECs. 
IgG was used as a negative control. D: Representative images of 
colocalization of ANXA2 and TRIM21 in HUVECs. Red: ANXA2; 
Green: TRIM21. Pearson's R value of scatter plot analysis was calcu-
lated using ImageJ. E: ANXA2 and TRIM21 expression in HUVECs 
after FGF19 treatment was detected by immunofluorescence staining. 
F: The interference efficiency of siTRIM21 was assessed by western 
blotting in HUVECs. G: qRT-PCR was used to detect mRNA level 
of TRIM21 and ANXA2 with the transfection of NC or siTRIM21. 
H: Western blot was used to detect protein level of TRIM21 and 
ANXA2 with the transfection of NC or siTRIM21. I: ANXA2 expres-
sion in HUVECs transfected with NC or siTRIM21 following CHX 
treatment for the indicated times. J: HUVECs transfected with NC or 
siTRIM21 were immunoprecipitated with ANXA2 antibody and ana-
lysed by immunoblotting with the anti-ubiquitin antibody to examine 
ANXA2 ubiquitination. Whole-cell lysates were used for western 
blotting with an anti-TRIM21 or anti-ANXA2 antibody. K: Tube for-
mation assays (top) and Transwell migration assays (bottom) were 
performed to measure tube formation and migration of shANXA2-
HUVECs transfected with NC or siTRIM21. L, M: The relative tube 
length and number of migrated HUVECs were quantified. Data rep-
resent the mean ± SD of three independent experiments. *P < 0.05, 
**P < 0.01, ***P < 0.001
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we found that FGF19 prevented ANXA2 degradation via 
the ubiquitin/proteasome pathway (Fig. 6A-B). Moreover, 
oeFGF19-CM downregulated ANXA2 polyubiquitination 
levels (Fig. 7B-C, Figure S4B-C). Therefore, NPC-derived 
FGF19 prevented ANXA2 ubiquitination and degradation.

TRIM21, a member of the TRIM family, can degrade 
proteins in proteasomes via E3 ubiquitin ligase activity 
[54]. As we mentioned, TRIM21 interacted with ANXA2 
and inhibited its expression via the ubiquitin/proteasome 
system (Fig. 6C-J). In a study on colitis-associated can-
cer, TRIM21 was found to negatively modulate epithelial 
cell proliferation and angiogenesis [55]. We observed that 
when TRIM21 was downregulated, tube formation was 
promoted (Fig. 6K-M). Previously, TRIM21 was reported 
as a target of PI3K/AKT signalling and this pathway 
negatively regulates its expression [56]. Consistently, 
in HUVECs, TRIM21 was downregulated followed by 
PI3K/AKT/mTOR activation with oeFGF19-CM treat-
ment (Fig. 7D, Figure S4D). Moreover, siTRIM21 could 
partly reverse the inhibitory effect of shFGF19-CM on 
angiogenesis (Fig. 7F-I, Figure S4F-I).

5 � Conclusion

Altogether, we identified that FGF19, which was overex-
pressed in NPC, could enhance angiogenesis and benefit 
the NPC malignant phenotype. It accelerated angiogenesis 
by influencing TRIM21-mediated ANXA2 ubiquitination 

through the activation of PI3K/Akt/mTOR. Therefore, FGF19 
might be a novel target for NPC diagnosis and therapy.
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Fig. 7   NPC-derived FGF19 upregulates ANXA2 by block-
ing TRIM21-mediated ubiquitination. A: ANXA2 expression in 
HUVECs treated with shFGF19-CM or oeFGF19-CM. B: ANXA2 
expression in HUVECs treated with shFGF19-CM or oeFGF19-
CM following CHX treatment for the indicated times. C: HUVECs 
treated with shFGF19-CM or oeFGF19-CM were immunoprecipi-
tated with ANXA2 antibody and analysed by immunoblotting with 
the anti-ubiquitin antibody to examine ANXA2 ubiquitination. D: 
Western blot analysis of PI3K/AKT/mTOR in HUVECs treated with 
shFGF19-CM or oeFGF19-CM. E: Western blot analysis of p-mTOR 
in HUVECs with the treatment of oeFGF19-CM or the addition of 
rapamycin. F: HUVECs were transfected with siTRIM21 and treated 
with shFGF19-CM or NC-CM. Then cells were immunoprecipitated 
with ANXA2 antibody and analyzed by immunoblotting with the 
anti-ubiquitin antibody to examine ANXA2 ubiquitination. G: Tube 
formation assays (top) and Transwell migration assays (bottom) were 
performed to measure tube formation and migration of HUVECs 
pretransfected with siTRIM21 and cocultured with shFGF19-CM 
or NC-CM. H: The relative tube length and number of migrated 
HUVECs were quantified. I: HUVECs transfected with siTRIM21 or 
NC and cocultured with shFGF19-CM or NC-CM were mixed with 
Matrigel for subcutaneous injection. Top: Gross observation of angi-
ogenesis in Matrigel plugs. Bottom: H&E staining was performed 
to observe blood vessel formation in different groups. J: A work-
ing model of FGF19 promoting NPC angiogenesis by influencing 
TRIM21-mediated ANXA2 ubiquitination through the activation of 
the PI3K/Akt/mTOR pathway. Data represent the mean ± SD of three 
independent experiments. *P < 0.05, **P < 0.01, ***P < 0.001
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